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Introduction

Graph structures may be used to model computer networks. Servers, hosts or

hubs in a network can be represented as vertices in a graph and edges could

represent connections between them. Each vertex in a graph is a possible

location for an intruder (fault in a computer network, spoiled device) and, in

this sense, a correct surveillance of each vertex of the graph to control such

a possible intruder would be worthwhile. According to this fact, it would be

desirable to uniquely recognize each vertex of the graph. In order to solve this

problem, Slater [97, 99] brought in the notion of locating sets and locating

number of graphs. Also, Harary and Melter [47] introduced independently

the same concept, but using the terms resolving sets and metric dimension to

refer to locating sets and locating number, respectively. Moreover, in a more

recent article, by Sebö and Tannier [96], the terminology of metric generators

and metric dimension for the concepts mentioned above, began to be used.

These terms arose from the notion of metric generators of metric spaces. In

this thesis we follow this terminology and notation from [96].

Informally, a metric generator is an ordered subset S of vertices in a

graph G, such that every vertex of G is uniquely determined by its vector of

distances to the vertices in S. The cardinality of a minimum metric generator

for G is called the metric dimension of G (formal definition is presented in

the next chapter)1.

Once the first papers on this topic were published, some authors have

developed diverse theoretical works on this concept including for example,

[13, 14, 17, 18, 32, 49, 50, 78, 104, 116]. Several applications of the metric

generators have been also appearing. An interested example, as the authors

of [18, 21] have described in their articles, is that the structure of some

chemical compounds is frequently represented by a labeled graph where the

1For graph terminology not defined herein, we refer the reader to [25, 48] and to the

next chapter.

1
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2 Introduction

vertex and edge labels specify the atom and bond types, respectively. Also,

a lot of issues in the field of chemistry are related to obtaining a mathe-

matical representation for chemical compounds, such that each one of these

representations leads to different compounds. For instance, the author of

[57, 58] rediscovered the concepts of metric generators while he was inves-

tigating some aspects about patrons recognition into a chemical compound

in a pharmacy company. Furthermore, this topic has some applications to

problems of pattern recognition and image processing, some of which involve

the use of hierarchical data structures [78]. Other applications to navigation

of robots in networks and other areas appear in [18, 51, 60]. Some interesting

connections between metric generators in graphs and the Mastermind game

or coin weighing have been presented in [14]. Moreover, we refer the reader

to the work [3], where it can be found some historical evolution, nonstandard

terminologies and more references to this topic.

Given a metric generator S of a graph H, the following question was

asked in [96]: whenever H is a subgraph of a graph G and the vectors of

distances of the vertices of H relative to S agree in both H and G, is H an

isometric subgraph of G? Even though the vectors of distances relative to

a metric generator for a graph distinguish all pairs of vertices in the graph,

they do not uniquely determine all distances in a graph as was first shown

in [96]. Fig. 1 shows two graphs of order seven having the same vectors of

distances relative to the metric generator {a, b}, but for which the distances

between pairs of vertices having the same vector of distances are not the

same. It was observed in [96] that, if “metric generator” is replaced by a

stronger notion, namely that of “strong metric generator”, then the question

above can be answered in the affirmative.

a b a b
(0, 3) (3, 0)

(1, 2) (2, 1)

(2, 3) (3, 2)

(3, 3)

(0, 3) (3, 0)

(1, 2) (2, 1)

(2, 3) (3, 2)

(3, 3)

Figure 1: Nonisomorphic graphs with the same metric vectors.
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D. Kuziak 3

Keeping the track of this new concept, some applications of strong metric

generators to combinatorial searching have been presented in [96]. Specifi-

cally, there have been analyzed some problems on false coins arising from a

connection between information theory and extremal combinatorics. Also,

they have dealt with a combinatorial optimization problem related to finding

“connected joins” in graphs.

Apart from the concept of strong metric generator, other variations of

metric generators have been studied. In general the metric parameters can

be classified into four types. Notice that we do not mention every instances

of metric parameters, but just some of the most remarkable ones, from our

point of view.

1) Metric generators which also satisfy other properties of the graph:

– resolving dominating set [12], when the metric generator has also to be a

dominating set;

– independent resolving set [22], when the metric generator is also an inde-

pendent set;

– connected resolving set [91, 92], when the metric generator is also a con-

nected set.

2) Metric generators which have a modified condition of resolvability:

– strong metric generator [82, 96] - the subject of this thesis;

– local metric generator [85] - a set such that every two adjacent vertices of

the graph have distinct vectors of distances to the vertices in this set;

– adjacency resolving set [53] - a set such that any two different vertices not

belonging to the set have different neighborhood in this set;

– locating-dominating set [98, 99] - locating set (any two different vertices

not belonging to the set have different neighbors in this set) which is a do-

minating set;

– identifying code [42, 59] - a set such that any two different vertices of the

graph have different closed neighborhood in this set and is also a dominating

set.

3) Partitions of the vertex set of a graph having some metric properties:

– resolving partitions [23, 41, 88] - a partition such that every two different

vertices of the graph have distinct vectors of distances to the sets of the par-

tition;

– strong resolving partition [115] - a partition where every two different ver-

tices of the graph belonging to the same set of the partition are strongly
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4 Introduction

resolved by some set of the partition;

– metric coloring [20] - a partition such that every two adjacent vertices of

the graph have distinct vectors of distances to the set of the partition.

4) Variants which are extensions of the metric generators:

– k-metric generator [28, 29] - a set such that any pair of vertices of the graph

is distinguished by at least k vertices of this set;

– simultaneous metric generator [84] - a set which is simultaneously a metric

generator for a given family of connected graphs with a common vertex set.

According to the amount of literature concerning all the variants of this topic,

we restrict the references related to them only to those articles in which each

variant was presented first and/or other ones closely related to this thesis.

On the other hand, studies about operations on graphs are being fre-

quently presented and published in the last few decades. By an operation on

graphs we mean, in this thesis, a binary operation, which generates a new

graph starting with two initial graphs. Such binary operations may be di-

vided into two or more categories according to the books [45, 52]. In the first

category could be included the so-called product graphs and in the second

one any other binary operations.

From [45, 52], a graph product of graphs G and H means a graph whose

vertex set is defined on the cartesian product V (G) × V (H) of the vertex

sets of G and H, and where, its edges are determined by a function on

the edges of the factor graphs G and H. By these rules, there exist 256

possible products. Now, according to several properties of these products,

like associativity, commutativity, complementarity, and some other ones, the

most important and investigated products are the Cartesian product, the

direct product, the strong product, and the lexicographic product, which

are also called standard products [45, 52]. Nonetheless, there exist other

less known graph products which are interesting for some investigations, for

instance we could mention the Cartesian sum graph, the modular product,

and the symmetric difference product 2.

As we mention before, in the second category of operations on graphs

are included these ones which generate graphs whose vertex sets can have va-

rious different structures and the operation itself could satisfy or not typical

properties, like commutativity or associativity. Hence, in this category we

2Notice that these products could be also known by other names. For more information

we refer to [45, 52, 81] and to the next chapter.
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D. Kuziak 5

can find for instance, the graph sum, the graph difference, the graph inter-

section3, the graph join, the rooted product, and the corona product. These

mentioned operations, even that they are not considered in the books [45, 52]

as products, are frequently treated and called in the literature as such. Since

the goal of this thesis is not related to study the structure of the product,

but to study the behavior of some invariants of the product, from now on we

will consider all these operations mentioned above as a product of graphs.

Operations on graphs are in many aspects natural constructions, and

in several cases serve as a model of diverse realistic situations. Roughly

speaking, we just mention some basic cases. The Cartesian product of graphs

has a wide range of applications, like in coding theory, network designs and

mathematical chemistry [100]. The most difficult in many aspects among

standard products, the direct product graphs, also has various applications,

for instance, it can be used as a model for concurrency in multiprocessor

systems [74] and in automata theory [39]. Moreover, the molecular graph of

some chemical compounds are obtained as a corona product graph. As an

example are the cycloalkanes with a single ring, whose chemical formula is

CkH2k, and whose molecular graph can be expressed as the corona product

graph formed by the cycle graph of order n and n copies of the empty graph of

order two [117]. Also, some other classes of chemical graphs can be considered

as the rooted product [2].

Investigations on operations on graphs have two different styles of be-

ing developed. One of them is concerned with the structure and recognition

of the operation, and the second one deals with deducing properties of a

product with respect to properties of its factors. In the last years a rich the-

ory involving the structure and recognition of graph products has popularly

emerged. Also, the other standard approach in graph products is common.

Nevertheless, for our second category of operations on graphs is more fre-

quent to find researches addressed to study their properties with respect to

their factor graphs. In this thesis we are not interested into problems related

to the structure and recognition of operations on graphs.

Some typical properties which are studied on operations on graphs are

for instance, domination, coloring, connectivity and independence related pa-

rameters. The metric dimension of product graphs is not an exception. Some

3Notice that these three first mentioned operations are defined on two graphs of the

same order.
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6 Introduction

examples of these appear in the following published articles. The metric di-

mension of Cartesian product graphs, lexicographic product graphs, strong

product graphs, rooted product graphs and corona product graphs has been

studied in [14], [53, 93], [86], [33] and [116], respectively. Also, the strong

metric dimension of the Cartesian product of two cycles has been obtained

in [82] and the case of Hamming graphs has been investigated in [67]. This

has also motivated us to study the strong metric dimension of some product

graphs. On the other hand, it was shown in [82] that the problem of com-

puting the strong metric dimension of a graph is NP-hard. This suggests

obtaining closed formulaes for the strong metric dimension of special non-

trivial families of graphs or bounding the value of this invariant as tight as

possible.

The thesis is organized as follows. In the first chapter, we recall some

basic definitions on graph theory, present the concepts of product graphs and

the strong metric generators, and recall the transformation from the strong

metric dimension problem to another well-known problem. The rest of the

chapters are focused on the strong metric dimension of graphs obtained from

several operations on graphs. Each of these chapters relates to one operation

on graphs, and in every one of them we present the exact values of the strong

metric dimension of some general classes of the corresponding operation on

graphs, or tight lower and upper bounds. Chapters 2–5 are focused on the

strong metric dimension in standard products: the Cartesian product graphs,

the direct product graphs, the strong product graphs and the lexicographic

product graphs, respectively. Chapter 6 deals with the corona product graphs

and the join graphs, Chapter 7 with the Cartesian sum of graphs, and the

last chapter with the rooted product graphs. We conclude the work with

highlights of the principal studied issues, contributions of the thesis, and

future works.
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Chapter 1

Basic concepts and tools

We begin by establishing the basic terminology and notations which is used

throughout the thesis. For the sake of completeness we refer the reader to the

books [25, 110]. Graphs considered herein are undirected, finite and contain

neither loops nor multiple edges. Let G be a graph of order n = |V (G)|. A

graph is nontrivial if n ≥ 2. We use the notation u ∼ v for two adjacent

vertices u and v of G. For a vertex v of G, NG(v) denotes the set of neighbors

that v has in G, i.e., NG(v) = {u ∈ V (G) : u ∼ v}. The set NG(v) is called

the open neighborhood of a vertex v in G and NG[v] = NG(v) ∪ {v} is called

the closed neighborhood of a vertex v in G. The degree of a vertex v of G is

denoted by δG(v), i.e., δG(v) = |NG(v)|. The open neighborhood of a set S

of vertices of G is NG(S) =
⋃
v∈S NG(v) and the closed neighborhood of S is

NG[S] = NG(S) ∪ S. The minimum and maximum degree of a graph G are

denoted by δ(G) and ∆(G), respectively.

We use the notation Kn, Cn, Pn, and Nn for the complete graph, cycle,

path, and empty graph, respectively. Moreover, we write Ks,t for the complete

bipartite graph of order s+ t and in particular case K1,n for the star of order

n + 1. Let T be a tree, a vertex of degree one in T is called a leaf and the

number of leaves in T is denoted by l(T ).

The distance between two vertices u and v, denoted by dG(u, v), is the

length of a shortest path between u and v in G. The diameter, D(G), of G

is the longest distance between any two vertices in G. If G is not connected,

then we assume that the distance between any two vertices belonging to

different components of G is infinity and, thus, its diameter is D(G) =∞.

We recall that the complement of G is a graph Gc has with the same

vertex set as G and uv ∈ E(Gc) if and only if uv /∈ E(G). The subgraph

7
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8 Basic concepts and tools

induced by a set X is denoted by 〈X〉. A vertex of a graph is a simplicial

vertex if the subgraph induced by its neighbors is a complete graph. Given a

graph G, we denote by σ(G) the set of simplicial vertices of G. We recall that

a clique in a graph G is a set of pairwise adjacent vertices. The clique number

of G, denoted by ω(G), is the number of vertices in a maximum clique in

G. Two distinct vertices u, v are called true twins if NG[u] = NG[v]. In this

sense, a vertex x is a twin if there exists y 6= x such that they are true twins.

We say that X ⊂ V (G) is a twin-free clique in G if the subgraph induced

by X is a clique and for every u, v ∈ X it follows NG[u] 6= NG[v], i.e., the

subgraph induced by X is a clique and it contains no true twins. We say

that the twin-free clique number of G, denoted by $(G), is the maximum

cardinality among all twin-free cliques in G. So, ω(G) ≥ $(G). We refer to

a $(G)-set in a graph G as a twin-free clique of cardinality $(G).

Figure 1.1 shows examples of basic concepts such as true twins and twin-

free clique.

G :

a

b

c

d

e

fg

H :

a b

cd

e

f g

h

Figure 1.1: The set {d, e, f} ⊂ V (G) is composed by true twin vertices in G.

Notice that b and g are true twin vertices in G which are not simplicial, while

f and d are true twin and simplicial vertices. The set {e, f, g, h} ⊂ V (H) is

a twin-free clique in H.

A graph G is 2-antipodal if for each vertex x ∈ V (G) there exists exactly

one vertex y ∈ V (G) such that dG(x, y) = D(G). For example even cycles are

2-antipodal graphs. Also, a distance-regular graph G is a regular connected

graph of diameter D(G), for which the following holds. There are natural

numbers b0, b1, ..., bD(G)−1, c1 = 1, c2, ..., cD(G) such that for each pair (u, v)

of vertices satisfying dG(u, v) = j we have
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(1) the number of vertices in Gj−1(v) adjacent to u is cj (1 ≤ j ≤ D(G)),

(2) the number of vertices in Gj+1(v) adjacent to u is bj (0 ≤ j ≤ D(G)−1),

where Gi(v) = {u ∈ V (G) : dG(u, v) = i}. Classes of distance-regular graphs

include complete graphs, cycle graphs, and hypercube graphs.

We recall that a graph G is vertex-transitive if its automorphism group

acts transitively on V (G). Thus for any two distinct vertices of G there is an

automorphism mapping one to the other. Vertex-transitive graphs include,

for instance, cycle graphs, the Petersen graph, and the Cayley graphs.

Other remaining definitions not defined herein are given the first time

that the concept appears in the text.

1.1 Products of graphs

This section is a brief overview on products of graphs. Here we are concerned

with these products of graphs that we study after with respect to the strong

metric dimension problem.

1.1.1 Cartesian product

The Cartesian product of two graphs G and H is the graph G�H, such

that V (G�H) = V (G) × V (H) and two vertices (a, b) ∈ V (G�H) and

(c, d) ∈ V (G�H) are adjacent in G�H if and only if either

• a = c and bd ∈ E(H), or

• ac ∈ E(G) and b = d.

The Cartesian product is a straightforward and natural construction,

and is in many respects the simplest graph product [45, 52]. Hypercubes,

Hamming graphs and grid graphs are some particular cases of this product.

The Hamming graph Hk,n is the Cartesian product of k copies of the complete

graph Kn, i.e.,

Hk,n = Kn � Kn � ... � Kn︸ ︷︷ ︸
k times

Hypercube Qn is defined as Hn,2. Moreover, the grid graph Pk�Pn is

the Cartesian product of the paths Pk and Pn, the cylinder graph Ck�Pn is
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10 Basic concepts and tools

the Cartesian product of the cycle Ck and the path Pn, and the torus graph

Ck�Cn is the Cartesian product of the cycles Ck and Cn. Figure 1.2 shows

two examples of Cartesian products.

Figure 1.2: Cartesian products C5�K2 and K1,3�P3.

This operation is commutative [45] in the sense that G�H ∼= H�G, and

is also associative, as the graphs (F�G)�H and F�(G�H) are naturally

isomorphic. A Cartesian product of graphs is connected if and only if both

of its factors are connected. The relation between distances in the Cartesian

product of graphs and in its factors is presented in the following remark.

Remark 1.1. [45] If (a, b) and (c, d) are vertices of a Cartesian product

G�H, then

dG�H((a, b), (c, d)) = dG(a, c) + dH(b, d).

This product has been extensively investigated from various perspectives.

For instance, the most popular open problem in the area of domination the-

ory known as Vizing’s conjecture [108]. Vizing suggested that the domination

number of the Cartesian product of two graphs is at least as large as the pro-

duct of domination numbers of its factors. Several researchers have worked

on it, for instance, some partial results appears in [7, 45]. Moreover, Vizing

[107] has investigated the independence number of Cartesian products. The

chromatic number of this product has been completely studied in [90]. The

connectivity and the hamiltonian properties of Cartesian products have been

described in [100, 111] and [26], respectively. For more information on struc-

ture and properties of the Cartesian product of graphs we refer the reader to

[45, 52].
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1.1.2 Direct product

The direct product of two graphs G and H is the graph G × H, such that

V (G×H) = V (G)×V (H) and two vertices (a, b), (c, d) are adjacent in G×H
if and only if

• ac ∈ E(G) and

• bd ∈ E(H).

The direct product is also known as the Kronecker product, the tensor

product, the categorical product, the cardinal product, the cross product, the

conjunction, the relational product, the weak direct product, or simply the

product. This product is commutative and associative in a natural way [45,

52]. Figure 1.3 illustrates two examples of direct products. Notice that

K1,3 × P3 is not connected (one component is bolded).

Figure 1.3: Direct products C5 ×K2 and K1,3 × P3.

The distance and connectedness in the direct product are more subtle

than for the Cartesian product. The characterization of connectedness in the

direct product of two graphs is presented in the next result.

Theorem 1.2. [109] A direct product of nontrivial graphs is connected if and

only if both factors are connected and at least one factor is nonbipartite.

Many different properties of direct products have been investigated. The

most well-known problem dealing with this product is the Hedetniemi’s con-

jecture. Hedetniemi conjectured that the chromatic number of the direct

product of two graphs is equal to the minimum of the chromatic numbers

of its factors. We refer to [45, 103] as surveys on this open problem. The

connectivity and the edge-connectivity is also a difficult problem in the case

of a direct product graphs. Some partial results can be found in [11, 16].
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12 Basic concepts and tools

The independence number, domination number and hamiltonicity have been

studied, for instance, in [55, 102], [9, 81] and [4, 54], respectively. The direct

product graphs is the most difficult in many aspects among standard pro-

ducts, what may confirm open problems concerning this product. For more

information on this product we suggest [45, 52].

1.1.3 Strong product

The strong product of two graphs G and H is the graph G � H, such that

V (G�H) = V (G)× V (H) and two vertices (a, b) and (c, d) are adjacent in

G�H if and only if either

• a = c and bd ∈ E(H), or

• ac ∈ E(G) and b = d, or

• ac ∈ E(G) and bd ∈ E(H).

Other known names for the strong product are the strong direct product

or the symmetric composition. Notice that G�H and G×H are subgraphs

of G�H. Figure 1.4 shows two examples of strong products.

Figure 1.4: Strong products C5 �K2 and K1,3 � P3.

The commutativity of the strong product follows from the symmetry

of the definition of adjacency and for associativity see [45, 52]. A strong

product of graphs is connected if and only if every one of its factors is con-

nected. The formula on the vertex distances and the well-known result about

the neighborhood in the strong product of graphs are presented in the next

remarks.
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Remark 1.3. [45, 52] For any graphs G and H and any two vertices (a, b),

(c, d) of G�H,

dG�H((a, b), (c, d)) = max{dG(a, c), dH(b, d)}.

Remark 1.4. [45, 52] Let G and H be two graphs. For every u ∈ V (G) and

v ∈ V (H)

NG�H [(u, v)] = NG[u]×NH [v].

As a direct consequence of the remark above the following result is ob-

tained.

Corollary 1.5. Let G and H be two graphs and let u, u′ ∈ V (G) and v, v′ ∈
V (H). The following assertions hold.

(i) If (u′, v′) ∈ NG�H(u, v), then u′ ∈ NG[u] and v′ ∈ NG[v].

(ii) If u′ ∈ NG(u) and v′ ∈ NG(v), then (u′, v′) ∈ NG�H(u, v).

With the strong product is closely connected an important information

theoretical parameter, which in general is very difficult to calculate - the

Shannon capacity. The Shannon capacity of a graph G is defined as the limit

of k
√
α(Gk) when n tends to infinity, and where α(G) denotes the indepen-

dence number of the graph G and Gk is the strong product of G with itself

k times. This problem has been attracted for several researchers and some

partial results are presented in [1, 45].

Various properties of strong products have been also studied. The inves-

tigation encompasses, for instance, domination [45, 81], chromatic number

[61, 106], connectivity [10, 101] and hamiltonian properties [30, 63]. For more

information on the strong product we refer the reader to [45, 52].

1.1.4 Lexicographic product

The lexicographic product of two graphs G and H is the graph G ◦ H with

the vertex set V (G ◦ H) = V (G) × V (H) and two vertices (a, b) and (c, d)

are adjacent in G ◦H if either

• ac ∈ E(G), or

• a = c and bd ∈ E(H).
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14 Basic concepts and tools

In the literature we can also find the names the composition or the sub-

stitution for the lexicographic product. The lexicographic product is clearly

not commutative, while it is associative [45, 52]. Figure 1.5 illustrates two

examples of lexicographic products and at the same time emphasizes the fact

that the lexicographic product is not commutative.

Figure 1.5: Lexicographic products K1,3 ◦ P3 and P3 ◦K1,3.

A lexicographic product G◦H is connected if and only if G is connected.

The relation between distances in the lexicographic product of graphs and in

its factors is presented in the following remark.

Remark 1.6. [45, 52] If (a, b) and (c, d) are vertices of G ◦H, then

dG◦H((a, b), (c, d)) =


dG(a, c), if a 6= c,

dH(b, d), if a = c and δG(a) = 0,

min{dH(b, d), 2}, if a = c and δG(a) 6= 0.

The lexicographic product of graphs has been studied from several points

of view. The investigation includes, for instance, the independence number

[38], domination number [81], chromatic number [24, 38], connectivity [112],

and hamiltonicity [5, 68]. For more details see [45, 52].

1.1.5 Corona product and join graphs

Let G and H be two graphs of order n1 and n2, respectively. Recall that

the corona product G � H is defined as the graph obtained from G and

H by taking one copy of G and n1 copies of H and joining by an edge

each vertex from the ith-copy of H with the ith-vertex of G. We denote by

V = {v1, v2, ..., vn} the set of vertices of G and by Hi = (Vi, Ei) the copy of

H such that vi ∼ v for every v ∈ Vi.
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Observe that G � H is connected if and only if G is connected. More-

over, it is readily seen from the definition that this product is neither an

associative nor a commutative operation. Figure 1.6 shows some examples

of corona products and also underscores the fact that the corona product is

not commutative.

Figure 1.6: Corona products P4 � C3 and C3 � P4.

The concept of corona product of two graphs was first introduced by

Frucht and Harary [35]. This product is not too much popular and widely

investigated. One of the reason should be the fact, that corona product is a

simple operation on two graphs and some mathematical properties could be

directly consequences of its factors. Despite this, it is interesting to study

metric dimension related parameters in this product. Moreover, there are

works on some topological indices [114] and the equitable chromatic number

[36] of corona product.

Other simple operation connected with the corona product is a join

graph. The join graph G+H is defined as the graph obtained from disjoint

graphs G and H by taking one copy of G and one copy of H and joining by

an edge each vertex of G with each vertex of H [46, 120]. It is a commutative

operation. Notice that the corona product K1 �H is isomorphic to the join

graph K1 +H. Now, for the sake of completeness, Figure 1.7 illustrates two

examples of join graphs.

Moreover, complete k-partite graphs are typical examples of the join

graphs. A complete k-partite graph Kp1,p2,...,pk is the join graph of empty

graphs on p1, p2, ..., pk vertices. Notice that N2 + N2 + N2, illustrated in

Figure 1.7, is none other than the complete 3-partite graph K2,2,2.
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16 Basic concepts and tools

Figure 1.7: Join graphs P4 + C3 and N2 +N2 +N2.

1.1.6 Cartesian sum

The Cartesian sum of two graphs G and H, denoted by G ⊕H, has as the

vertex set V (G ⊕ H) = V (G) × V (H) and two vertices (a, b) and (c, d) are

adjacent in G⊕H if and only if

• ac ∈ E(G), or

• bd ∈ E(H).

This notion of a graph product was introduced by Ore [83]. The Carte-

sian sum is also known as the disjunctive product [94] and the inclusive pro-

duct [31, 75]. This graph product is commutative and associative operation

[45, 52]. Figure 1.8 shows two Cartesian sum graphs.

Figure 1.8: Cartesian sum graphs C5 ⊕K2 and K1,3 ⊕ P3.

Notice that G�H, G×H, and G�H are subgraphs of G⊕H. Moreover,

there exists the following relation between the Cartesian sum graphs and

the strong product of graphs, which is a reason of that Cartesian sum is

called a complementary product. The connection between these products

has appeared in some publications, nevertheless without a concrete proof.

For the sake of completeness we present a proof below.
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Lemma 1.7. [45, 81] For any graphs G and H,

(G⊕H)c = Gc �Hc.

Proof. Two vertices (u, v) and (u′, v′) are adjacent in (G ⊕ H)c if and only

if u and u′ are not adjacent in G and v and v′ are not adjacent in H. I.e.,

(u, v) and (u′, v′) are adjacent in (G⊕H)c if and only if

• u = u′ and v ∼ v′ in Hc, or

• u ∼ u′ in Gc and v = v′, or

• u ∼ u′ in Gc and v ∼ v′ in Hc.

Therefore, (G⊕H)c = Gc �Hc.

The Cartesian sum graphs is not a popular and widely investigated pro-

duct of graphs. A typical problem on graph theory, which have been studied

extensively in the Cartesian sum graphs, is the chromatic number. Some

results on this topic have been presented in [24, 76, 113]. Furthermore, the

fact that the independence number of the Cartesian sum of graphs G and H

is multiplicative has been proved in [31, 113].

1.1.7 Rooted product

A rooted graph is a graph in which one vertex is labeled in a special way so

as to distinguish it from other vertices. The special vertex is called the root

of the graph. Let G be a labeled graph on n vertices. Let H be a sequence

of n rooted graphs H1, H2,...,Hn. The rooted product graph G(H) is the

graph obtained by identifying the root of Hi with the ith vertex of G [40]. In

this thesis we consider the particular case of rooted product graph where H
consists of n isomorphic rooted graphs [95]. More formally, assuming that

V (G) = {u1, ..., un} and that the root vertex of H is v, we define the rooted

product graph G ◦v H = (V,E), where V = V (G)× V (H) and

E =
n⋃
i=1

{(ui, b)(ui, y) : by ∈ E(H)} ∪ {(ui, v)(uj, v) : uiuj ∈ E(G)}.

In the case when H is a vertex-transitive graph, we have that G◦vH does not

depend on the choice of v, up to isomorphism. In such a case we denote the
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18 Basic concepts and tools

Figure 1.9: Rooted products P4 ◦∗ C3 and C3 ◦v P4, where v has degree two.

rooted product by G ◦∗ H. Figure 1.9 shows the case of the rooted product

graphs P4 ◦∗ C3 and C3 ◦v P4, where v has degree two.

A rooted product of graphs is connected if and only if both of its fac-

tors are connected. The formula on the vertex distances in this product is

presented in the following remark.

Remark 1.8. If (a, b) and (c, d) are vertices of G ◦v H, then

dG◦vH((a, b), (c, d)) =

{
dH(b, d), if a = c,

dH(b, v) + dG(a, c) + dH(v, d), if a 6= c.

Observe that the corona product graph is a particular case of a rooted

product graph. If G and H are connected graphs of order n ≥ 2 and t ≥ 2,

respectively, then G�H ∼= G◦v (K1 +H), where v denotes the vertex of K1.

This product was recently redefined and renamed as hierarchical pro-

duct in [6], where besides already known properties, have been also studied

some new ones. Furthermore, there are some works on domination related

parameters [69], some topological indices [2], and independence polynomials

[89] of rooted product.

1.2 Strong metric generator

A generator of a metric space is a set S of points in the space with the

property that every point of the space is uniquely determined by its dis-

tances from the elements of S. Given a simple and connected graph G,

we consider the metric dG : V (G) × V (G) → R+, where dG(x, y) is the

length of a shortest path between x and y. The pair (V (G), dG) is read-

ily seen to be a metric space. A vertex v ∈ V (G) is said to distinguish

two vertices x and y if dG(v, x) 6= dG(v, y). A set S ⊂ V (G) is said to
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be a metric generator for G if any pair of vertices of G is distinguished

by some element of S. If S = {w1, w2, . . . , wk} is an (ordered) set of ver-

tices, then the metric vector of a vertex v ∈ V (G) relative to S is the vector

(dG(v, w1), dG(v, w2), . . . , dG(v, wk)). Thus, S is a metric generator if distinct

vertices have distinct metric vectors relative to S. A minimum metric gene-

rator is called a metric basis and its cardinality, the metric dimension of G,

is denoted by dim(G).

A vertex w ∈ V (G) strongly resolves two different vertices u, v ∈ V (G) if

dG(w, u) = dG(w, v) + dG(v, u) or dG(w, v) = dG(w, u) + dG(u, v), i.e., there

exists some shortest w − u path containing v or some shortest w − v path

containing u. A set S of vertices in a connected graph G is a strong metric

generator for G if every two vertices of G are strongly resolved by some

vertex of S. The smallest cardinality of a strong metric generator for G is

called strong metric dimension and is denoted by dims(G). A strong metric

basis of G is a strong metric generator for G of cardinality dims(G).

One can immediately see that a strong metric generator is also a metric

generator, which leads to dim(G) ≤ dims(G). It was shown in [18] that

dim(G) = 1 if and only ifG is a path. It now readily follows that dims(G) = 1

if and only if G is a path. At the other extreme we see that dims(G) = n− 1

if and only if G is the complete graph of order n. For the cycle Cn of order

n, the strong metric dimension is dims(Cn) = dn/2e, and if T is a tree with

l(T ) leaves, then its strong metric dimension equals l(T )− 1 (see [96]).

The strong metric dimension is a relatively new parameter (defined in

2004). Until now only some classes of graphs have been studied in this regard.

Furthermore, just a few known results are concerned with product graphs,

exactly with the Cartesian product, and they are presented below.

• [67] For hypercubes dims(Qn) = 2n−1.

• [67] For Hamming graphs dims(Hk,n) = (n− 1)nk−1.

• [82] dims(Cn�C2k) = nk.

• [82] dims(C2n+1�C2r+1) = min{(2n+ 1)(r + 1), (2r + 1)(n+ 1)}.

Moreover, the Cayley graphs [82], distance-hereditary graphs [77], and

convex polytopes [64] have been investigated with respect to the problem

of finding the strong metric dimension. Also, some Nordhaus-Gaddum type
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results for the strong metric dimension of a graph and its complement are

known [118]. Besides the theoretical results related to the strong metric

dimension, a mathematical programming model [64] and metaheuristic ap-

proaches [65, 80] for finding this parameter have been developed. For more

information we refer the reader to [66] as a short survey on the strong metric

dimension.

1.2.1 Strong metric generator versus vertex cover

In [82], the authors have developed the approach of transforming the problem

of finding the strong metric dimension of a graph to computing the vertex

cover number of some other related graph. A vertex u of G is maximally

distant from v if for every vertex w ∈ NG(u), dG(v, w) ≤ dG(u, v). We

denote by MG(v) the set of vertices of G which are maximally distant from

v. The collection of all vertices of G that are maximally distant from some

vertex of the graph is called the boundary of the graph, see [8, 15], and is

denoted by ∂(G)1. If u is maximally distant from v and v is maximally

distant from u, then we say that u and v are mutually maximally distant.

If u is maximally distant from v, and v is not maximally distant from u,

then v has a neighbor v1, such that dG(v1, u) > dG(v, u), i.e., dG(v1, u) =

dG(v, u) + 1. It is easily seen that u is maximally distant from v1. If v1 is not

maximally distant from u, then v1 has a neighbor v2, such that dG(v2, u) >

dG(v1, u). Continuing in this manner we construct a sequence of vertices

v1, v2, . . . such that dG(vi+1, u) > dG(vi, u) for every i. Since G is finite

this sequence terminates with some vk. Thus for all neighbors x of vk we

have dG(vk, u) ≥ dG(x, u), and so vk is maximally distant from u and u is

maximally distant from vk. Hence every boundary vertex belongs to the

set S = {u ∈ V (G) : there exists v ∈ V (G) such that u, v are mutually

maximally distant}. Certainly every vertex of S is a boundary vertex. For

some basic graph classes, such as complete graphs Kn, complete bipartite

graphs Kr,s, cycles Cn and hypercube graphs Qk, the boundary is simply

the whole vertex set. It is not difficult to see that this property also holds

for all 2-antipodal graphs and for all distance-regular graphs. Notice that

1In fact, the boundary ∂(G) of a graph was defined first in [19] as the subgraph of

G induced by the set mentioned in our work with the same notation. We follow the

approach of [8, 15] where the boundary of the graph is just the subset of the boundary

vertices defined in this article.
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the boundary of a tree consists of its leaves. Also, it is readily seen that

σ(G) ⊆ ∂(G).

Figure 1.10 shows examples of basic concepts such as maximally distant

vertices, mutually maximally distant vertices and boundary.

a

b

c

d

e

f

g

hij

Figure 1.10: The set {a, f, g, h} is composed by simplicial vertices and its

elements are mutually maximally distant between them. Also, b and j (d

and i) are mutually maximally distant. Thus, the boundary of G is ∂(G) =

{a, b, d, f, g, h, i, j}. Now, MG(d) = {a, f, g, h, i} is the set of vertices which

are maximally distant from d. Nevertheless, the vertex d is maximally distant

only from the vertex i.

As a direct consequence of the definition of mutually maximally distant

vertices, we have the following.

Remark 1.9. For every pair of mutually maximally distant vertices x, y of

a connected graph G and for every strong metric basis S of G, it follows that

x ∈ S or y ∈ S.

We use the notion of “strong resolving graph” based on a concept intro-

duced in [82]. The strong resolving graph of G is defined on the vertex set

of G where two vertices u, v are adjacent if and only if u and v are mutu-

ally maximally distant in G. Clearly, the vertices of the set V (G) − ∂(G)

are isolated vertices in the strong resolving graph. According to this fact,

in the present work we consider two different versions of this graph: GSR

and GSR+I . That is, GSR has vertex set ∂(G) and GSR+I has vertex set

V (G). Notice that the difference between GSR and GSR+I is the existence of

isolated vertices in GSR+I , when V (G) − ∂(G) 6= ∅. Figure 1.11 shows the

strong resolving graphs GSR and GSR+I of the graph G illustrated in Figure

1.10.
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GSR :

b d

a

f

g

h

ij

GSR+I :

b d c

e

a

f

g

h

ij

Figure 1.11: GSR and GSR+I of the graph G illustrated in Figure 1.10.

In this thesis we generally apply our concept of the strong resolving

graph defined above. The main reason of this fact is related to have a simpler

notation and more clarity while proving our results. We consider the strong

resolving graph defined in [82] only in the case of the strong product graphs

(Chapter 4), and there we also emphasize this fact. Moreover, we use different

notation for these definition (as the reader can notice above), so there is no

danger of confusion.

We now turn the attention to our definition of the strong resolving graph.

There are some families of graphs for which the strong resolving graphs can

be obtained relatively easily. We state some of these here. Moreover, we

refer to these cases in other chapters.

Observation 1.10.

(a) If ∂(G) = σ(G), then GSR
∼= K∂(G). In particular, (Kn)SR ∼= Kn and

for any tree T , (T )SR ∼= Kl(T ).

(b) For any 2-antipodal graph G of order n, GSR
∼=
⋃n

2
i=1K2. In particular,

(C2k)SR ∼=
⋃k
i=1K2.

(c) For odd cycles (C2k+1)SR ∼= C2k+1.

(d) For any complete k-partite graph G = Kp1,p2,...,pk such that pi ≥ 2,

i ∈ {1, 2, ..., k}, (G)SR ∼=
⋃k
i=1Kpi.

(e) For any grid graph Pr�Pt, (Pr�Pt)SR = K2 ∪K2.

A set S of vertices of G is a vertex cover of G if every edge of G is incident

with at least one vertex of S. The vertex cover number of G, denoted by
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D. Kuziak 23

β(G), is the smallest cardinality of a vertex cover of G. We refer to a β(G)-set

in a graph G as a vertex cover of cardinality β(G). Oellermann and Peters-

Fransen [82] showed that the problem of finding the strong metric dimension

of a connected graph G can be transformed to the problem of finding the

vertex cover number of GSR+I .

Theorem 1.11. [82] For any connected graph G,

dims(G) = β(GSR+I).

It is readily seen that β(GSR+I) = β(GSR). Therefore we present an

analogous theorem.

Theorem 1.12. For any connected graph G,

dims(G) = β(GSR).

Figure 1.12 illustrates this theorem.

G :

a

b
c

d

ef

g
h

GSR :

ac
d

e

f

h

Figure 1.12: The set {a, c, d, h} ⊂ V (G) forms a strong metric basis of G.

Also, the set {a, c, d, h} ⊂ V (GSR) is a vertex cover of GSR. Thus, dims(G) =

β(GSR) = 4.

Recall that the largest cardinality of a set of vertices of G, no two of

which are adjacent, is called the independence number of G and is denoted

by α(G). We refer to an α(G)-set in a graph G as an independent set

of cardinality α(G). The following well-known result, due to Gallai [37],

states the relationship between the independence number and the vertex

cover number of a graph.

Theorem 1.13. [37](Gallai, 1959) For any graph G of order n,

α(G) + β(G) = n.
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24 Basic concepts and tools

Thus, for any graph G, by using Theorems 1.12 and 1.13, we immediately

obtain that

dims(G) = |∂(G)| − α(GSR) (1.1)
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Chapter 2

Strong metric dimension of

Cartesian product graphs

2.1 Overview

This chapter is concerned with finding exact values of the strong metric

dimension of some families of Cartesian product graphs, or general lower and

upper bounds, and express these in terms of invariants of the factor graphs.

In particular, we investigate the cases in which the strong resolving graph

of one factor is a bipartite graph with a perfect matching, or is a regular

bipartite graph, or in which the strong resolving graphs of both factors are

vertex-transitive graphs. The strong metric dimension of Hamming graphs

is also studied.

2.2 Main results

We begin this section by establishing an interesting connection between the

strong resolving graph of the Cartesian product of two graphs and the direct

product of the strong resolving graphs of its factors.

Theorem 2.1. Let G and H be two connected graphs. Then

(G�H)SR ∼= GSR ×HSR.

Proof. Let (g, h), (g′, h′) be any two vertices of G�H. Then, we have

dG�H((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′).

25
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26 Cartesian product graphs

Thus, if g′′ ∼ g′ and dG(g, g′′) = dG(g, g′) + 1, then (g′, h′) ∼ (g′′, h′) and

dG�H((g, h), (g′′, h′)) = dG(g, g′) + dH(h, h′) + 1 = dG�H((g, h), (g′, h′)) + 1.

Using these observations, it is readily seen that (g, h) and (g′, h′) are

mutually maximally distant if and only if g and g′ are mutually maximally

distant in G and h and h′ are mutually maximally distant in H. Moreover,

(g, h)(g′, h′) ∈ E((G�H)SR) if and only if gg′ ∈ E(GSR) and hh′ ∈ E(HSR).

Thus

V ((G�H)SR) = ∂(G�H) = ∂(G)× ∂(H) = V (GSR ×HSR),

and

(G�H)SR ∼= GSR ×HSR.

Figure 2.1 illustrates Cartesian product of two cycles of order three

and its strong resolving graph. Since the strong resolving graph of C3 is

isomorphic to C3, we can easy observe that (C3�C3)SR is isomorphic to

(C3)SR × (C3)SR.

a1

a2

a3

b1

b2

b3

c1

c2

c3

a1

a2

a3

b1

b2

b3

c1

c2

c3

Figure 2.1: Cartesian product graph C3�C3 and its strong resolving graph

(C3�C3)SR.

The following result, which is obtained by using Theorem 1.12 and Theo-

rem 2.1, is the main tool of this chapter.

Corollary 2.2. Let G and H be two connected graphs. Then

dims(G�H) = β(GSR ×HSR).

Now we consider some cases in which we can compute β(GSR×HSR). To

begin with, we recall the following well-known result of König and Egerváry.
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D. Kuziak 27

In this sense, we need more terminology. A matching on a graph G is a set

of edges of G such that no two edges share a vertex in common. A matching

is maximum if it has the maximum possible cardinality. Moreover, if every

vertex of the graph is incident to exactly one edge of the matching, then it

is called a perfect matching.

Theorem 2.3. [27, 62](König, Egerváry, 1931) For bipartite graphs the size

of a maximum matching equals the size of a minimum vertex cover.

Our next result deals with graphs whose strong resolving graphs are

bipartite with a perfect matching. We use the theorem above as a tool for

our purposes.

Theorem 2.4. Let G and H be two connected graphs such that HSR is bi-

partite with a perfect matching. Let Gi, i ∈ {1, ..., k}, be the connected

components of GSR. If for each i ∈ {1, ..., k}, Gi is Hamiltonian or Gi has a

perfect matching, then

dims(G�H) =
|∂(G)||∂(H)|

2
.

Proof. Since HSR is bipartite, GSR × HSR is bipartite. We show next that

GSR ×HSR has a perfect matching. Let ni be the order of Gi, i ∈ {1, ..., k},
and let {x1y1, x2y2, ..., x|∂(H)|/2y|∂(H)|/2} ⊂ E(HSR) be a perfect matching of

HSR. We distinguish two cases.

Case 1: Gi has a perfect matching. If {u1v1, u2v2..., uni/2vni/2} ⊂ E(Gi) is a

perfect matching of Gi, then the set of edges

{(u1, y1) (v1, x1), (v1, y1) (u1, x1), ..., (uni/2, y1) (vni/2, x1),

(vni/2, y1) (uni/2, x1), (u1, y2) (v1, x2), (v1, y2) (u1, x2), ...,

(uni/2, y2) (vni/2, x2), (vni/2, y2) (uni/2, x2), . . . ,

(u1, y|∂(H)|/2) (v1, x|∂(H)|/2), (v1, y|∂(H)|/2) (u1, x|∂(H)|/2), . . . ,

(uni/2, y|∂(H)|/2) (vni/2, x|∂(H)|/2), (vni/2, y|∂(H)|/2) (uni/2, x|∂(H)|/2)}

is a perfect matching of Gi ×HSR.

Case 2: Gi is Hamiltonian. Let v1, v2, ..., vni
, v1 be a Hamiltonian cycle of

Gi. If ni is even, then Gi has a perfect matching and this case coincides with

Case 1. So we suppose that ni is odd. In this case, the set of edges

{(v1, x1) (v2, y1), (v2, x1) (v3, y1), ..., (vni−1, x1) (vni
, y1), (vni

, x1) (v1, y1),

(v1, x2) (v2, y2), (v2, x2) (v3, y2), ..., (vni−1, x2) (vni
, y2), (vni

, x2) (v1, y2), . . . ,

(v1, x|∂(H)|/2) (v2, y|∂(H)|/2), (v2, x|∂(H)|/2) (v3, y|∂(H)|/2), . . . ,

(vni−1, x|∂(H)|/2) (vni
, y|∂(H)|/2), (vni

, x|∂(H)|/2) (v1, y|∂(H)|/2)}
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28 Cartesian product graphs

is a perfect matching of Gi ×HSR.

According to Cases 1 and 2 the graph
⋃k
i=1Gi ×HSR = GSR ×HSR has

a perfect matching. Now, since GSR ×HSR is bipartite and it has a perfect

matching, by Theorem 2.3 we have β(GSR×HSR) = |∂(G)||∂(H)|
2

. By Corollary

2.2 the result now follows.

Since 2-antipodal graphs have strong resolving graphs that are bipartite

with a perfect matching, the next result follows from the previous theorem

and Observation 1.10.

Corollary 2.5. For any connected 2-antipodal graph G of order n, the fol-

lowing statements hold.

(a) If H is a connected 2-antipodal graph of order r, then

dims(G�H) =
nr

2
.

(b) If H is a connected graph where |∂(H)| = |σ(H)|, then

dims(G�H) =
n|σ(H)|

2
.

In particular, for any tree T ,

dims(G�T ) =
nl(T )

2
,

and for any complete graph Kr,

dims(G�Kr) =
nr

2
.

On the other hand, by Observation 1.10 and Theorem 2.4, we obtain the

following values of dims(G�H) for some specific examples of graphs G and

H.

Corollary 2.6.

(a) dims(Kn�Pr) = n.

(b) For any tree T , dims(T�Pr) = l(T ).

(c) dims(Cn�Pr) = n.

(d) dims(Kn�C2k) = nk.
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D. Kuziak 29

(e) For any tree T , dims(T�C2k) = l(T )k.

(f) [82] dims(Cn�C2k) = nk.

Our next tool is a well-known consequence of Hall’s marriage theorem.

Lemma 2.7. [44](Hall, 1935) Every regular bipartite graph has a perfect

matching.

The result above is particularly useful when we have a graph whose

strong resolving graph is regular and bipartite. Notice that there are several

classes of graphs satisfying this property, for instance, paths, cycles of even

order, hypercubes, etc.

Theorem 2.8. Let G and H be two connected graphs such that GSR and

HSR are regular and at least one of them is bipartite. Then

dims(G�H) =
|∂(G)||∂(H)|

2
.

Proof. Since GSR and HSR are regular graphs and at least one of them is

bipartite, GSR × HSR is a regular bipartite graph. Hence, by Lemma 2.7,

GSR×HSR has a perfect matching. Thus, by Theorem 2.3, β(GSR×HSR) =
|∂(G)||∂(H)|

2
. The result follows by Corollary 2.2.

Note that Corollary 2.6 can also be deduced from Theorem 2.8.

Our next result, which is obtained from Theorem 2.8, is derived from the

fact that the strong resolving graph of a distance-regular graph is regular.

Corollary 2.9. Let G be a distance-regular graph of order n and let H be a

connected graph such that HSR is a regular bipartite graph. Then

dims(G�H) =
n|∂(H)|

2
.

In particular, if H is a 2-antipodal graph of order r, then

dims(G�H) =
nr

2
.

By using Theorem 1.13 and Corollary 2.2 we obtain our mentioned useful

tool, which relates dims(G�H) with the independence number of GSR×HSR.

Corollary 2.10. dims(G�H) = |∂(G)||∂(H)| − α(GSR ×HSR).
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30 Cartesian product graphs

We now state a recent result, from [119], on the independence number

of the direct product of graphs, that is useful in establishing the subsequent

theorem.

Lemma 2.11. [119] Let G and H be two vertex-transitive graphs of order

n1, n2, respectively. Then

α(G×H) = max{n1α(H), n2α(G)}.

Theorem 2.12. Let G and H be two connected graphs such that GSR and

HSR are vertex-transitive graphs. Then

dims(G�H) = min{|∂(G)|dims(H), |∂(H)|dims(G)}.

Proof. SinceGSR andHSR are vertex-transitive graphs, it follows from Lemma

2.11 that α(GSR ×HSR) = max{|∂(G)|α(H), |∂(H)|α(G)}. So, by Corollary

2.10 we have

dims(G�H) = |∂(G)||∂(H)| − α(GSR ×HSR)

= |∂(G)||∂(H)| −max{|∂(G)|α(HSR), |∂(H)|α(GSR)}
= min{|∂(G)|dims(H), |∂(H)|dims(G)}.

With this theorem in hand we deduce, by Observation 1.10, the following

values of dims(G�H) for other specific families of graphs G and H.

Corollary 2.13.

(a) dims(Kn�Kr) = min{n(r − 1), r(n− 1)}.

(b) For any trees T1 and T2,

dims(T1�T2) = min{l(T1)(l(T2)− 1), l(T2)(l(T1)− 1)}.

(c) [82] dims(C2n+1�C2r+1) = min{(2n+ 1)(r + 1), (2r + 1)(n+ 1)}.

(d) dims(Kn�C2r+1) = min{n(r + 1), (2r + 1)(n− 1)}.

(e) dims(T�C2r+1) = min{l(T )(r + 1), (2r + 1)(l(T )− 1)}.

(f) For any tree T ,

dims(Kn�T ) = min{l(T )(n− 1), n(l(T )− 1)}.
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We continue with an easily verified bound relating the strong metric di-

mension of a graph with the number of its simplicial vertices and the number

of its mutually maximally distant vertices. It is clear that, if both sets (sim-

plicial vertices and mutually maximally distant vertices) are equal, then we

have equality, which is useful when studying dims(G�H).

Lemma 2.14. For every graph G,

|σ(G)| − 1 ≤ dims(G) ≤ |∂(G)| − 1.

Proof. Each simplicial vertex of G is mutually maximally distant with every

other simplicial vertex of G. So, GSR has a subgraph isomorphic to K|σ(G)|.

Thus, β(GSR) ≥ |σ(G)|−1. Hence, by Theorem 1.12, dims(G) ≥ |σ(G)|−1.

On the other hand, notice that for any graph H, β(H) ≤ |V (H)| − 1.

Since V (GSR) = ∂(G), it follows that β(GSR) ≤ |∂(G)| − 1. Thus, by

Theorem 1.12, the upper bound follows.

Note that if σ(G) = ∂(G), then by Lemma 2.14, dims(G) = |∂(G)| − 1.

Hence, as a particular case of Theorem 2.12 we obtain the following result.

Corollary 2.15. Let G and H be two connected graphs. If ∂(G) = σ(G) and

∂(H) = σ(H), then

dims(G�H) = min{|∂(G)|(|∂(H)| − 1), |∂(H)|(|∂(G)| − 1)}.

2.3 Tight bounds

Again we use the matching of a graph to give a result for dims(G�H). In this

case, we also give a relationship with the matchings of the graph G×K2. To

this end, we consider the matching number of a graph G (i.e., the cardinality

of a maximum matching of G), which is denoted by ν(G), and we first present

the following useful facts.

Lemma 2.16. For any nontrivial nonempty graphs G and H,

β(G×H) ≥ ν(H)β(G×K2) = ν(H)ν(G×K2) ≥ 2ν(G)ν(H).

Proof. We consider a maximum matching M = {uivi : i ∈ {1, ..., k}} of H,

and a minimum vertex cover A of G × H. Now, for every i ∈ {1, , ..., k},
let Ai = A ∩ (V (G) × {ui, vi}). Notice that Ai 6= ∅ for every i ∈ {1, ..., k}.
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32 Cartesian product graphs

Also, since Ai ∩ Aj = ∅, with i 6= j, it follows |A1| + |A2| + ... + |Ak| ≤
|A|. Moreover, for every i ∈ {1, ..., k} we have that Ai is a vertex cover of

G×〈{ui, vi}〉 ∼= G×K2. Thus, k β(G×K2) ≤
∑k

i=1 |Ai| ≤ |A| = β(G×H).

As a result,

β(G×H) ≥ ν(H)β(G×K2).

Since G×K2 is a bipartite graph, from Theorem 2.3 it follows that

β(G×K2) = ν(G×K2).

Finally, every matching {xiyi : i ∈ {1, ..., k′}} of G induces a matching

{(xi, a)(yi, b), (yi, a)(xi, b) : i ∈ {1, ..., k′}} of G × K2, where {a, b} is the

vertex set of K2. Thus, ν(G×K2) ≥ 2ν(G). This completes the proof.

Observation 2.17. Let G and H be two graphs of orders n1 and n2, re-

spectively. If G and H have perfect matchings and at least one of them is

bipartite, then G×H is bipartite and

n1n2

2
≥ ν(G×H) = β(G×H) ≥ 2ν(G)ν(H) =

n1n2

2
.

Moreover,

β(G×H) = ν(H)β(G×K2) = ν(H)ν(G×K2) = 2ν(G)ν(H) =
n1n2

2
.

Once described the relations above, we are able to give a bound on

dims(G�H) relating ν(HSR), dims(G�K2) and ν(GSR). Note that this re-

sult is obtained from Lemma 2.16 and Corollary 2.2.

Corollary 2.18. Let G and H be two connected graphs.

dims(G�H) ≥ ν(HSR)dims(G�K2) ≥ 2ν(GSR)ν(HSR).

Examples of graphs where

dims(G�H) = ν(HSR)dims(G�K2) = 2ν(GSR)ν(HSR) =
|∂(G)||∂(H)|

2

are given in Corollary 2.6.

Now we give sharp upper and lower bounds on the strong metric dimen-

sion of Cartesian products of graphs. We begin by stating a useful relation-

ship between the independence numbers of the direct product of two graphs

and that of its factors.
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D. Kuziak 33

Lemma 2.19. [56] For any graphs G and H of orders n1 and n2, respectively,

α(G×H) ≥ max{n2α(G), n1α(H)}.

The next result gives a sharp upper bound on the strong metric dimen-

sion of the Cartesian product of two graphs in terms of the strong metric

dimension of its factors and the cardinality of their boundaries.

Theorem 2.20. For any connected graphs G and H,

dims(G�H) ≤ min{dims(G)|∂(H)|, |∂(G)|dims(H)}.

Moreover, this bound is sharp.

Proof. By using Lemma 2.19 we deduce

α(GSR ×HSR) ≥ max{|∂(H)|α(GSR), |∂(G)|α(HSR)}.

Thus, by Theorem 1.13,

β(GSR ×HSR) ≤ min{|∂(H)|β(GSR), |∂(G)|β(HSR)}.

The result now follows from Corollary 2.2. Several examples of pairs of graphs

where the bound above is attained are given in Corollary 2.13.

To prove a lower bound on the strong metric dimension of the Cartesian

product of two graphs we use the following.

Lemma 2.21. [102] For any graphs G and H of orders n1 and n2, respec-

tively,

α(G×H) ≤ n2α(G) + n1α(H)− α(G)α(H).

Theorem 2.22. For any connected graphs G and H,

dims(G�H) ≥ dims(G)dims(H).

Proof. Notice that Lemma 2.21 leads to

α(GSR ×HSR) ≤ |∂(H)|α(GSR) + |∂(G)|α(HSR)− α(GSR)α(HSR).

Hence, from Theorem 1.13,

β(GSR ×HSR) ≥ β(GSR)β(HSR).

This inequality together with Corollary 2.2 gives the desired result.
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34 Cartesian product graphs

With respect to the sharpness of the lower bound of Theorem 2.22, it

is necessary to observe that this bound is sharp if and only if the bound of

Lemma 2.21 is also sharp. It was shown in [102] that there is a sequence of

direct products Gn ×Hn such that

α(Gn ×Hn)

|V (Hn)|α(Gn) + |V (Gn)|α(Hn)− α(Gn)α(Hn)
→ 1

as n → ∞. Thus to show that the bound above is asymptotically sharp

one needs to find sequences of graphs G′1, G
′
2, . . . and H ′1, H

′
2, . . . such that

(G′n)SR = Gn and (H ′n)SR = Hn for every n. No specific graph or family of

graphs was described in [102] where the bound of Lemma 2.21 is achieved. It

appears to be a nontrivial task to describe such sequences of graphs. We do

observe that there is an infinite family of Cartesian products for which the

strong dimension is “close” to the bound. In particular, dims(Kn�K2) =

n = dims(Kn)dims(K2) + 1.

2.4 Pairs of graphs for which the Cartesian

product has strong metric dimension two

Even though those graphs for which the strong metric dimension is two are

not yet fully understood, in this section we characterize those pairs of graphs

for which the Cartesian product has strong metric dimension two. In order

to present our results we need to introduce some more terminology. For two

vertices u, v ∈ V (G), the interval IG[u, v] between u and v is defined as the

collection of all vertices that belong to some shortest u−v path. Notice that

vertex w strongly resolves two vertices u and v if v ∈ IG[u,w] or u ∈ IG[v, w].

Lemma 2.23. Let a, x, c ∈ V (G) and b, y, d ∈ V (H). Then, (a, b) ∈
IG�H [(x, y), (c, d)] if and only if a ∈ IG[x, c] and b ∈ IH [y, d].

Proof. Suppose first that a ∈ IG[x, c] and b ∈ IH [y, d]. Then, dG(x, c) =

dG(x, a) + dG(a, c) and dH(y, d) = dH(y, b) + dH(b, d). Hence

dG�H((x, y), (c, d)) = dG(x, c) + dH(y, d)

= (dG(x, a) + dG(a, c)) + (dH(y, b) + dH(b, d))

= (dG(x, a) + dH(y, b)) + (dG(a, c) + dH(b, d))

= dG�H((x, y), (a, b)) + dG�H((a, b), (c, d)).

UNIVERSITAT ROVIRA I VIRGILI 
STRONG RESOLVABILITY IN PRODUCT GRAPHS. 
Dorota Kuziak 
Dipòsit Legal: T 156-2015



D. Kuziak 35

Thus (a, b) ∈ IG�H [(x, y), (c, d)].

Conversely, if (a, b) ∈ IG�H [(x, y), (c, d)], then

dG�H((x, y), (c, d)) = dG�H((x, y), (a, b)) + dG�H((a, b), (c, d))

= (dG(x, a) + dH(y, b)) + (dG(a, c) + dH(b, d))

= (dG(x, a) + dG(a, c)) + (dH(y, b) + dH(b, d)).

Now, if a 6∈ IG[x, c] or b 6∈ IG[y, d], then dG�H((x, y), (c, d)) > dG(x, c) +

dH(y, d), a contradiction.

Given two graphs G, H and a subset S of vertices of G�H, the pro-

jections of S onto the graphs G and H, respectively, are the following

ones PG(S) = {u ∈ V (G) : (u, v) ∈ S, for some vertex v ∈ V (H)} and

PH(S) = {v ∈ V (H) : (u, v) ∈ S, for some vertex u ∈ V (G)}.

Proposition 2.24. Let G and H be two connected graphs of order at least

2. Then, dims(G�H) = 2 if and only if G and H are both paths.

Proof. If G and H are paths, then, by Corollary 2.2,

dims(G�H) = β(K2 ×K2) = 2.

On the other hand, let S = {(a, x), (b, y)} be a strong metric basis of G�H. If

a 6= b and x 6= y. Let c be a neighbor of b on a a−b path (it might be that a =

c). Let z be a neighbor of y on a x−y path (notice that could be x = z). So,

we have dG�H((b, z), (a, x)) = dG(a, b)+dH(z, x) = dG(a, c)+1+dH(x, y)−1 =

dG(a, c) + dH(x, y) = dG�H((c, y), (a, x)). Thus, (b, z) /∈ IG�H [(c, y), (a, x)]

and (c, y) /∈ IG�H [(b, z), (a, x)]. Moreover, dG�H((b, z), (b, y)) = dH(z, y) =

1 = dG(b, c) = dG�H((c, y), (b, y)). Thus, (b, z) /∈ IG�H [(c, y), (b, y)] and

(c, y) /∈ IG�H [(b, z), (b, y)]. Therefore, S = {(a, x), (b, y)} does not strongly

resolve (b, z) and (c, y), and so either a = b or x = y.

If a = b, then the projection of S onto G is a single vertex. By Lemma

2.23, the projection of S onto G strongly resolves G. As observed in Section

1.2, G is a path. Similarly, if x = y, then H is a path. Therefore either

G or H is a path. We assume, without loss of generality, that G is a path.

By Corollary 2.2 and Observation 2.17 it follows that 2 = dims(G�H) =

β(K2 × HSR). Thus, either HSR is isomorphic to K2 or β(HSR) = 1 which

implies that dims(H) = 1. Therefore, as observed in Section 1.2, H is a

path.
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36 Cartesian product graphs

2.5 Hamming graphs

Now we study a particular case of Cartesian products of graphs, the so-

called Hamming graphs. The strong metric dimension of Hamming graphs

was obtained in [67] where the authors gave a long and complicated proof.

Here we give a simple proof for this result, using Theorem 2.1 and the next

result due to Valencia-Pabon and Vera [105].

Lemma 2.25. [105] For any positive integers, n1, n2, ...nr,

α(Kn1 ×Kn2 × ...×Knr) = max
1≤i≤r

{
n1n2...nr

ni

}
.

By Theorem 2.1, it follows that for any positive integers, n1, n2, ...nr,

(Kn1�Kn2�...�Knr)SR
∼= Kn1 ×Kn2 × ...×Knr .

Therefore, Corollary 2.10 and Lemma 2.25 give the following result.

Theorem 2.26. For any positive integers, n1, n2, ...nr,

dims(Kn1�Kn2�...�Knr) = n1n2...nr − max
1≤i≤r

{
n1n2...nr

ni

}
.

As a consequence of the result above we obtain an expression for the

strong metric dimension of Hamming graphs.

Corollary 2.27. [67] For any Hamming graph Hk,n,

dims(Hk,n) = (n− 1)nk−1.
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Chapter 3

Strong metric dimension of

direct product graphs

3.1 Overview

In this chapter we study the problem of finding the strong metric dimension

of several families of direct products of graphs. Specifically, we obtain closed

formulae for the strong metric dimension of the direct products of odd cycles

of the same order, and the direct product of a complete graph with either a

complete graph, a path or a cycle, in terms of the orders of their factors.

3.2 Formulae for some families of direct pro-

duct graphs

In concordance with Theorem 1.2, we emphasize the fact that the strong

metric dimension is not defined for the direct product graphs Cr × Ct with

r, t even, Pr × Pt, and Pr ×Ct with t even. We focus mainly on the problem

of finding the strong metric dimension of the direct products of odd cycles

of the same order and the direct product of a complete graph with either a

complete graph, a path or a cycle. The case where one factor is an odd cycle

and the other is an even cycle or a path or an odd cycle of a different order

appears to be computationally quite tedious and is not considered here, with

the exception of the case C2k+1×C2k+1, which is obtained directly from some

other known results according to the following fact.

37
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38 Direct product graphs

Lemma 3.1. [79] Let G and H be two connected graphs. Then, G�H ∼=
G×H if and only if G ∼= H ∼= C2k+1 for some positive integer k.

The characterization above, and the results from the previous chapter,

allow us to immediately determine the strong metric dimension of the direct

product of such pairs of graphs. Specifically, the lemma above and Corollary

2.13 (c) give the following result.

Corollary 3.2. For any positive integer k,

dims(C2k+1 × C2k+1) = (2k + 1)(k + 1).

For the remainder of this chapter we focus on the strong metric dimension

of the direct product of two graphs one of which is complete. In Chapter 2

we showed that the strong resolving graph of the Cartesian product of two

graphs is the direct product of the strong resolving graphs of the factors. No

such result is known for the direct product of two graphs, but the next result

gives a relationship between the strong resolving graph of the direct product

of complete graphs and their Cartesian product.

Lemma 3.3. For any positive integers r, t ≥ 3,

(Kr ×Kt)SR ∼= Kr�Kt.

Proof. Let V1 and V2 be the vertex sets of Kr and Kt, respectively. Let

(u1, v1) and (u2, v2) be two distinct vertices of Kr×Kt. If u1 = u2 or v1 = v2,

then dKr×Kt((u1, v1), (u2, v2)) = 2. On the other hand, if u1 6= u2 and v1 6= v2,

then dKr×Kt((u1, v1), (u2, v2)) = 1. Thus, any two distinct vertices (u1, v1)

and (u2, v2) are mutually maximally distant in Kr ×Kt if and only if either

u1 = u2 or v1 = v2. So, every vertex (x, y) is adjacent in (Kr ×Kt)SR to all

the vertices of the sets {(x, vi) : vi ∈ V2 − {y}} and {(ui, y) : ui ∈ V1 − {x}}
and thus, (Kr ×Kt)SR is isomorphic to the Cartesian product Kr�Kt.

A well-known result of Vizing is used to find the strong metric dimension

of the direct product of complete graphs. Furthermore, the upper bound of

the following lemma is also helpful to prove the lower bound on the strong

metric dimension of strong products of graphs in Chapter 4.

Lemma 3.4. [107](Vizing, 1963) For any graphs G and H of order r and t,

respectively,

α(G)α(H) + min{r − α(G), t− α(H)} ≤ α(G�H) ≤ min{tα(G), rα(H)}.
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D. Kuziak 39

Corollary 3.5. For any positive integers r, t ≥ 3,

dims(Kr ×Kt) = max{r(t− 1), t(r − 1)}.

Proof. By Theorem 1.12, Lemma 3.3, and Theorem 1.13, dims(Kr ×Kt) =

rt − α(Kr�Kt). By Lemma 3.4, α(Kr�Kt) = min{r, t}. Thus dims(Kr ×
Kt) = rt−min{r, t} = max{r(t− 1), t(r − 1)}.

We now introduce a well-known class of graphs that is used in deriving

a formula for the strong metric dimension of the direct product of cycles and

complete graphs. Let Zn be the additive group of integers modulo n and

let M ⊂ Zn, such that, i ∈ M if and only if −i ∈ M . We can construct a

graph G as follows: the vertices of V (G) are the elements of Zn and (i, j)

is an edge in E(G) if and only if j − i ∈ M . This graph is a circulant of

order n and is denoted by CR(n,M). With this notation, a cycle is the

same as CR(n, {−1, 1}) and the complete graph is CR(n,Zn). In order to

simplify the notation we use CR(n, t), 0 < t ≤ n
2
, instead of CR(n, {−t,−t+

1, ...,−1, 1, 2, ..., t}). This is also the tth power of Cn.

Lemma 3.6. For any circulant graph CR(n, 2),

α(CR(n, 2)) =
⌊n

3

⌋
.

Proof. Let V (CR(n, 2)) = {u0, u1, ..., un−1} be the set of vertices of CR(n, 2),

where two vertices ui, uj are adjacent if and only if i − j ∈ {−2,−1, 1, 2}.
Notice that every vertex ui is adjacent to the vertices ui−2, ui−1, ui+1, ui+2,

where the operations with the subscripts i are expressed modulo n. Let S

be the set of vertices of CR(n, 2) satisfying the following.

• If n ≡ 0 mod 3, then S = {u0, u3, u6, ..., un−6, un−3}.

• If n ≡ 1 mod 3, then S = {u0, u3, u6, ..., un−7, un−4}.

• If n ≡ 2 mod 3, then S = {u0, u3, u6, ..., un−8, un−5}.

Notice that S is an independent set. Thus, α(CR(n, 2)) ≥ |S| =
⌊
n
3

⌋
. Now,

let us suppose that α(CR(n, 2)) >
⌊
n
3

⌋
and let S ′ be an independent set of

maximum cardinality in CR(n, 2). Hence there exist two vertices ui, uj ∈ S ′

such that either i = j+1, i = j−1, i = j+2 or i = j−2, where the operations

with the subscripts i, j are expressed modulo n. Thus, i− j ∈ {−2,−1, 1, 2}
and, hence, ui and uj are adjacent, which is a contradiction. Therefore,

α(CR(n, 2)) =
⌊
n
3

⌋
and the proof is complete.
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40 Direct product graphs

The lemma above is particularly useful for our study, as we can see in

the next result, since the strong resolving graph of Cr ×Kt contains several

subgraphs which are isomorphic to a circulant graph.

Theorem 3.7. For any positive integers r ≥ 4 and t ≥ 3,

dims(Cr ×Kt) =



t(r − 1), if r ∈ {4, 5},

tr
2
, if r is even and r ≥ 6,

t(r −
⌊
r
3

⌋
), otherwise.

Proof. Let V1 = {u0, u1, ..., ur−1} and V2 = {v1, v2, ..., vt} be the vertex sets

of Cr and Kt, respectively. We assume Cr : u0u1u2 · · ·ur−1u0. Hereafter all

the operations with the subscript of a vertex ui of Cr are expressed modulo

r. Let (ui, vj), (ul, vk) be two distinct vertices of Cr ×Kt.

Case 1: Let r = 4 or 5.

Subcase 1.1: ui = ul. Hence, dCr×Kt((ui, vj), (ul, vk)) = 2. Since (ui, vj) ∼
(ui−1, vk), if k 6= j and dCr×Kt((ui−1, vk), (ul, vk)) = 3, then it follows that

(ui, vj) and (ul, vk) are not mutually maximally distant in Cr ×Kt.

Subcase 1.2: vj = vk. If l = i + 1 or i = l + 1, then without loss of ge-

nerality we suppose l = i + 1 and we have that dCr×Kt((ui, vj), (ul, vk)) =

3 = D(Cr × Kt). Thus, (ui, vj) and (ul, vk) are mutually maximally dis-

tant in Cr × Kt. On the other hand, if l 6= i + 1 and i 6= l + 1, then

dCr×Kt((ui, vj), (ul, vk)) = 2. Since for every vertex (u, v) ∈ NCr×Kt(ui, vj)

we have that dCr×Kt((u, v), (ul, vk)) ≤ 2 and also for every vertex (u, v) ∈
NCr×Kt(ul, vk) we have that dCr×Kt((u, v), (ui, vj)) ≤ 2, we obtain that (ui, vj)

and (ul, vk) are mutually maximally distant in Cr ×Kt.

Subcase 1.3: ui 6= ul, vj 6= vk and (ui, vj) ∼ (ul, vk). So, there exists a

vertex (u, v) ∈ NCr×Kt(ul, vk) such that dCr×Kt((u, v), (ui, vj)) = 2 and, as

a consequence, (ui, vj) and (ul, vk) are not mutually maximally distant in

Cr ×Kt.

Subcase 1.4: ui 6= ul, vj 6= vk and (ui, vj) 6∼ (ul, vk). Hence, we have

dCr×Kt((ui, vj), (ul, vk)) = 2. We can suppose, without loss of generality,

that l = i+ 2. Since

• (ui, vj) ∼ (ul−1, vk) and (ul, vk) ∼ (ul−1, vj) and also,

• dCr×Kt((ui, vj), (ul−1, vj)) = 3 and dCr×Kt((ul, vk), (ul−1, vk)) = 3,
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D. Kuziak 41

we obtain that (ui, vj) and (ul, vk) are not mutually maximally distant in

Cr × Kt. Hence the strong resolving graph (Cr × Kt)SR is isomorphic to⋃t
i=1Kr. Thus, by Theorem 1.12,

dims(Cr ×Kt) = β((Cr ×Kt)SR) = β

(
t⋃
i=1

Kr

)
=

t∑
i=1

β(Kr) = t(r − 1).

Case 2: r ≥ 6. Let (ui, vj), (ul, vk) be two different vertices of Cr ×Kt.

Subcase 2.1: ui = ul. As in Subcase 1.1 it can be shown that (ui, vj), (ul, vk)

are not mutually maximally distant.

Subcase 2.2: vj = vk. We consider the following further subcases.

(a) l = i + 1 or i = l + 1. Without loss of generality we assume l = i + 1.

Hence, it follows dCr×Kt((ui, vj), (ul, vk)) = 3. Notice that

NCr×Kt(ui, vj) = {ui−1, ui+1} × (V2 − {vj})

and

NCr×Kt(ul, vk) = {ui, ui+2} × (V2 − {vk}).

Thus, we have dCr×Kt((u, v), (ul, vk)) ≤ 2 for every vertex (u, v) ∈
NCr×Kt(ui, vj), and it follows dCr×Kt((u, v), (ui, vj)) ≤ 2 for every ver-

tex (u, v) ∈ NCr×Kt(ul, vk). Hence, (ui, vj) and (ul, vk) are mutually

maximally distant in Cr ×Kt.

(b) l 6= i+1, i 6= l+1 and dCr(ui, ul) < D(Cr). So, dCr×Kt((ui, vj), (ul, vk)) =

min{l − i, i − l}. Since we have (ui, vj) ∼ (ui−1, vq) with q 6= j and

dCr×Kt((ui−1, vq), (ul, vk)) = min{l − i + 1, i− l + 1}, then (ui, vj) and

(ul, vk) are not mutually maximally distant in Cr ×Kt.

(c) l 6= i + 1, i 6= l + 1 and dCr(ui, ul) = D(Cr). Thus, it follows

dCr×Kt((ui, vj), (ul, vk)) = min{l − i, i − l} = D(Cr) =
⌊
r
2

⌋
and, as a

consequence, we have that (ui, vj) and (ul, vk) are mutually maximally

distant in Cr ×Kt.

Subcase 2.3: ui 6= ul, vj 6= vk and dCr(ui, ul) < D(Cr). As in Subcase 2.2 (b)

it can be shown that (ui, vj) and (ul, vk) are not mutually maximally distant

in Cr ×Kt.

Subcase 2.4: ui 6= ul, vj 6= vk and dCr(ui, ul) = D(Cr). As in Subcase 2.2 (c)

it can be shown that (ui, vj) and (ul, vk) are mutually maximally distant in

Cr ×Kt.
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42 Direct product graphs

From the cases above it follows that the strong resolving graph (Cr ×
Kt)SR has vertex set V1 × V2 and two vertices (ui, vj), (ul, vk) are adjacent

in this graph if and only if either, (min{l − i, i − l} = 1 and j = k) or

(min{l − i, i − l} = D(Cr) =
⌊
r
2

⌋
and 1 ≤ j, k ≤ t). Next we obtain the

vertex cover number of (Cr ×Kt)SR.

If r is even, then every vertex (ui, vj) has t neighbors of type (ui+r/2, vl),

1 ≤ l ≤ t and two neighbors (ui−1, vj), (ui+1, vj). So, β((Cr × Kt)SR) ≥
tβ(Cr) = t r

2
. On the other hand, if we take the set of vertices A = {(ui, vj) :

i ∈ {0, 2, 4, ..., r−2}, j ∈ {1, ..., t}}, then every edge of (Cr×Kt)SR is incident

to some vertex of A. So, A is a vertex cover and β((Cr ×Kt)SR) ≤ |A| = t r
2
.

Hence β((Cr ×Kt)SR) = t r
2
. Therefore

dims(Cr ×Kt) = β((Cr ×Kt)SR) = t
r

2
.

If r is odd, then every vertex (ui, vj) has t neighbors of type (ui+(r−1)/2, vl),

t neighbors of type (ui+(r+1)/2, vl), 1 ≤ l ≤ t, and the two neighbors (ui−1, vj),

(ui+1, vj). Thus for every k ∈ {1, ..., t} it follows that

(u0, vk) ∼ (u r−1
2
, vk) ∼ (ur−1, vk) ∼ (u r−1

2
−1, vk) ∼ (ur−2, vk) ∼ · · ·

∼ (u1, vk) ∼ (u r+1
2
, vk) ∼ (u0, vk).

(3.1)

Also, since (u0, vk) ∼ (u1, vk) ∼ · · · ∼ (ur−1, vk) ∼ (u0, vk), the graph G′

formed from t disjoint copies of a circulant graph CR(r, 2) is a subgraph of

(Cr ×Kt)SR. By Lemma 3.6

β((Cr ×Kt)SR) ≥ tβ(CR(r, 2)) = t(r − α(CR(r, 2))) = t
(
r −

⌊r
3

⌋)
.

Now, we rename the vertices of Cr according to the adjacencies in (3.1), i.e.,

u′0 = u0, u
′
1 = u r−1

2
, u′2 = ur−1, u

′
3 = u r−1

2
−1, u

′
4 = ur−2, ..., u′r−2 = u1 and

u′r−1 = u r+1
2

. With this notation, we define a set B, of vertices of (Cr×Kt)SR,

as follows:

• B = {(u′i, vj) : i ∈ {0, 1, 3, 4, 6, 7, ..., r − 3, r − 2}, j ∈ {1, ..., t}}, if

r ≡ 0 (mod 3).

• B = {(u′i, vj) : i ∈ {0, 1, 3, 4, 6, 7, ..., r − 4, r − 3, r − 1}, j ∈ {1, ..., t}},
if r ≡ 1 (mod 3).

• B = {(u′i, vj) : i ∈ {0, 1, 3, 4, 6, 7, ..., r − 5, r − 4, r − 2, r − 1}, j ∈
{1, ..., t}}, if r ≡ 2 (mod 3).
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D. Kuziak 43

Note that if (u, v), (x, y) /∈ B, then (u, v) 6∼ (x, y) and, thus B is a vertex

cover of (Cr×Kt)SR. Hence, β((Cr×Kt)SR) ≤ |B| = t(r−
⌊
r
3

⌋
), which leads

to β((Cr ×Kt)SR) = t(r −
⌊
r
3

⌋
). Therefore, we have the following

dims(Cr ×Kt) = β((Cr ×Kt)SR) = t
(
r −

⌊r
3

⌋)
.

Figure 3.1 shows an example regarding Theorem 3.7.

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

Figure 3.1: Direct product C4×K3 and its strong resolving graph (C4×K3)SR.

We finish the exposition of our results throughout the study of the strong

metric dimension of the direct product of a path with a complete graph.

Theorem 3.8. For any positive integers r ≥ 2 and t ≥ 3,

dims(Pr ×Kt) = t
⌈r

2

⌉
.

Proof. Let V1 = {u1, u2, ..., ur} and V2 = {v1, v2, ...., vt} be the vertex sets of

Pr and Kt, respectively. We assume u1 ∼ u2 ∼ u3 ∼ · · · ∼ ur in Pr. If r = 2,

then a vertex (ui, vj) in P2×Kt is mutually maximally distant only with the

vertex (ul, vj), where i 6= l. So, (P2 ×Kt)SR ∼=
⋃t
m=1K2. Thus, by Theorem

1.12,

dims(P2 ×Kt) = β((P2 ×Kt)SR) = β

(
t⋃
i=1

K2

)
=

t∑
i=1

β(K2) = t.

If r = 3, then a vertex (ui, vj) in P3 ×Kt is mutually maximally distant

only with those vertices (ul, vj), where i 6= l. Thus, (P3 ×Kt)SR ∼=
⋃t
m=1K3

and, by Theorem 1.12,

dims(P3 ×Kt) = β((P3 ×Kt)SR) = β

(
t⋃
i=1

K3

)
=

t∑
i=1

β(K3) = t
⌈r

2

⌉
.
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44 Direct product graphs

From now on we suppose r ≥ 4. Let (ui, vj), (ul, vk) be two different

vertices of Pr ×Kt. We consider the following cases.

Case 1: ui = ul. Hence, it is satisfied that dPr×Kt((ui, vj), (ul, vk)) = 2. If

i 6= 1, then (ui, vj) ∼ (ui−1, vk) and dPr×Kt((ui−1, vk), (ul, vk)) = 3. Also, if

i = 1, then (ui, vj) ∼ (ui+1, vk) and dPr×Kt((ui+1, vk), (ul, vk)) = 3. Thus,

(ui, vj) and (ul, vk) are not mutually maximally distant in Pr ×Kt.

Case 2: vj = vk and, without loss of generality, i < l. We have the following

cases.

(a) If ui ∼ ul in Pr, then dPr×Kt((ui, vj), (ul, vk)) = 3. Let (ua, vb) be a

vertex such that (ui, vj) ∼ (ua, vb). So, (a = i − 1 or a = l) and

b 6= j. Thus, for every (ua, vb) we have that dPr×Kt((ua, vb), (ul, vk)) =

2 < 3 = dPr×Kt((ui, vj), (ul, vk)). Now, let (uc, vd) be a vertex such

that (ul, vk) ∼ (uc, vd). So, (c = i or c = l + 1) and d 6= j. Thus,

for every (uc, vd) we have that dPr×Kt((uc, vd), (ui, vj)) = 2 < 3 =

dPr×Kt((ui, vj), (ul, vk)). Therefore, (ui, vj) and (ul, vk) are mutually

maximally distant in Pr ×Kt.

(b) If ui 6∼ ul in Pr, then dPr×Kt((ui, vj), (ul, vk)) = |i− l|. Now, if ui 6= u1,

then for every vertex (ui−1, vp), p 6= j, we have that (ui, vj) ∼ (ui−1, vp)

and dPr×Kt((ui−1, vp), (ul, vk)) = |i − l + 1|. Similarly, if ul 6∼ ur, then

for every vertex (ul+1, vp), p 6= j, we have that (ul, vk) ∼ (ul+1, vp) and

dPr×Kt((ul+1, vp), (ui, vj)) = |i − l + 1|. Thus, we obtain that (ui, vj)

and (ul, vk) are not mutually maximally distant in Pr ×Kt.

(c) If ui = u1 and ul = ur, then dPr×Kt((ui, vj), (ul, vk)) = r − 1 = D(Pr ×
Kt). Thus, (ui, vj) and (ul, vk) are mutually maximally distant in Pr×
Kt.

Case 3: ui 6= ul, vj 6= vk and we consider, without loss of generality, i < l. If

ui 6= u1 or ul 6= ur, then as in Case 2 (b) it follows that (ui, vj) and (ul, vk) are

not mutually maximally distant in Pr ×Kt. On the other hand, if ui = u1

and ul = ur, then as in Case 2 (c) it follows that (ui, vj) and (ul, vk) are

mutually maximally distant in Pr ×Kt.

Therefore, (Pr ×Kt)SR is isomorphic to a graph with vertex set V1 × V2
and such that two vertices (ui, vj), (ul, vk) are adjacent if and only if either,

(|l − i| = 1 and j = k) or (|l − i| = r − 1 and 1 ≤ j, k ≤ r). Notice that

every vertex (ui, vj), where 1 < i < r, has only two neighbors (ui−1, vj) and
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(ui+1, vj), while every vertex (u1, vj) has a neighbor (u2, vj) and r neighbors

of type (ur, vl), 1 ≤ l ≤ t. Also, every vertex (ur, vj) has a neighbor (ur−1, vj)

and r neighbors of type (u1, vl), 1 ≤ l ≤ t. So, (Pr×Kt)SR has a subgraph G′

isomorphic to the disjoint union of t cycles of order r and, as a consequence,

β((Pr ×Kt)SR) ≥ tβ(Cr) = t
⌈
r
2

⌉
.

On the other hand, let r be an even number. If we take the set of

vertices A = {(ui, vj) : i ∈ {1, 3, 5, ..., r− 1}, j ∈ {1, ..., t}}, then every edge

of (Pr ×Kt)SR is incident to some vertex of A. Thus, A is a vertex cover of

(Pr ×Kt)SR and we have that β((Pr ×Kt)SR) ≤ |A| = t
⌈
r
2

⌉
. Now, suppose

r odd. If we take the set of vertices B = {(ui, vj) : i ∈ {1, 3, 5, ..., r}, j ∈
{1, ..., t}}, then every edge of (Pr × Kt)SR is incident to some vertex of B.

So, B is a vertex cover of (Pr×Kt)SR and thus β((Pr×Kt)SR) ≤ |B| = t
⌈
r
2

⌉
.

Hence β((Pr ×Kt)SR) = t
⌈
r
2

⌉
. Therefore, from Theorem 1.12,

dims(Pr ×Kt) = β((Pr ×Kt)SR) = t
⌈r

2

⌉
.
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Chapter 4

Strong metric dimension of

strong product graphs

4.1 Overview

The current chapter is concerned with finding some relationships between

the strong resolving graph of strong product graphs and that of its factor

graphs. Furthermore, we give general lower and upper bounds on the strong

metric dimension of the strong product of graphs in terms of the order and

the strong metric dimension of its factors. We also describe some classes of

graphs where these bounds are achieved.

4.2 Main results

In this chapter we use the concept of the strong resolving graph defined in

[82]. We recall, according to [82], the strong resolving graph GSR+I of a

graph G has vertex set V (GSR+I) = V (G) and two vertices u, v are adjacent

in GSR+I if and only if u and v are mutually maximally distant in G.

For any graph G of order n, by using Theorems 1.11 and 1.13, we im-

mediately obtain a very useful tool of this chapter. Notice that this equality

is analogous to this one in (1.1), where it is considered the strong resolving

graph GSR instead of the original strong resolving graph GSR+I .

dims(G) = n− α(GSR+I) (4.1)

We now describe the structure of the strong resolving graph of G�H.

47
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48 Strong product graphs

Lemma 4.1. Let G and H be two connected nontrivial graphs. Let u, x be

two vertices of G and let v, y be two vertices of H. Then (u, v) and (x, y)

are mutually maximally distant vertices in G � H if and only if one of the

following conditions holds:

(i) u, x are mutually maximally distant in G and v, y are mutually maxi-

mally distant in H;

(ii) u, x are mutually maximally distant in G and v = y;

(iii) v, y are mutually maximally distant in H and u = x;

(iv) u, x are mutually maximally distant in G and dG(u, x) > dH(v, y);

(v) v, y are mutually maximally distant in H and dG(u, x) < dH(v, y).

Proof. (Sufficiency) Let (u′, v′) ∈ NG�H(u, v) and (x′, y′) ∈ NG�H(x, y). By

Corollary 1.5 we have u′ ∈ NG[u], x′ ∈ NG[x], v′ ∈ NH [v] and y′ ∈ NH [y].

(i) If u, x are mutually maximally distant in G and v, y are mutually

maximally distant in H, then

dG�H((u′, v′), (x, y)) = max{dG(u′, x), dH(v′, y)}
≤ max{dG(u, x), dH(v, y)}
= dG�H((u, v), (x, y))

and

dG�H((u, v), (x,′ y′)) = max{dG(u, x′), dH(v, y′)}
≤ max{dG(u, x), dH(v, y)}
= dG�H((u, v), (x, y)).

Thus, (u, v) and (x, y) are mutually maximally distant vertices in G�H.

(ii) If u, x are mutually maximally distant in G and v = y, then

dG�H((u′, v′), (x, y)) = max{dG(u′, x), dH(v′, y)}
= dG(u′, x)

≤ dG(u, x)

= dG�H((u, v), (x, y))
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D. Kuziak 49

and

dG�H((u, v), (x′, y′)) = max{dG(u, x′), dH(v, y′)}
= dG(u, x′)

≤ dG(u, x)

= dG�H((u, v), (x, y)).

Thus, (u, v) and (x, y) are mutually maximally distant vertices in G�H.

(iii) According to the commutativity of the strong product of graphs, the

result follows directly from (ii).

(iv) If u, x are mutually maximally distant in G and dG(u, x) > dH(v, y),

then

dG�H((u′, v′), (x, y)) = max{dG(u′, x), dH(v′, y)}
≤ max{dG(u, x), dH(v, y) + 1}
= max{dG(u, x), dH(v, y)}
= dG�H((u, v), (x, y))

and

dG�H((u, v), (x,′ y′)) = max{dG(u, x′), dH(v, y′)}
≤ max{dG(u, x), dH(v, y) + 1}
= max{dG(u, x), dH(v, y)}
= dG�H((u, v), (x, y)).

Thus, (u, v) and (x, y) are mutually maximally distant vertices in G�H.

(v) According to the commutativity of the strong product of graphs, the

result follows directly from (iv).

(Necessity) Let (u, v) and (x, y) be two mutually maximally distant ver-

tices in G � H. Let u′ ∈ NG(u), x′ ∈ NG(x), v′ ∈ NH(v) and y′ ∈ NH(y).

Notice that, by Corollary 1.5 (u′, v′) ∈ NG�H(u, v) and (x′, y′) ∈ NG�H(x, y).

So, we have that

dG�H((u, v), (x, y)) ≥ dG�H((u′, v′), (x, y))

and

dG�H((u, v), (x, y)) ≥ dG�H((u, v), (x′, y′)).

We differentiate two cases.
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50 Strong product graphs

Case 1: dG(u, x) ≥ dH(v, y). Hence,

dG�H((u, v), (x, y)) = max{dG(u, x), dH(v, y)} = dG(u, x).

Thus,

dG(u, x) ≥ max{dG(u′, x), dH(v′, y)}

and

dG(u, x) ≥ max{dG(u, x′), dH(v, y′)}.

So, we obtain four inequalities:

dG(u, x) ≥ dG(u′, x), (4.2)

dG(u, x) ≥ dH(v′, y), (4.3)

dG(u, x) ≥ dG(u, x′), (4.4)

dG(u, x) ≥ dH(v, y′). (4.5)

From (4.2) and (4.4) we have, that u and x are mutually maximally

distant in G. If v and y are mutually maximally distant in H, then (i) holds

and, if v = y, then (ii) holds. Suppose that there exists a vertex v′′ ∈ NH(v)

such that dH(v′′, y) > dH(v, y) or there exists a vertex y′′ ∈ NH(y) such that

dH(v, y′′) > dH(v, y). In such a case,

dH(v′′, y) ≥ dH(v, y) + 1 (4.6)

or

dH(v, y′′) ≥ dH(v, y) + 1. (4.7)

Since v′′ ∈ NH(v), for any u′′ ∈ NG(u) we have (u′′, v′′) ∈ NG�H(u, v) and

following the procedure above, taking (u′′, v′′) instead of (u′, v′) we obtain

two inequalities equivalent to (4.3) and (4.5). Thus,

dG(u, x) ≥ dH(v′′, y) > dH(v, y) (4.8)

and

dG(u, x) ≥ dH(v, y′′) > dH(v, y). (4.9)

So, u, x are mutually maximally distant in G and dG(u, x) > dH(v, y). Hence,

(iv) is satisfied.

Case 2: dG(u, x) < dH(v, y). By using analogous procedure we can prove that

v, y are mutually maximally distant in H and u = x or dG(u, x) < dH(v, y),

showing that (iii) and (v) hold. Therefore, the result follows.
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D. Kuziak 51

Notice that Lemma 4.1 leads to the following relationship. To begin

with, we need to introduce more notation. Let G = (V,E) and G′ = (V ′, E ′)

be two graphs. If V ′ ⊆ V and E ′ ⊆ E, then G′ is a subgraph of G and we

denote that by G′ v G.

Theorem 4.2. For any connected graphs G and H,

GSR+I �HSR+I v (G�H)SR+I v GSR+I ⊕HSR+I .

Proof. Notice that

V (GSR+I�HSR+I) = V ((G�H)SR+I) = V (GSR+I⊕HSR+I) = V (G)×V (H).

Let (u, v) and (x, y) be two vertices adjacent in GSR+I �HSR+I . So, either

• u = x and vy ∈ E(HSR+I), or

• ux ∈ E(GSR+I) and v = y, or

• ux ∈ E(GSR+I) and vy ∈ E(HSR+I).

Hence, by using respectively the condition (iii), (ii) and (i) of Lemma 4.1 we

have that (u, v) and (x, y) are also adjacent in (G�H)SR+I .

Now, let (u′, v′) and (x′, y′) be two vertices adjacent in (G � H)SR+I .

From Lemma 4.1 we obtain that u′x′ ∈ E(GSR+I) or v′y′ ∈ E(HSR+I).

Thus, (u′, v′) and (x′, y′) are also adjacent in GSR+I ⊕HSR+I .

Corollary 4.3. For any connected graphs G and H,

α(GSR+I �HSR+I) ≥ α((G�H)SR+I) ≥ α(GSR+I ⊕HSR+I).

In order to better understand what the strong resolving graph (G �

H)SR+I looks like, by using Lemma 4.1, we prepare a kind of “graphical

representation” of (G � H)SR+I which we present in Figure 4.1. According

to the conditions (i), (ii) and (iii) of Lemma 4.1 the solid lines represents those

edges of (G � H)SR+I which always exists. Also, from the conditions (iv)

and (v) of Lemma 4.1, two vertices belonging to different rounded rectangles

with identically filled areas could be adjacent or not in (G�H)SR+I .

The following known result is useful for our purposes.

Theorem 4.4. [56] For any graphs G and H,

α(G)α(H) ≤ α(G�H) ≤ α(G�H).
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52 Strong product graphs

HSR+I

GSR+I

Figure 4.1: Sketch of a representation of (G�H)SR+I .

Next we present the following lemma, from [24], about the independence

number of Cartesian sum graphs.

Lemma 4.5. [24] For any graphs G and H,

α(G⊕H) = α(G)α(H).

The result below gives general lower and upper bounds on the strong

metric dimension of the strong product of two graphs in terms of the order

and the strong metric dimension of its factors.

Theorem 4.6. Let G and H be two connected nontrivial graphs of order n1,

n2, respectively. Then

dims(G�H) ≥ max{n2dims(G), n1dims(H)}

and

dims(G�H) ≤ n2dims(G) + n1dims(H)− dims(G)dims(H).

Proof. By using Corollary 4.3 we have that

α(GSR+I �HSR+I) ≥ α((G�H)SR+I).
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Hence, from equality (4.1), Theorem 4.4 and Lemma 3.4 we obtain

dims(G�H) = n1n2 − α((G�H)SR+I)

≥ n1n2 − α(GSR+I �HSR+I)

≥ n1n2 − α(GSR+I�HSR+I)

≥ n1n2 −min{n2α(GSR+I), n1α(HSR+I)}
= max{n2(n1 − α(GSR+I)), n1(n2 − α(HSR+I))}
= max{n2dims(G), n1dims(H)}.

On the other hand, from Corollary 4.3 it follows

α((G�H)SR+I) ≥ α(GSR+I ⊕HSR+I).

So, by using (4.1) and Lemma 4.5 we have

dims(G�H) = n1n2 − α((G�H)SR+I)

≤ n1n2 − α(GSR+I ⊕HSR+I)

= n1n2 − α(GSR+I)α(HSR+I)

= n1n2 − (n1 − dims(G))(n2 − dims(H))

= n2dims(G) + n1dims(H)− dims(G)dims(H).

4.3 The strong product of graphs where one

factor is a C-graph or a C1-graph

We define a C-graph as a graph G whose vertex set can be partitioned into

α(G) cliques. Notice that there are several graphs which are C-graphs. For

instance, we emphasize the following cases: complete graphs and cycles of

even order. In order to prove the next result we also need to introduce the

following notation. Given two graphs G, H and a subset X of vertices of

G�H, the projections of X onto the graphs G and H, respectively, are the

following ones PG(X) = {u ∈ V (G) : (u, v) ∈ X, for some v ∈ V (H)} and

PH(X) = {v ∈ V (H) : (u, v) ∈ X, for some u ∈ V (G)}.

Lemma 4.7. For any C-graph G and any graph H,

α(G�H) = α(G)α(H).
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54 Strong product graphs

Proof. Let A1, A2, ..., Aα(G) be a partition of V (G) such that Ai is a clique for

every i ∈ {1, 2, ..., α(G)}. Let S be an α(G�H)-set and let Si = S ∩ (Ai ×
V (H)) for i ∈ {1, 2, ..., α(G)}. First we show that PH(Si) is an independent

set in H. If |PH(Si)| = 1, then PH(Si) is an independent set in H. If

|PH(Si)| ≥ 2, then for any two vertices x, y ∈ PH(Si) there exist u, v ∈
Ai such that (u, x), (v, y) ∈ Si. We suppose that x ∼ y. If u = v, then

(u, x) ∼ (v, y), which is a contradiction. Thus, u 6= v. Since (u, x) 6∼ (v, y),

we have that u 6∼ v, which is a contradiction with the fact that Ai is a

clique. Therefore, for every i ∈ {1, 2, ..., α(G)} the projection PH(Si) is an

independent set in H and α(H) ≥ |PH(Si)|.
Now, if |Si| > |PH(Si)| for some i ∈ {1, 2, ..., α(G)}, then there exists a

vertex z ∈ PH(Si) and two different vertices a, b ∈ Ai such that (a, z), (b, z) ∈
Si, and this is a contradiction with the facts that Ai is a clique and Si is an

independent set. Thus, |Si| = |PH(Si)|, i ∈ {1, 2, ..., α(G)}, and we have the

following

α(G�H) = |S| =
α(G)∑
i=1

|Si| =
α(G)∑
i=1

|PH(Si)| ≤ α(G)α(H).

Therefore, by using Theorem 4.4 we conclude the proof.

The lemma above is particularly useful for our study, as we can see in

the next result.

Theorem 4.8. Let G and H be two connected nontrivial graphs of order n1,

n2, respectively. If GSR+I is a C-graph, then

dims(G�H) = n2dims(G) + n1dims(H)− dims(G)dims(H).

Proof. By using Corollary 4.3 we have that

α(GSR+I �HSR+I) ≥ α((G�H)SR+I).

Hence, from equality (4.1) and Lemma 4.7 we have

dims(G�H) = n1n2 − α((G�H)SR+I)

≥ n1n2 − α(GSR+I �HSR+I)

= n1n2 − α(GSR+I)α(HSR+I)

= n1n2 − (n1 − dims(G))(n2 − dims(H))

= n2dims(G) + n1dims(H)− dims(G)dims(H).

The result now follows from Theorem 4.6.
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At next we give examples of graphs for which its strong resolving graphs

are C-graphs. To do so we need some additional terminology and notations.

We recall that a cut vertex in a graph is a vertex whose removal increases

the number of connected component. Also, a block is a maximal biconnected

subgraph of the graph. Now, let F be the family of sequences of connected

graphs G1, G2, ..., Gk, k ≥ 2, such that G1 is a complete graph Kn1 , n1 ≥ 2,

and Gi, i ≥ 2, is obtained recursively from Gi−1 by adding a complete graph

Kni
, ni ≥ 2, and identifying a vertex of Gi−1 with a vertex in Kni

.

From this point we say that a connected graph G is a generalized tree1 if

and only if there exists a sequence {G1, G2, ..., Gk} ∈ F such that Gk = G for

some k ≥ 2. Notice that in these generalized trees every vertex is either, a cut

vertex or a simplicial vertex. Also, every complete graph used to obtain the

generalized tree is a block of the graph. Note that if every Gi is isomorphic

to K2, then Gk is a tree, justifying the terminology used.

• (Kn)SR+I is isomorphic to Kn.

• For any complete k-partite graph such that at least all but one pi ≥ 2,

i ∈ {1, 2, ..., k}, (Kp1,p2,...,pk)SR+I is isomorphic to the graph
⋃k
i=1Kpi .

• If G is a generalized tree of order n and c cut vertices, then GSR+I is

isomorphic to the graph Kn−c ∪ (
⋃c
i=1K1).

• For any 2-antipodal graph G of order n, GSR+I is isomorphic to the

graph
⋃n

2
i=1K2. In particular, (C2k)SR+I

∼=
⋃k
i=1K2.

• For any grid graph, (Pn�Pr)SR+I is isomorphic to the graph
(⋃2

i=1K2

)
∪(⋃nr−4

i=1 K1

)
.

By using the examples above and Theorem 4.8 we have the following

corollary.

Corollary 4.9. Let G and H be two connected nontrivial graphs of order n1

and n2, respectively.

(i) dims(Kn1 �H) = n2(n1 − 1) + n1dims(H)− (n1 − 1)dims(H).

(ii) If G is a complete k-partite graph, then

dims(G�H) = n2(n1 − k) + n1dims(H)− (n1 − k)dims(H).

1In some works those graphs are called block graphs.
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56 Strong product graphs

(iii) If G is a generalized tree with c cut vertices, then

dims(G�H) = n2(n1 − c− 1) + n1dims(H)− (n1 − c− 1)dims(H).

Particularly, if G is a tree with l(G) leaves, then

dims(G�H) = n2(l(G)− 1) + n1dims(H)− (l(G)− 1)dims(H).

(iv) If G is a 2-antipodal graph, then

dims(G�H) =
n2n1

2
+ n1dims(H)− n1

2
dims(H).

(v) If G is a grid graph, then

dims(G�H) = 3n2 + n1dims(H)− 3dims(H).

Notice that Corollary 4.9 (iv) gives the value of the strong metric dimen-

sion of Cr � H for any graph H and r even. Next we study separately the

strong product graphs Cr�H for any graph H and r odd. In order to prove

the next result we need to introduce the following notation. We define a

C1-graph as a graph G whose vertex set can be partitioned into α(G) cliques

and one isolated vertex. Notice that cycles of odd order are C1-graphs.

Lemma 4.10. For any C1-graph G and any graph H,

α(G�H) ≤ α(H)(α(G) + 1).

Proof. Let A1, A2, ..., Aα(G), B be a partition of V (G) such that Ai is a clique

for every i ∈ {1, 2, ..., α(G)} and B = {b}, where b is isolated vertex. Let S

be an α(G�H)-set and let Si = S∩(Ai×V (H)) and i ∈ {1, 2, ..., α(G)}. Let

SB = S ∩ (B×V (H)). By using analogous procedures as in proof of Lemma

4.7 we can show that for every i ∈ {1, 2, ..., α(G)}, PH(Si) is an independent

set in H and |Si| = |PH(Si)|. Moreover, since |B| = 1 we have that PH(SB) is

an independent set in H and |SB| = |PH(SB)|. Thus, we obtain the following

α(G�H) = |S| =
α(G)∑
i=1

|Si|+ |SB| =
α(G)∑
i=1

|PH(Si)|+ |PH(SB)|

≤ α(G)α(H) + α(H) = α(H)(α(G) + 1).
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Theorem 4.11. Let G and H be two connected nontrivial graphs of order

n1, n2, respectively. If GSR+I is a C1-graph, then

dims(G�H) ≥ n2(dims(G)− 1) + dims(H)(n1 − dims(G) + 1).

Proof. By using Corollary 4.3 we have that

α(GSR+I �HSR+I) ≥ α((G�H)SR+I).

Hence, from equality (4.1) and Lemma 4.10 we have

dims(G�H) = n1n2 − α((G�H)SR+I)

≥ n1n2 − α(GSR+I �HSR+I)

≥ n1n2 − α(HSR+I)(α(GSR+I) + 1)

= n1n2 − (n2 − dims(H))(n1 − dims(G) + 1)

= n2(dims(G)− 1) + dims(H)(n1 − dims(G) + 1).

Since dims(C2r+1) = r + 1, Theorems 4.6 and 4.11 lead to the following

result.

Theorem 4.12. Let H be a connected nontrivial graph of order n and r ≥ 1.

Then

nr + dims(H)(r + 1) ≤ dims(C2r+1 �H) ≤ n(r + 1) + rdims(H).

The next theorem on the independence number of strong products of

odd cycles is obtained in [43].

Theorem 4.13. [43] For 1 ≤ r ≤ t,

α(C2r+1 � C2t+1) = rt+
⌊r

2

⌋
.

By using the result above we obtain the following.

Theorem 4.14. For 1 ≤ r ≤ t,

3rt+ 2r + 2t+ 1−
⌊r

2

⌋
≤ dims(C2r+1 � C2t+1) ≤ 3rt+ 2r + 2t+ 1.
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58 Strong product graphs

Proof. By using Theorem 4.2 we have that GSR+I �HSR+I v (G�H)SR+I .

Thus, α(GSR+I�HSR+I) ≥ α((G�H)SR+I). Hence, from equality (4.1) and

Theorem 4.13 we have

dims(C2r+1 � C2t+1) = (2r + 1)(2t+ 1)− α((C2r+1 � C2t+1)SR+I)

≥ (2r + 1)(2t+ 1)− α((C2r+1)SR+I � (C2t+1)SR+I)

= (2r + 1)(2t+ 1)− α(C2r+1 � C2t+1)

= (2r + 1)(2t+ 1)− rt−
⌊r

2

⌋
= 3rt+ 2r + 2t+ 1−

⌊r
2

⌋
.

The upper bound is a direct consequence of Theorem 4.12.

Notice that for r = 1 the lower bound is equal to the upper bound of the

theorem above. Thus, dims(C3 � C2t+1) = 5t+ 3 for every t ≥ 1.
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Chapter 5

Strong metric dimension of

lexicographic product graphs

5.1 Overview

This chapter is concerned with establishing the strong resolving graph of

lexicographic product graphs, and with finding closed formulae for the strong

metric dimension of some families of this product of graphs and express these

in terms of invariants of the factor graphs.

5.2 Main results

To begin with the study we would point out the following known result.

Claim 5.1. [45] Let G and H be two nontrivial graphs such that G is

connected. Then the following assertions hold for any a, c ∈ V (G) and

b, d ∈ V (H) such that a 6= c.

(i) NG◦H(a, b) = ({a} ×NH(b)) ∪ (NG(a)× V (H)).

(ii) dG◦H((a, b), (c, d)) = dG(a, c)

(iii) dG◦H((a, b), (a, d)) = min{dH(b, d), 2}.

By using lemmas presented below we can describe the structure of the

strong resolving graph of G ◦H.

Lemma 5.2. Let G be a connected nontrivial graph and let H be a nontrivial

graph. Let a, b ∈ V (G) such that they are not true twin vertices and let

59
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60 Lexicographic product graphs

x, y ∈ V (H). Then (a, x) and (b, y) are mutually maximally distant in G◦H
if and only if a and b are mutually maximally distant in G.

Proof. Let x, y ∈ V (H). We assume that a, b ∈ V (G) are mutually maxi-

mally distant in G and that they are not true twins. First of all, notice that

dG(a, b) ≥ 2 (if dG(a, b) = 1, then to be mutually maximally distant in G,

they must be true twins). Hence, by Claim 5.1 (i) we have that if (c, d) ∈
NG◦H(b, y), then either c = b or c ∈ NG(b). In both cases, by Claim 5.1 (ii)

we obtain dG◦H((a, x), (c, d)) = dG(a, c) ≤ dG(a, b) = dG◦H((a, x), (b, y)). So,

(b, y) is maximally distant from (a, x) and, by symmetry, we conclude that

(b, y) and (a, x) are mutually maximally distant in G ◦H.

Conversely, assume that (a, x) and (b, y), a 6= b, are mutually maximally

distant in G ◦ H. If c ∈ NG(b), then for any z ∈ V (H) we have (c, z) ∈
NG◦H(b, y). Now, by Claim 5.1 (ii) we obtain dG(a, c) = dG◦H((a, x), (c, z)) ≤
dG◦H((a, x), (b, y)) = dG(a, b). So, b is maximally distant from a and, by

symmetry, we conclude that b and a are mutually maximally distant in G.

Lemma 5.3. Let G be a connected nontrivial graph, let H be a graph of order

n ≥ 2, let a, b ∈ V (G) be two different true twin vertices and let x, y ∈ V (H).

Then (a, x) and (b, y) are mutually maximally distant in G ◦ H if and only

if both, x and y, have degree n− 1.

Proof. If x ∈ V (H) has degree n− 1, then for any y ∈ V (H) of degree n− 1

we have that (a, x) and (b, y) are true twins in G◦H. Hence, (a, x) and (b, y)

are mutually maximally distant in G ◦H.

Now, suppose that there exists z ∈ V (H) − NH(x). Hence, Claim 5.1

(iii) leads to dG◦H((a, x), (a, z)) = 2. Also, for every y ∈ V (H), Claim 5.1

(ii) leads to dG◦H((a, x), (b, y)) = 1. Thus, we conclude that (a, x) and (b, y)

are not mutually maximally distant in G ◦H.

In order to present our results we need to introduce some more ter-

minology. Given a graph G, we define G∗ as the graph with vertex set

V (G∗) = V (G) such that two vertices u, v are adjacent in G∗ if and only if

either dG(u, v) ≥ 2 or u, v are true twins. If a graph G has at least one iso-

lated vertex, then we denote by G− the graph obtained from G by removing

all its isolated vertices. In this sense, G∗− is obtained from G∗ by removing

all its isolated vertices. Notice that G∗ satisfies the following straightforward

properties.
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D. Kuziak 61

Remark 5.4. Let G be a connected graph of diameter D(G), order n and

maximum degree ∆(G).

(i) If ∆(G) ≤ n− 2, then G∗ ∼= (K1 +G)SR.

(ii) If D(G) ≤ 2, then G∗−
∼= GSR.

(iii) If G has no true twins, then G∗ ∼= Gc.

Lemma 5.5. Let G be a connected nontrivial graph. Let x, y ∈ V (H) be

two distinct vertices of a graph H and let a ∈ V (G). Then (a, x) and (a, y)

are mutually maximally distant vertices in G ◦H if and only if x and y are

adjacent in H∗.

Proof. By Claim 5.1 (iii), dG◦H((a, x), (a, y)) ≤ 2 and, by Claim 5.1 (i), if

c 6= a, then (c, w) ∈ NG◦H(a, x) if and only if c ∈ NG(a). Hence, (a, x) and

(a, y) are mutually maximally distant if and only if either (a, x) and (a, y)

are true twins in G ◦H or (a, x) and (a, y) are not adjacent in G ◦H.

On one hand, by definition of lexicographic product, (a, x) and (a, y) are

not adjacent in G ◦H if and only if x and y are not adjacent in H.

On the other hand, by Claim 5.1 (i), (a, x) and (a, y) are true twins in

G ◦H if and only if x and y are true twins in H.

Therefore, the result follows.

Proposition 5.6. Let G be a connected graph of order n ≥ 2 and let H be

a noncomplete graph of order n′ ≥ 2. If G has no true twin vertices, then

(G ◦H)SR ∼= (GSR ◦H∗) ∪
n−|∂(G)|⋃
i=1

H∗−.

Proof. We assume that G has no true twin vertices. By Lemmas 5.2 and 5.5,

we have the following facts.

• For any a 6∈ ∂(G) it follows that (G ◦ H)SR has a subgraph, say Ha,

induced by ({a} × V (H)) ∩ ∂(G ◦H) which is isomorphic to H∗−

• For any b ∈ ∂(G), we have that (G ◦ H)SR has a subgraph, say Hb,

induced by ({b} × V (H)) ∩ ∂(G ◦H) which is isomorphic to H∗.

• The set (∂(G) × V (H)) ∩ ∂(G ◦ H) induces a subgraph in (G ◦ H)SR

which is isomorphic to GSR ◦H∗.
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62 Lexicographic product graphs

• For any a 6∈ ∂(G) and any b ∈ ∂(G) there are no edges of (G ◦ H)SR

connecting vertices belonging to Ha with vertices belonging to Hb.

• For any different vertices a1, a2 6∈ ∂(G) there are no edges of (G◦H)SR

connecting vertices belonging to Ha1 with vertices belonging to Ha2 .

Therefore, the result follows.

Figure 5.1 shows the graph P4◦P3 and its strong resolving graph. Notice

that (P3)
∗
−
∼= K2, (P3)

∗ ∼= K2 ∪ K1 and (P4)SR ∼= K2. So, (P4 ◦ P3)SR ∼=
K2 ◦ (K2 ∪K1) ∪K2 ∪K2.

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

a1

a2

a3

b1

b3

d1

d2

d3

c1

c3

Figure 5.1: The graph P4 ◦ P3 and its strong resolving graph.

The following well-known result is a useful tool in determining the strong

metric dimension of lexicographic product graphs.

Theorem 5.7. [38] For any graphs G and H of order n and n′, respectively,

β(G ◦H) = nβ(H) + n′β(G)− β(G)β(H).

Theorem 5.8. Let G be a connected graph of order n ≥ 2 and let H be a

graph of order n′ ≥ 2. If G has no true twin vertices, then the following

assertions hold:

(i) If D(H) ≤ 2, then

dims(G ◦H) = n · dims(H) + n′ · dims(G)− dims(G)dims(H).

(ii) If D(H) > 2, then

dims(G ◦H) = n · dims(K1 +H)

+ n′ · dims(G)− dims(G)dims(K1 +H).
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D. Kuziak 63

Proof. By Theorem 1.12 and Proposition 5.6 we have,

dims(G ◦H) = β(GSR ◦H∗) + (n− |∂(G)|)β(H∗−)

and, by Theorem 5.7 we have

dims(G ◦H) = |∂(G)|β(H∗) + n′β(GSR)− β(GSR)β(H∗)

+ (n− |∂(G)|)β(H∗−).
(5.1)

Now, if D(H) ≤ 2, then β(H∗) = β(H∗−) = β(HSR) and, as a result,

dims(G ◦H) = nβ(HSR) + n′β(GSR)− β(GSR)β(HSR).

Also, and if D(H) > 2, then β(H∗) = β(H∗−) = β((K1 +H)SR), so

dims(G ◦H) = nβ((K1 +H)SR) + n′β(GSR)− β(GSR)β((K1 +H)SR).

Therefore, by Theorem 1.12 we conclude the proof.

Note that the case where H is nonconnected is also considered in Theo-

rem 5.8, because we assume that if H is nonconnected, then D(H) =∞ > 2.

Now we show some particular examples of graphs G without true twin

vertices where is easy to compute dims(G) by using Observation 1.10.

(1) For any complete k-partite graph G = Kp1,p2,...,pk such that pi ≥ 2,

i ∈ {1, 2, ..., k}, we have dims(G) =
∑k

i=1(pi − 1).

(2) For any tree T , dims(T ) = l(T )− 1.

(3) For any even cycle, dims(C2k) = k and for any odd cycle, we have

dims(C2k+1) = k + 1.

(4) For any grid graph Pr�Pt, dims(Pr�Pt) = 2.

Notice that by using Theorem 5.8 (or other ones given throughout the

chapter), and the known values above for a few families of graphs, we can

obtain directly the strong metric dimension of several combinations of lexi-

cographic product of two graphs. We omit these calculations and leave it to

the reader.

According to Theorem 5.8 (i), for any connected graph G without true

twin vertices it holds dims(G ◦ Kn′) = n(n′ − 1) + dims(G). Now we show

that this formula holds for any connected graph G.
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64 Lexicographic product graphs

Proposition 5.9. For any connected nontrivial graph G of order n ≥ 2 and

any integer n′ ≥ 2,

(G ◦Kn′)SR ∼= (GSR ◦Kn′) ∪
n−|∂(G)|⋃
i=1

Kn′ .

Proof. Notice that (Kn′)
∗ ∼= Kn′ and, by Lemma 5.5, for any a ∈ V (G), the

subgraph of (G◦Kn′)SR induced by ({a}×V (Kn′))∩∂(G◦Kn′) is isomorphic

to Kn′ . Also, from Lemmas 5.2 and 5.3, the subgraph of (G◦Kn′)SR induced

by (∂(G) × V (Kn′)) ∩ ∂(G ◦ Kn′) is isomorphic to GSR ◦ Kn′ . Moreover,

for a 6∈ ∂(G) and b ∈ ∂(G) there are not edges of (G ◦ Kn′)SR connecting

vertices belonging to {a} × V (Kn′) with vertices belonging to {b} × V (Kn′).

Therefore, the result follows.

Theorem 5.10. For any connected nontrivial graph G of order n ≥ 2 and

any integer n′ ≥ 2,

dims(G ◦Kn′) = n(n′ − 1) + dims(G).

Proof. From Theorem 1.12 and Proposition 5.9 we have,

dims(G ◦Kn′) = β(GSR ◦Kn′) + (n− |∂(G)|)(n′ − 1)

and, by using Theorem 5.7 and again Theorem 1.12 we obtain that

dims(G ◦Kn′) = |∂(G)|(n′ − 1) + n′β(GSR)− β(GSR)(n′ − 1)

+ (n− |∂(G)|)(n′ − 1) = n(n′ − 1) + dims(G).

We have studied the case in which the second factor in the lexicographic

product is a complete graph. Since this product is not commutative, it

remains to study the case in which the first factor is a complete graph, which

we do at next.

Proposition 5.11. Let n ≥ 2 be an integer and let H be a graph of order

n′ ≥ 2. If H has maximum degree ∆(H) ≤ n′ − 2, then

(Kn ◦H)SR ∼=
n⋃
i=1

H∗.
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D. Kuziak 65

Proof. We assume that H has maximum degree ∆(H) ≤ n′− 2. Notice that

H∗ has no isolated vertices and, by Lemma 5.5, for any a ∈ V (Kn), the

subgraph (Kn ◦H)SR induced by ({a}×V (H))∩ ∂(Kn ◦H) is isomorphic to

H∗.

Also, by Lemma 5.3, for any different a, b ∈ V (Kn) and any x, y ∈ V (H),

the vertices (a, x) and (b, y) are not mutually maximally distant in Kn ◦H.

Therefore, the result follows.

Theorem 5.12. Let n ≥ 2 be an integer and let H be a graph of order n′ ≥ 2

and maximum degree ∆(H) ≤ n′ − 2.

(i) If D(H) = 2, then

dims(Kn ◦H) = n · dims(H).

(ii) If D(H) > 2, then

dims(Kn ◦H) = n · dims(K1 +H).

Proof. By Theorems 1.12 and 5.11 we have, dims(Kn ◦ H) = n · β(H∗).

Hence, if D(H) = 2, then dims(Kn ◦H) = n ·β(HSR) and if D(H) > 2, then

dims(Kn ◦H) = n ·β((K1 +H)SR). Therefore, by Theorem 1.12 we conclude

the proof.

For the particular case of empty graphs H = Nn′ , Theorem 5.12 leads to

the next corollary, which is straightforward because Kn ◦Nn′
∼= Kn′,n′,...,n′ , is

a complete n-partite graph, and so (Kn ◦Nn′)SR ∼=
⋃n
i=1Kn′ .

Corollary 5.13. For any integers n, n′ ≥ 2,

dims(Kn ◦Nn′) = n(n′ − 1).

We define the TF-boundary of a noncomplete graph G as a set ∂TF (G) ⊆
∂(G), where x ∈ ∂TF (G) whenever there exists y ∈ ∂(G), such that x and y

are mutually maximally distant in G and NG[x] 6= NG[y] (which means that

x, y are not true twins). The strong resolving TF-graph of G is a graph GSRS

with vertex set V (GSRS) = ∂TF (G), where two vertices u, v are adjacent in

GSRS if and only if u and v are mutually maximally distant in G and NG[x] 6=
NG[y]. Since the strong resolving TF-graph is a subgraph of the strong

resolving graph, an instance of the problem of transforming a graph into its
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66 Lexicographic product graphs

strong resolving TF-graph forms part of the general problem of transforming

a graph into its strong resolving graph. From [82], it is known that this

general transformation is polynomial. Thus, the problem of transforming a

graph into its strong resolving TF-graph is also polynomial.

An interesting example of a strong resolving TF-graph is obtained from

the corona graph G�Kn′ , n
′ ≥ 2, where G has order n ≥ 2. Notice that any

two different vertices belonging to any two copies of the complete graph Kn′

are mutually maximally distant, but if they are in the same copy, then they

are also true twins. Thus, in this case ∂TF (G � Kn′) = ∂(G � Kn′), while

we have have that (G�Kn′)SR ∼= Knn′ and (G�Kn′)SRS is isomorphic to a

complete n-partite graph Kn′,n′,...,n′ .

Proposition 5.14. Let G be a connected noncomplete graph of order n ≥ 2

and let H be a graph of order n′ ≥ 2. If H has maximum degree ∆(H) ≤
n′ − 2, then

(G ◦H)SR ∼= (GSRS ◦H∗) ∪
n−|∂TF (G)|⋃

i=1

H∗.

Proof. We assume that H has maximum degree ∆(H) ≤ n′ − 2. Notice

that H∗ has no isolated vertices and, by Lemma 5.5, for any a ∈ V (G), the

subgraph (G ◦H)SR induced by ({a} × V (H)) ∩ ∂(G ◦H) is isomorphic to

H∗.

Also, by Lemma 5.3, if two different vertices a, b are true twins in G and

x, y ∈ V (H), then (a, x) and (b, y) are not mutually maximally distant in

G◦H. So, from Lemmas 5.2 and 5.5 we deduce that the subgraph of (G◦H)SR

induced by (∂TF (G)×V (H))∩∂(G◦H) is isomorphic to GSRS◦H∗. Moreover,

for a 6∈ ∂TF (G) and b ∈ ∂TF (G) there are no edges of (G ◦H)SR connecting

vertices belonging to {a} × V (H) with vertices belonging to {b} × V (H).

Therefore, the result follows.

Figure 5.2 shows the graph (K1 +(K1∪K2))◦P4 and its strong resolving

graph. Notice that (P4)
∗ ∼= P4 and (K1 + (K1 ∪K2))SRS ∼= P3. So, ((K1 +

(K1 ∪K2)) ◦ P4)SR ∼= (P3 ◦ P4) ∪ P4.

Theorem 5.15. Let G be a connected noncomplete graph of order n ≥ 2 and

let H be a graph of order n′ ≥ 2 and maximum degree ∆(H) ≤ n′ − 2.

(i) If D(H) = 2, then

dims(G ◦H) = n · dims(H) + n′ · β(GSRS)− β(GSRS)dims(H).
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b2

b3
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c2
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a3

a4

d1

d2

d3

d4

b1

b2
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b4

c1

c2

c3
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Figure 5.2: The graph (K1 + (K1 ∪K2)) ◦ P4 and its strong resolving graph.

(ii) If D(H) > 2, then

dims(G ◦H) = n · dims(K1 +H)

+ n′ · β(GSRS)− β(GSRS)dims(K1 +H).

Proof. By Theorem 1.12 and Proposition 5.14 we have,

dims(G ◦H) = β(GSRS ◦H∗) + (n− |∂SR(G)|)β(H∗)

and, by Theorem 5.7, we have

dims(G ◦H) = |∂(G)|β(H∗) + n′β(GSRS)− β(GSRS)β(H∗)

+ (n− |∂SR(G)|)β(H∗).
(5.2)

Now, if D(H) = 2, then β(H∗) = β(HSR) and, if D(H) > 2, then β(H∗) =

β((K1 +H)SR). Hence, if D(H) = 2, then

dims(G ◦H) = nβ(HSR) + n′β(GSRS)− β(GSRS)β(HSR),

and if D(H) > 2, then

dims(G ◦H) = nβ((K1 +H)SR) + n′β(GSRS)− β(GSRS)β((K1 +H)SR).

Therefore, by Theorem 1.12 we conclude the proof.

Now we consider the case in which the second factor is a empty graph.
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68 Lexicographic product graphs

Corollary 5.16. Let G be a connected noncomplete graph of order n ≥ 2

and let n′ ≥ 2 be an integer. Then

dims(G ◦Nn′) = n(n′ − 1) + β(GSRS).

In particular, if G has no true twin vertices, then

dims(G ◦Nn′) = n(n′ − 1) + dims(G).

As we can expect, if G has no true twin vertices and H has maximum

degree ∆(H) ≤ n′ − 2, then both, Theorem 5.8 and Theorem 5.15, lead to

the same result.

Theorem 5.17. Let G be a connected graph of order n ≥ 2 and let H be

a graph of order n′ ≥ 2 and maximum degree ∆(H) ≤ n′ − 2. Then the

following assertions hold:

(i) If H has no true twin vertices, then

dims(G ◦H) = (n− β(GSRS))(n′ − ω(H)) + n′β(GSRS).

(ii) If neither G nor H have true twin vertices, then

dims(G ◦H) = (n− dims(G))(n′ − ω(H)) + n′dims(G).

Proof. First of all, notice that Theorem 1.13 leads to β(Hc) = n′ − α(Hc) =

n′ − ω(H). Also, from ∆(H) ≤ n′ − 2 we have H∗ = H∗− and, if H has no

true twin vertices, then H∗ = Hc. Hence, (5.2) leads to (i). Moreover, if G

has no true twin vertices, then (5.1) leads to (ii).
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Chapter 6

Strong metric dimension of

corona product graphs and join

graphs

6.1 Overview

In this chapter we show that the problem of computing the strong metric

dimension of the corona product of two graphs can be transformed to the

problem of finding certain clique number of the second factor. Moreover, we

prove that if the second factor is not connected or its diameter is greater

than two, then the strong metric dimension of corona product is obtained

from the strong metric dimension of some other related graph. The strong

metric dimension of join graphs is also studied.

6.2 Main results

We start this section with a relationship between the strong metric dimension

of a connected graph and its twin-free clique number. Furthermore, the

following result is also an important tool of Chapter 7. In order to present

our results we need to recall the terminology introduced in Chapter 2. For

two vertices u, v ∈ V (H), the interval IH [u, v] between u and v is defined

as the collection of all vertices that belong to some shortest u − v path.

Note that vertex w strongly resolves two vertices u and v if v ∈ IH [u,w] or

u ∈ IH [v, w].

69
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70 Corona product graphs and join graphs

Theorem 6.1. Let H be a connected graph of order n ≥ 2. Then

dims(H) ≤ n−$(H).

Moreover, if H has diameter two, then

dims(H) = n−$(H).

Proof. Let W be a maximum twin-free clique in H. We show that V (H)−W
is a strong metric generator for H. Since W is a twin-free clique, for any

two distinct vertices u, v ∈ W there exists s ∈ V (H) −W such that either

(s ∈ NH(u) and s /∈ NH(v)) or (s ∈ NH(v) and s /∈ NH(u)). Without loss of

generality, we consider s ∈ NH(u) and s /∈ NH(v). Thus, u ∈ IH [v, s] and, as

a consequence, s strongly resolves u and v. Therefore, dims(H) ≤ n−$(H).

Now, suppose that H has diameter two. Let X be a strong metric

basis of H and let u, v be two distinct vertices of H. If dH(u, v) = 2 or

NH [u] = NH [v], then u and v are mutually maximally distant vertices of H,

so u ∈ X or v ∈ X. Hence, for any two distinct vertices x, y ∈ V (H)−X we

have x ∼ y and NH(x) 6= NH(y). As a consequence, |V (H) − X| ≤ $(H).

Therefore, dims(H) ≥ n−$(H) and the result follows.

Corollary 6.2. Let H be a graph of diameter two and order n. Let c(H) be

the number of vertices of H having degree n− 1. If the only true twins of H

are vertices of degree n− 1, then

dims(H) = n+ c(H)− ω(H)− 1.

Moreover, if H has no true twins, then

dims(H) = n− ω(H).

The twin-free clique number of any join graph satisfies one of the follow-

ing relationships.

Lemma 6.3. Let G and H be two connected graphs of order n1 ≥ 2 and

n2 ≥ 2, respectively.

(i) If ∆(G) 6= n1 − 1 or ∆(H) 6= n2 − 1, then

$(G+H) = $(G) +$(H).
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D. Kuziak 71

(ii) If ∆(G) = n1 − 1 and ∆(H) = n2 − 1, then

$(G+H) = $(G) +$(H)− 1.

Proof. Given a $(G+H)-set Z we have that for every u1, u2 ∈ U = Z∩V (G)

it follows NG+H [u1] 6= NG+H [u2]. So, NG[u1] 6= NG[u2] and, as a consequence,

U is a twin-free clique in G. Analogously we show that W = Z ∩ V (H) is a

twin-free clique in H. Hence, $(G+H) = |Z| = |U |+ |W | ≤ $(G) +$(H).

Now, if ∆(G) = n1−1 and ∆(H) = n2−1, then every $(G)-set ($(H)-

set) contains exactly one vertex of degree ∆(G) = n1 − 1 (∆(H) = n2 − 1)

and every $(G + H)-set contains exactly one vertex of degree n1 + n2 − 1.

Hence, in this case |U | < $(G) or |W | < $(H) and, as a consequence,

$(G+H) = |Z| = |U |+ |W | ≤ $(G) +$(H)− 1.

On the other hand, let U ′ be a $(G)-set and let W ′ be a $(H)-set.

In order to complete the proof of (i), we assume, without loss of genera-

lity, that ∆(G) 6= n1−1. Let u ∈ U ′ and w ∈ W ′. Since δG(u) 6= n1−1, there

exists a vertex x ∈ V (G)−U ′ such that u 6∼ x. From the definition of G+H

we have w ∼ x and the subgraph induced by U ′ ∪W ′ is a clique in G + H.

So, u and w are not true twins in G+H and, as a consequence, U ′ ∪W ′ is a

twin-free clique in G + H. Hence, $(G + H) ≥ |U ′ ∪W ′| = $(G) + $(H).

The proof of (i) is complete.

Now, if ∆(G) = n1 − 1, then we take x ∈ U ′ such that δG(x) = n1 − 1

and as above we see that two vertices v, w ∈ U ′ ∪ W ′ − {x} are not true

twins in G + H. Hence, U ′ ∪W ′ − {x} is a twin-free clique in G + H. So,

$(G + H) ≥ |U ′| + |W ′| − 1 = $(G) + $(H) − 1. Therefore, the proof of

(ii) is complete.

If G and H are two complete graphs of order n1 and n2, respectively,

then G+H = Kn1+n2 and dims(G+H) = dims(Kn1+n2) = n1+n2−1. From

Theorem 6.1 and Lemma 6.3 we obtain the following results.

Theorem 6.4. Let G and H be two connected graphs of order n1 ≥ 2 and

n2 ≥ 2, respectively.

(i) If ∆(G) 6= n1 − 1 or ∆(H) 6= n2 − 1, then

dims(G+H) = n1 + n2 −$(G)−$(H) ≥ dims(G) + dims(H).
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72 Corona product graphs and join graphs

(ii) If G and H are graphs of diameter two where ∆(G) 6= n1−1 or ∆(H) 6=
n2 − 1, then

dims(G+H) = dims(G) + dims(H).

(iii) If ∆(G) = n1 − 1 and ∆(H) = n2 − 1, then

dims(G+H) = dims(G) + dims(H) + 1.

The following lemma shows that the problem of finding the strong metric

dimension of a corona product graph can be transformed to the problem of

finding the strong metric dimension of a graph of diameter two.

Lemma 6.5. Let G be a connected graph of order n and let H be a graph.

Let Hi be the subgraph of G�H corresponding to the ith-copy of H. Then

dims(G�H) = dims(K1 +
n⋃
i=1

Hi).

Proof. As the result is obvious for n = 1, we take n ≥ 2. Let v be the vertex

of K1 and let S ′ be a strong metric generator for G � H. We show that

S =
⋃n
i=1(S

′ ∩ V (Hi)) is a strong metric generator for K1 +
⋃n
i=1Hi. We

consider x, y are two different vertices of K1 +
⋃n
i=1Hi not belonging to S.

We differentiate the following cases.

Case 1: x = v and y ∈ V (Hi), for some i. For any u ∈ V (Hj), j 6= i, we

have x ∈ IK1+
⋃n

i=1Hi
[u, y] and since y and u are mutually maximally distant

in G�H, we have y ∈ S or u ∈ S.

Case 2: x, y ∈ V (Hi). Let u be a vertex of S ′ which strongly resolves x and

y in G�H. As no vertex of G�H not belonging to V (Hi) strongly resolves

x and y, we have that u ∈ V (Hi) and u ∈ S. Hence, u strongly resolves x

and y in K1 +
⋃n
i=1Hi.

Note that in the case x ∈ V (Hi) and y ∈ V (Hj), i 6= j, we have that

x and y are mutually maximally distant in G � H. Thus, we have x ∈ S

or y ∈ S. Hence, S is a strong metric generator for K1 +
⋃n
i=1Hi and, as a

consequence, dims(G�H) ≥ dims(K1 +
⋃n
i=1Hi).

Now, given a strong metric generator for K1 +
⋃n
i=1Hi denoted by W ′,

let us show that W = W ′ − {v} is a strong metric generator for G � H.

Let x, y be two different vertices of G �H not belonging to W . We denote

by V (G) = {v1, v2, ..., vn} the vertex set of G, where vi is the vertex of G
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D. Kuziak 73

adjacent to every vertex of V (Hi) in G �H, i ∈ {1, ..., n}. We differentiate

the following cases.

Case 1’: x = vi ∈ V (G) and y ∈ V (Hi). Let u ∈ V (Hj), j 6= i. In this case

we have x ∈ IG�H [u, y] and, since y and u are mutually maximally distant

in K1 +
⋃n
i=1Hi, we have y ∈ W or u ∈ W .

Case 2’: x = vi ∈ V (G) and y ∈ V (Hj), j 6= i. For every u ∈ V (Hi) we

have x ∈ IG�H [u, y] and, since y and u are mutually maximally distant in

K1 +
⋃n
i=1Hi, we have y ∈ W or u ∈ W .

Case 3’: x, y ∈ V (G). Let x = vi, y = vj, ui ∈ V (Hi) and uj ∈ V (Hj).

We have x ∈ IG�H [ui, y] and y ∈ IG�H [uj, x]. As ui and uj are mutually

maximally distant in K1 +
⋃n
i=1Hi, we have ui ∈ W or uj ∈ W .

Finally, note that the case x ∈ V (Hi) and y ∈ V (Hj), where i, j ∈
{1, 2, ..., n}, leads to x ∈ W or y ∈ W . Therefore, W is a strong metric

generator for G � H and, as a consequence, dims(G � H) ≤ dims(K1 +⋃n
i=1Hi).

Figure 6.1 illustrates the theorem above.

a1

b1

c1

a2 b2

c2

a4 b4

c4

a3

b3

c3x

z

w
y

a1

b1

c1

a2 b2

c2

a4 b4

c4

a3

b3

c3
v

Figure 6.1: Corona product C4 �K3 and join graph K1 +
⋃4
i=1K3, where v

is the vertex of K1.

Corollary 6.6. For any connected graph G of order n,

dims(G�K1) = n− 1.

Proof. ForH ∼= K1 Lemma 6.5 leads to dims(G�K1) = dims(K1+
⋃n
i=1K1) =

dims(K1,n) = n− 1.
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74 Corona product graphs and join graphs

Our next result is obtained from Lemma 6.5 and Theorem 6.1.

Theorem 6.7. Let G be a connected graph of order n1. Let H be a graph of

order n2.

(i) If ∆(H) = n2 − 1, then

dims(K1 +H) = n2 + 1−$(H).

(ii) If ∆(H) ≤ n2 − 2 or n1 ≥ 2, then

dims(G�H) = n1n2 −$(H).

Proof. Since (i) is trivial, we prove (ii). For ∆(H) = n2 − 1 we have

$

(
K1 +

n1⋃
i=1

Hi

)
n1>1
= $(K1 +H) + 1 = $(H) + 1,

while for ∆(H) ≤ n2 − 2 we have

$

(
K1 +

n1⋃
i=1

Hi

)
= $(K1 +H) = $(H) + 1.

So, by Lemma 6.5 and Theorem 6.1 we conclude the proof.

Let us derive some consequences of the result above.

Corollary 6.8. Let G be a connected graph of order n1 and let H be a graph

of order n2. Let c(H) be the number of vertices of H having degree n2 − 1.

(i) If H has no true twins and ∆(H) = n2 − 1, then

dims(K1 +H) = n2 + 1− ω(H).

(ii) If H has no true twins and ∆(H) ≤ n2 − 2,

dims(K1 +H) = n2 − ω(H).

(iii) If H has no true twins and n1 ≥ 2, then

dims(G�H) = n1n2 − ω(H).
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D. Kuziak 75

(iv) If the only true twins of H are vertices of degree n2 − 1, then

dims(K1 +H) = n2 + c(H)− ω(H)

(v) If the only true twins of H are vertices of degree n2 − 1 and n1 ≥ 2,

then

dims(G�H) = n1n2 + c(H)− 1− ω(H).

As our next result shows, when H is a triangle-free graph we obtain the

exact value of the strong metric dimension of G�H.

Corollary 6.9. Let G be a connected graph of order n1 and let H be a

triangle-free graph of order n2 ≥ 3. If n1 ≥ 2 or ∆(H) ≤ n2 − 2, then

dims(G�H) = n1n2 − 2.

Our next result is an interesting consequence of Theorem 6.1 and Theo-

rem 6.7.

Theorem 6.10. Let G be a connected graph of order n1. Let H be a graph

of order n2.

(i) If ∆(H) = n2 − 1, then

dims(K1 +H) = dims(H) + 1.

(ii) If H has diameter two and either ∆(H) ≤ n2 − 2 or n1 ≥ 2, then

dims(G�H) = (n1 − 1)n2 + dims(H).

(iii) If H is not connected or its diameter is greater than two, then

dims(G�H) = (n1 − 1)n2 + dims(K1 +H).

Note that the theorem above allows us to derive results on the strong

metric dimension of some join graphs. Also, observe that Corollary 6.11 can

be obtained from Theorem 6.1.

Corollary 6.11. Let H be a graph of order n.

(i) If ∆(H) = n− 1, then

dims(Kr +H) = dims(H) + r.

UNIVERSITAT ROVIRA I VIRGILI 
STRONG RESOLVABILITY IN PRODUCT GRAPHS. 
Dorota Kuziak 
Dipòsit Legal: T 156-2015



76 Corona product graphs and join graphs

(ii) If ∆(H) ≤ n− 2 and H has diameter two, then

dims(Kr +H) = dims(H) + r − 1.

(iii) If H is not connected or its diameter is greater than two, then

dims(Kr +H) = dims(K1 +H) + r − 1.

6.3 Strong metric dimension versus algebraic

connectivity

It is well-known that the second smallest Laplacian eigenvalue of a graph is

probably the most important information contained in the spectrum. This

eigenvalue, frequently called algebraic connectivity, is related to several im-

portant graph invariants and imposes reasonably good bounds on the values

of several parameters of graphs which are very hard to compute.

The following theorem shows the relationship between the algebraic con-

nectivity of a graph and the clique number.

Theorem 6.12. Let G be a connected noncomplete graph of order n and

algebraic connectivity µ. The clique number of ω(G) is bounded by

ω(G) ≤ n(∆(G)− µ+ 1)

n− µ
.

Proof. The algebraic connectivity of G = (V,E), satisfies the following equa-

lity shown by Fiedler [34],

µ = 2nmin

{ ∑
vi∼vj(wi − wj)

2∑
vi∈V

∑
vj∈V (wi − wj)2

}
, (6.1)

where not all the components of the vector (w1, w2, ..., wn) ∈ Rn are equal.

Let S be a clique in G of cardinality ω(G). The vector w ∈ Rn associated to

S is defined as,

wi =

{
1 if vi ∈ S;

0 otherwise,
(6.2)

Considering the 2-partition {S, V − S} of the vertex set V we have (wi −
wj)

2 = 1 if vi and vj are in different sets of the partition, and 0 if they are

in the same set. Then,∑
vi∈V

∑
vj∈V

(wi − wj)2 = 2 |S| (n− |S|). (6.3)
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By (6.1) and (6.3) we have

µ ≤
n
∑

vi∼vj(wi − wj)
2

|S| (n− |S|)
. (6.4)

Moreover, since
∑
vi∼vj

(wi − wj)2 is the number of edges of G having one end-

point in S and the other one in V−S, we have
∑
vi∼vj

(wi−wj)2 =
∑
v∈S

|NV−S(v)|,

where NV−S(v) denotes the set of neighbors that v has in V −S. Thus, since

S is a clique in G, we have that for every v ∈ S, |NV−S(v)| = δG(v)−(|S|−1).

Hence,

µ ≤
n
∑

v∈S (δG(v)− |S|+ 1)

|S| (n− |S|)
≤ n(∆(G)− |S|+ 1)

n− |S|
. (6.5)

The result follows directly by inequality (6.5).

The bound above is tight, it is achieved, for instance, for the Cartesian

product graph G = Kr�K2, where µ = 2, n = 2r, ∆(G) = r and ω(G) = r.

Notice that the result above and the inequality ω(H) ≥ $(H) combined

with Theorem 6.1, Theorem 6.4 or Theorem 6.7, lead to lower bounds on the

strong metric dimension. For instance, by Theorem 6.1 we derive the follow-

ing tight bound on the strong metric dimension of graphs of diameter two.

An example for the tightness is the graph Kr�K2, where dims(Kr�K2) = r,

µ = 2, n = 2r and ∆(Kr�K2) = r.

Theorem 6.13. Let H be a connected graph of diameter two, order n ≥ 2,

and algebraic connectivity µ. Then

dims(H) ≥
⌈
n(n−∆(H)− 1)

n− µ

⌉
.
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Chapter 7

Strong metric dimension of

Cartesian sum graphs

7.1 Overview

The current chapter is primarily concerned with finding several relationships

between the strong metric dimension of Cartesian sum graphs and the strong

metric dimension, clique number or twin-free clique number of its factor

graphs. Specifically, we obtain general lower and upper bounds on the strong

metric dimension of the Cartesian sum of graphs and give some classes of

graphs where these bounds are tight.

7.2 Primary results

We begin this section by establishing a direct consequence of the definition

of Cartesian sum graph.

Remark 7.1. A graph G⊕H is complete if and only if both, G and H, are

complete graphs.

In concordance with the remark above, from now on we continue with

the Cartesian sum of two graphs G and H, such that G or H is not complete.

Moreover, the fact that the Cartesian sum is a commutative operation is very

useful and in several results, symmetric cases are omitted without specific

mentioning of this fact. The next result gives the diameter of Cartesian sum

graphs.

79
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80 Cartesian sum graphs

Proposition 7.2. Let G and H be two nontrivial graphs such that at least

one of them is noncomplete and let n ≥ 2 be an integer. Then the following

assertion hold.

(i) D(G⊕Nn) = max{2, D(G)}.

(ii) If G and H have isolated vertices, then D(G⊕H) =∞.

(iii) If neither G nor H has isolated vertices, then D(G⊕H) = 2.

(iv) If D(H) ≤ 2, then D(G⊕H) = 2.

(v) If D(H) > 2, H has no isolated vertices and G is a nonempty graph

having at least one isolated vertex, then D(G⊕H) = 3.

Proof. Note that since G and H are two graphs such that at least one of

them is noncomplete, by Remark 7.1 we have that D(G⊕H) ≥ 2.

(i) If G is connected, then we have dG⊕Nn((a, b), (c, d)) = dG(a, c) for a 6= c,

and dG⊕Nn((a, b), (a, d)) = 2. Thus, D(G⊕Nn) = max{2, D(G)}.

On the other hand, if G1 and G2 are two connected components of G,

then for any u ∈ V (G1), x ∈ V (G2) and v, y ∈ V (Nn), we have that

(u, v) 6∼ (x, y), so G⊕Nn is not connected and, as a result, D(G⊕Nn) =

∞.

(ii) If u ∈ V (G) and v ∈ V (H) are isolated vertices, then (u, v) ∈ V (G⊕H)

is an isolated vertex, so (ii) follows.

(iii) Assume that neither G nor H has isolated vertices. We consider the

following cases for two different vertices (u, v), (x, y) ∈ V (G⊕H).

Case 1: v = y. Since H has no isolated vertices, then there exists a

vertex w ∈ NH(v). So, (u, v) ∼ (u,w) ∼ (x, y) and, as a consequence,

dG⊕H((u, v), (x, y)) ≤ 2.

Case 2: u = x. This case is symmetric to Case 1.

Case 3: v 6= y and u 6= x. Since G and H have no isolated vertices, there

exist vertices z ∈ NG(x) and w ∈ NH(v). Hence, (u, v) ∼ (z, w) ∼ (x, y)

and, as a result, dG⊕H((u, v), (x, y)) ≤ 2

According to the cases above the proof of (iii) is complete.
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D. Kuziak 81

(iv) Let D(H) ≤ 2. If v and y are two adjacent vertices of H, then for

any u, x ∈ V (G) we have dG⊕H((u, v), (x, y)) = 1, while if v 6∼ y, then

for any w ∈ NH(v) ∩ NH(y) we have (u, v) ∼ (x,w) ∼ (x, y). Thus,

dG⊕H((u, v), (x, y)) ≤ 2 and so (iv) follows.

(v) Assume that G has an isolated vertex, H has no isolated vertices and

D(H) > 2. If u and x are not isolated vertices in G, then we proceed

like in the proof of (iii) to show that dG⊕H((u, v), (x, y)) ≤ 2. If u or

x is an isolated vertex of G and dH(v, y) ≤ 2, then we proceed like in

the proof of (iv). So, we consider that u or x is an isolated vertex and

dH(v, y) ≥ 3.

Case 1’: u is an isolated vertex and x is not an isolated vertex. In this

case there exists t ∈ NG(x) and, since H has no isolated vertices, there

exists w ∈ NH(v). Hence, (u, v) ∼ (t, w) ∼ (x, y) and, as a consequence,

dG⊕H((u, v), (x, y)) ≤ 2.

Case 2’: u and x are isolated vertices (u and x are not necessarily

different). Since H has no isolated vertices and dH(v, y) ≥ 3, for

every two vertices w ∈ NH(v) and z ∈ NH(y) it follows that w 6=
z. Moreover, since G is not empty, there exist two different vertices

s, t ∈ V (G) such that s ∼ t. Hence, (u, v) ∼ (t, w) ∼ (s, z) ∼ (x, y).

Thus, dG⊕H((u, v), (x, y)) ≤ 3. On the other hand, since NG⊕H(u, v) =

V (G)×NH(v), NG⊕H(x, y) = V (G)×NH(y) and NH(v) ∩NH(y) = ∅,
we obtain that NG⊕H(u, v) ∩ NG⊕H(x, y) = ∅. Therefore, we have

dG⊕H((u, v), (x, y)) = 3 and the proof of (v) is complete.

Corollary 7.3. The graph G⊕H is not connected if and only if both G and

H have isolated vertices or G is an empty graph and H is not connected.

Now we would point out a relationship between the Cartesian sum graphs

and the lexicographic product of graphs.

Remark 7.4. For any graph G and any nonnegative integer n,

G⊕Nn
∼= G ◦Nn.

Notice that the strong metric dimension of G ◦Nn have been studied in

Chapter 5.
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82 Cartesian sum graphs

In order to present the next results we need to recall the terminology and

notation introduced in Chapter 5. Given a graph G, by G∗ we mean a graph

with vertex set V (G∗) = V (G) such that two vertices u, v are adjacent in G∗

if and only if either dG(u, v) ≥ 2 or u, v are true twins. If a graph G has at

least one isolated vertex, then we denote by G− the graph obtained from G

by removing all its isolated vertices. In this sense, G∗− is obtained from G∗

by removing all its isolated vertices. Moreover, if G has no true twins, then

G∗ ∼= Gc.

Proposition 7.5. Let G and H be two nontrivial graphs such that at least

one of them is noncomplete. If D(G) ≤ 2 or neither G nor H has isolated

vertices, then

(G⊕H)SR ∼= (G⊕H)∗−.

Proof. We assume that D(G) ≤ 2 or neither G nor H has isolated vertices.

Then, by Proposition 7.2 we have D(G⊕H) = 2 and, as a consequence, two

vertices are mutually maximally distant in G⊕H if and only if they are true

twins or they are not adjacent. Hence, (G⊕H)SR ∼= (G⊕H)∗−.

Our next result is derived from Theorem 1.12 and Proposition 7.5.

Proposition 7.6. Let G and H be two nontrivial graphs such that at least

one of them is noncomplete. If D(G) ≤ 2 or neither G nor H has isolated

vertices, then

dims(G⊕H) = β((G⊕H)∗−).

Theorem 7.7. Let G and H be two graphs of order n and n′, respectively,

and let ∆(G) ≤ n− 2 and ∆(H) ≤ n′− 2. If (neither G nor H has true twin

vertices) and (D(G) ≤ 2 or neither G nor H has isolated vertices), then

dims(G⊕H) = β(Gc �Hc).

Proof. If D(G) ≤ 2 or neither G nor H has isolated vertices, then by Propo-

sition 7.6 we have dims(G⊕H) = β((G⊕H)∗−).

Now, for any (u, v) ∈ V (G⊕H) we have

NG⊕H [(u, v)] = NG(u)× V (H) ∪ V (G)×NH(v) ∪ {(u, v)},

Hence, if neither G nor H has true twins, ∆(G) ≤ n− 2 and ∆(H) ≤ n′− 2,

then G ⊕ H have no true twins and, as a result, (G ⊕ H)∗− = (G ⊕ H)c−.

Therefore, we conclude the proof by Lemma 1.7, i.e., dims(G⊕H) = β((G⊕
H)∗−) = β((G�H)c−) = β((Gc �Hc)−) = β(Gc �Hc).
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7.3 Strong metric dimension and (twin-free)

clique number

From now we present several relationships between the strong metric dimen-

sion of Cartesian sum graphs and clique number or twin-free clique number

of its factor graphs. We begin with the connection between the twin-free

clique number of a Cartesian sum graphs and the twin-free clique number of

its factors, which is useful in this section.

Lemma 7.8. Let G and H be two graphs. Then,

$(G⊕H) ≥ $(G)$(H).

Proof. If all the components of G and H are isomorphic to a complete graph,

then $(G ⊕ H) ≥ 1 = $(G)$(H). If G or H, say G, is an empty graph,

then for any twin-free clique S in H, and any x ∈ V (G), the set {x} × S,

is also a twin-free clique in G ⊕H, since the adjacencies in each copy of H

remains equal and, as a consequence, the inequality $(G⊕H) ≥ $(G)$(H)

holds.

From now on, we assume G and H are nonempty graphs and we consider

the case that at least one component of G or H is not isomorphic to a

complete graph (notice that if at least one component of a graph is not

isomorphic to a complete graph, then its twin-free clique number is greater

than one). LetW be a$(G)-set and let Z be a$(H)-set. From the definition

of Cartesian sum graphs, we have that the subgraph induced by W × Z is a

clique in G⊕H. We consider the following cases.

Case 1: either G or H, say G, has every component isomorphic to a complete

graph. Hence, W is a singleton set, W = {u}, and the set Z is included in

a component of H which is not isomorphic to a complete graph (if not, then

$(H) = 1, which is not possible). So, there exist v, y ∈ Z, z /∈ Z, such that

z ∈ NH(v) − NH [y]. By the definition of Cartesian sum graphs, we obtain

that (u, z) ∼ (u, v) and (u, z) 6∼ (u, y). Thus, W × Z is a twin-free clique.

Case 2: neither G nor H have every component isomorphic to a complete

graph. Thus, as above, there exist u, x ∈ W and w /∈ W such that w ∈
NG(u)−NG[x]. Also, there exist v, y ∈ Z and z /∈ Z such that z ∈ NH(v)−
NH [y]. Again, from the definition of Cartesian sum graphs, we have that

(w, z), (u, z), (x, z), (w, v), (w, y) ∈ NG⊕H [(u, v)],
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84 Cartesian sum graphs

(u, z), (w, v) ∈ NG⊕H [(x, y)] and (w, z), (x, z), (w, y) /∈ NG⊕H [(x, y)],

(w, z), (x, z), (w, v), (w, y) ∈ NG⊕H [(u, y)] and (u, z) /∈ NG⊕H [(u, y)],

(w, z), (u, z), (x, z), (w, y) ∈ NG⊕H [(x, v)] and (w, v) /∈ NG⊕H [(x, v)].

Therefore, W ×Z is a twin-free clique in G⊕H, which completes the proof.

Notice that there are cases of Cartesian sum graphs not satisfying the

equality in the result above. One example is obtained as a consequence of

Corollary 7.14 considering the graph K1,n ⊕Kn′ .

The clique number of any Cartesian sum graph satisfies the following

relationship.

Lemma 7.9. For any graphs G and H,

ω(G⊕H) = ω(G)ω(H).

Proof. Let W be an ω(G)-set and let Y be an ω(H)-set. From the definition

of Cartesian sum graphs, we have that the subgraph induced by W × Y is a

clique in G⊕H. So, ω(G⊕H) ≥ ω(G)ω(H). Let Z be an ω(G⊕H)-set and

let (u, v) ∈ Z. Thus, by using definition of Cartesian sum graphs, Z must be

of the form R × S, where R is maximum clique in G containing u and S is

maximum clique in H containing v. Hence, ω(G⊕H) = |R||S| ≤ ω(G)ω(H)

and the equality holds.

The following results give relationships between the strong metric di-

mension of the Cartesian sum graphs and the clique number or the twin-free

clique number of the factor graphs. Notice that the graphs G ⊕ H having

diameter two are described in Proposition 7.2.

Proposition 7.10. Let G and H be two graphs of order n and n′, respec-

tively, such that G⊕H is connected. Then,

dims(G⊕H) ≤ nn′ −$(G)$(H).

Moreover, if D(G) ≤ 2 or neither G nor H has isolated vertices, then

nn′ − ω(G)ω(H) ≤ dims(G⊕H) ≤ nn′ −$(G)$(H).
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D. Kuziak 85

Proof. From Theorem 6.1, Lemma 7.9 and the fact that ω(H) ≥ $(H), we

have the lower bound. On the other hand, the upper bounds hold because

of Theorem 6.1 and Lemma 7.8.

Corollary 7.11. Let G and H be two graphs of order n and n′, respectively,

such that D(G) ≤ 2 or neither G nor H has isolated vertices. If ω(G) =

$(G) and ω(H) = $(H), then

dims(G⊕H) = nn′ − ω(G)ω(H).

We recall that the fan graph F1,n is defined as the graph join K1 + Pn

and the wheel graph of order n+ 1 is defined as W1,n = K1 + Cn. There are

some families of graph, as the ones above, which have no true twin vertices.

In this sense, its twin-free clique number is equal to its clique number i.e.,

• $(Tn) = ω(Tn) = 2, where Tn is a tree of order n ≥ 3.

• $(Cn) = ω(Cn) = 2, where n ≥ 4.

• $(F1,n) = ω(F1,n) = 3, where n ≥ 4.

• $(W1,n) = ω(W1,n) = 3, where n ≥ 4.

• $(Pn�Pn′) = ω(Pn�Pn′) = 2, where n, n′ ≥ 2.

By using the examples above, Corollary 7.11 leads to the following.

Remark 7.12. The following assertions hold.

(i) If G and H are trees, cycles or grid graphs of order n and n′, respec-

tively, then

dims(G⊕H) = nn′ − 4.

(ii) If G and H are fans or wheels of order n + 1 and n′ + 1, respectively,

then

dims(G⊕H) = nn′ + n+ n′ − 8.

(iii) If G is a tree, a cycle or a grid graph of order n and H is a fan or a

wheel of order n′ + 1, then

dims(G⊕H) = nn′ + n− 6.
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a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

Figure 7.1: The set {a3, b3, c1, c2, c3, d1, d2, d3} forms a strong metric basis

of K1,3 ⊕ P3. Thus, dims(K1,3 ⊕ P3) = 8.

Figure 7.1 shows an example regarding Remark 7.12 (i).

Lemma 7.8 gives a general lower bound on $(G⊕H) in terms of $(G)

and $(H). Next we give another lower bound, which in some cases behaves

better than this one from Lemma 7.8.

Lemma 7.13. Let G and H be two nontrivial graphs where G has order n.

Then

$(G⊕H) ≥ ($(G)− 1)ω(H) + 1.

Moreover, if there exists a $(G)-set without vertices of degree n− 1, then

$(G⊕H) ≥ $(G)ω(H).

Proof. Let W be a $(G)-set without vertices of degree n − 1 and let Z be

a ω(H)-set. From the definition of Cartesian sum graphs, we have that the

subgraph induced by W × Z is a clique in G ⊕ H. Let (u, v) and (x, y) be

two different vertices belonging to W × Z. In order to show that W × Z is

a twin-free clique, we consider the following cases.

Case 1: v = y. Since u, x ∈ W , then without loss of generality, there exists

vertex w ∈ NG(u)−NG[x]. Hence, (u, v) ∼ (w, v) 6∼ (x, y).

Case 2: v 6= y. Since u has degree less than or equal to n − 2, there exists

vertex z ∈ V (G) such that u 6∼ z. Thus, (u, v) 6∼ (z, v) ∼ (x, y).

Thus, W × Z is a twin-free clique and so $(G ⊕ H) ≥ |W × Z| =

$(G)ω(H).

On the other hand, let Y be $(G)-set having a vertex a of degree n− 1.

Notice that Y cannot contain other vertex of degree n − 1. Now, let b be

a vertex belonging to Z. Observe that S = ((Y − {a}) × Z) ∪ {(a, b)} is

UNIVERSITAT ROVIRA I VIRGILI 
STRONG RESOLVABILITY IN PRODUCT GRAPHS. 
Dorota Kuziak 
Dipòsit Legal: T 156-2015



D. Kuziak 87

also a clique in G ⊕ H since Y × Z is a clique. We claim that S is a twin-

free clique. To see this, we differentiate the following cases for two different

vertices (c, d), (e, f) ∈ S.

Case 1’: d = f . Proceeding like in the Case 1, we have that (c, d) and (e, f)

are not true twins.

Case 2’: d 6= f . If c 6= a, then c has degree less than or equal to n−2 and there

exists a vertex g ∈ V (G) such that c 6∼ g. Thus, (c, d) 6∼ (g, d) ∼ (e, f). Now,

suppose that c = a. In this case d = b and e 6= a. Since there exists a′ ∈ V (H)

such that a′ ∈ NH(a)−NH [e], we have (c, d) = (a, b) ∼ (a′, f) 6∼ (e, f).

Therefore, S is a twin-free clique, which leads to

$(G⊕H) ≥ |S| = ($(G)− 1)ω(H) + 1.

The following result is a direct consequence of the lemma above and the

well-known fact that the Cartesian sum of graphs is a commutative operation.

Corollary 7.14. Let G and H be two nontrivial graphs of order n and n′,

respectively. Then the following assertions hold.

(i) $(G⊕H) ≥ max{($(G)− 1)ω(H), ω(G)($(H)− 1)}+ 1.

(ii) If there exists a $(G)-set without a vertex of degree n − 1 and there

exists a $(H)-set without a vertex of degree n′ − 1, then

$(G⊕H) ≥ max{$(G)ω(H), ω(G)$(H)}.

(iii) If there exists a $(G)-set without a vertex of degree n− 1, then

$(G⊕H) ≥ max{$(G)ω(H), ω(G)($(H)− 1) + 1}.

By using Theorem 6.1 and Corollary 7.14 we obtain another bounds on

dims(G⊕H).

Proposition 7.15. Let G and H be two nontrivial graphs of order n and

n′, respectively such that G⊕H is connected. Then the following assertions

hold.

(i) dims(G⊕H) ≤ nn′ −max{($(G)− 1)ω(H), ω(G)($(H)− 1)} − 1.
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88 Cartesian sum graphs

(ii) If there exists a $(G)-set without a vertex of degree n − 1 and there

exists a $(H)-set without a vertex of degree n′ − 1, then

dims(G⊕H) ≤ nn′ −max{$(G)ω(H), ω(G)$(H)}.

(iii) If there exists a $(G)-set without a vertex of degree n− 1, then

dims(G⊕H) ≤ nn′ −max{$(G)ω(H), ω(G)($(H)− 1) + 1}.

Corollary 7.16. Let G be a nontrivial graph of order n. If G has no true

twins and ∆(G) ≤ n− 2, then

dims(G⊕Kn′) = nn′ − n′ω(G).

Proof. First of all, note that G ⊕ Kn′ is connected, as stated in Corollary

7.3. On the other hand, since G has no true twins, it follows ω(G) = $(G).

Now, from Proposition 7.10 we have that dims(G ⊕ Kn′) ≥ nn′ − n′ω(G).

Moreover, by using Proposition 7.15 (iii) we obtain dims(G ⊕ H) ≤ nn′ −
max{$(G)ω(H), ω(G)($(H)−1)+1} = nn′−n′ω(G). Therefore, the equa-

lity holds.

Corollary 7.17. For any integers, n, n′ ≥ 2,

(n+ 1)n′ − 2n′ ≤ dims(K1,n ⊕Kn′) ≤ (n+ 1)n′ − n′ − 1.

Proof. The lower bound is a direct consequence of Proposition 7.10 while the

upper bound is a direct consequence of Proposition 7.15 (i).
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Chapter 8

Strong metric dimension of

rooted product graphs

8.1 Overview

In this chapter we study the problem of computing exact values of the strong

metric dimension of some classes of rooted product graphs and express these

in terms of invariants of the factor graphs. Moreover, we present sharp lower

and upper bounds on the strong metric dimension of the rooted product of

graphs and give some families of graphs where these bounds are attained.

8.2 Formulae for some families of rooted pro-

duct graphs

We start this section with stating the following easily verified lemmas, which

allow us to derive the structure of the strong resolving graph of rooted pro-

duct graphs.

Lemma 8.1. Let G and H be two connected graphs. Let the vertices a, b ∈
V (G), a 6= b and x, y, v ∈ V (H). Then (a, x) and (b, y) are mutually maxi-

mally distant vertices in G ◦v H if and only if x, y ∈MH(v).

Proof. (Sufficiency) Suppose that (a, x) and (b, y) are not mutually maxi-

mally distant vertices in G◦vH. So, there exists a vertex (a, x′) ∈ NG◦vH(a, x)

such that

dG◦vH((a, x′), (b, y)) > dG◦vH((a, x), (b, y)),
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90 Rooted product graphs

or there exists (b, y′) ∈ NG◦vH(b, y) such that

dG◦vH((a, x), (b, y′)) > dG◦vH((a, x), (b, y)).

We consider, without loss of generality, that (a, x′) ∈ NG◦vH(a, x) and

dG◦vH((a, x′), (b, y)) > dG◦vH((a, x), (b, y)).

So we have,

dH(x′, v) = dG◦vH((a, x′), (b, y))− dG(a, b)− dH(v, y)

> dG◦vH((a, x), (b, y))− dG(a, b)− dH(v, y)

= dH(x, v).

Thus, dH(x′, v) > dH(x, v). Since x′ ∈ NH(x) and x ∈ MH(v), we have a

contradiction.

(Necessity) Let us suppose that x /∈MH(v). So, there exists x′′ ∈ NH(x)

such that dH(x′′, v) > dH(x, v). Thus,

dG◦vH((a, x), (b, y)) = dH(x, v) + dG(a, b) + dH(v, y)

< dH(x′′, v) + dG(a, b) + dH(v, y)

= dG◦vH((a, x′′), (b, y)).

Hence, there exists a vertex (a, x′′) ∈ NG◦vH((a, x)) such that

dG◦vH((a, x), (b, y)) < dG◦vH((a, x′′), (b, y)),

which is a contradiction since (a, x) and (b, y) are mutually maximally dis-

tant.

Lemma 8.2. Let G and H be two connected nontrivial graphs. Let v, x, y be

vertices of H such that x, y 6= v. For every vertex a of G we have that (a, x)

and (a, y) are mutually maximally distant vertices in G ◦v H if and only if

the vertices x and y are mutually maximally distant in H.

Proof. The result follows directly from the fact that for every vertex c of

G and every vertex z 6= v of H we have that w ∈ NH(z) if and only if

(c, w) ∈ NG◦vH(c, z) and also that dG◦vH((a, x), (a, y)) = dH(x, y) for every

x, y of H.

The following result deals with the boundary of rooted product graphs

and is a very useful tool for our purposes.
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Proposition 8.3. Let G be a connected graph of order n ≥ 2 and let H be

a connected graph.

(i) If v ∈ ∂(H), then

∂ (G ◦v H) = V (G)× (∂(H)− {v}).

(ii) If v 6∈ ∂(H), then

∂ (G ◦v H) = V (G)× ∂(H).

Proof. Let (x, y) and (x′, y′) be two mutually maximally distant vertices in

G ◦v H. Since (V (G) × {v}) ∩ ∂ (G ◦v H) = ∅, it follows y, y′ 6= v. We

differentiate two cases.

Case 1: x = x′. By Lemma 8.2 we conclude that (x, y) and (x′, y′) are

mutually maximally distant in G ◦v H if and only if y and y′ are mutually

maximally distant in H.

Case 2: x 6= x′. By Lemma 8.1 the vertices (x, y) and (x′, y′) are mutually

maximally distant in G ◦v H if and only if y, y′ ∈ MH(v). Note that, by

definition of boundary, y, y′ ∈ ∂(H).

According to the cases above we conclude that if (x, y) ∈ ∂(G ◦v H),

then y ∈ ∂(H)−{v}. Moreover, if y ∈ ∂(H)−{v}, then for every x ∈ V (G)

we have (x, y) ∈ ∂(G ◦v H).

Therefore, if v ∈ ∂(H), then ∂ (G ◦v H) = V (G) × (∂(H) − {v}) and if

v 6∈ ∂(H), then ∂ (G ◦v H) = V (G)× ∂(H).

In order to present the next proposition about the set of simplicial ver-

tices of rooted product graphs we need to introduce some notation. Given

a vertex x ∈ V (G), we define Hx as the subgraph Hx = 〈{x} × V (H)〉 of

G ◦vH. Note that for any vertex x the subgraph Hx of G ◦vH is isomorphic

to H.

Proposition 8.4. Let G be a connected graph of order n ≥ 2 and let H be

a connected graph.

(i) If v ∈ σ(H), then

σ (G ◦v H) = V (G)× (σ(H)− {v}).
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92 Rooted product graphs

(ii) If v 6∈ σ(H), then

σ (G ◦v H) = V (G)× σ(H).

Proof. Notice that (x, v) is not simplicial in G ◦v H. Since the following

assertions are equivalent, the result immediately follows.

• The vertex (x, y) ∈ V (G)× (V (H)− {v}) is simplicial in G ◦v H.

• For x ∈ V (G) and y 6= v the vertex (x, y) is simplicial in Hx.

• The vertex y ∈ V (H)− {v} is simplicial in H.

Observe that if ∂(H) = σ(H), then by using the propositions above we

obtain the exact values of the strong metric dimension of rooted product

graphs. Hence, we have the following result.

Theorem 8.5. Let G be a connected graph of order n ≥ 2 and let H be a

connected graph such that ∂(H) = σ(H).

(i) If v ∈ ∂(H), then

dims(G ◦v H) = n(|∂(H)| − 1)− 1.

(ii) If v 6∈ ∂(H), then

dims(G ◦v H) = n|∂(H)| − 1.

Proof. Since ∂(H) = σ(H), as a direct consequence of Proposition 8.3 and

Proposition 8.4 we obtain that if v 6∈ ∂(H), then ∂ (G ◦v H) = V (G)×∂(H) =

σ (G ◦v H) and if v ∈ ∂(H), then ∂ (G ◦v H) = V (G) × (∂(H) − {v}) =

σ (G ◦v H) . Hence, if v 6∈ ∂(H), then (G◦vH)SR ∼= Kn|∂(H)| and, if v ∈ ∂(H),

then (G ◦v H)SR ∼= Kn(|∂(H)|−1). Therefore, the result follows by Theorem

1.12.

We emphasize the following particular cases of Theorem 8.5.

Corollary 8.6. Let G be a connected graph of order n ≥ 2.

(i) For any complete graph of order n′,

dims(G ◦∗ Kn′) = n(n′ − 1)− 1.
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(ii) For any tree T ,

dims(G ◦v T ) =


n(l(T )− 1)− 1, if v is a leaf of T ,

n · l(T )− 1, if v is an inner vertex of T .

(iii) Let G′ be a connected graph of order n′ and let H = G′ � (
⋃r
i=1Kti),

where r ≥ 2, ti ≥ 1. Then

dims(G ◦v H) =


n
∑r

i=1 ti − n− 1, if v ∈
⋃r
i=1 V (Kti),

n
∑r

i=1 ti − 1, if v ∈ V (G′).

The next theorem gives a bound on dims(G ◦v H) with respect to the

cardinality of the set of vertices which are maximally distant from v in H,

that is |MH(v)|.

Theorem 8.7. Let G be a connected graph of order n ≥ 2 and let H be a

connected graph such that HSR
∼=
⋃ |∂(H)|

2
i=1 K2. Let v ∈ V (H) and let i(v) be

the set of isolated vertices of the subgraph of HSR induced by MH(v).

(i) If v 6∈ ∂(H), then

dims(G ◦v H) =
n(|∂(H)|+ |MH(v)| − |i(v)|)− |MH(v)|+ |i(v)|

2
.

(ii) If v ∈ ∂(H), then

dims(G ◦v H) =
n(|∂(H)|+ |MH(v)| − |i(v)|)− |MH(v)|+ |i(v)| − 2

2
.

Proof. Let V (G) = {x1, x2, ..., xn} be the vertex set of G and let B be a

vertex cover of (G◦vH)SR. First we note that by premiss for every a ∈ ∂(H)

there exists exactly one vertex a′ ∈ ∂(H) such that a and a′ are adjacent

in HSR. We consider the set i′(v) ⊂ ∂(H) defined in the following way:

a′ ∈ i′(v) if and only if there exists a ∈ i(v) such that a and a′ are mutually

maximally distant in H. Note that |i′(v)| = |i(v)| and, if v ∈ ∂(H) and v, v′

are mutually maximally distant, then v ∈ i′(v) and v′ ∈ i(v). Also, since

there are no edges in HSR connecting vertices belonging to MH(v) ∪ i′(v)

to vertices belonging to ∂(H) −MH(v) ∪ i′(v), by Lemmas 8.1 and 8.2 we

conclude that there are no edges in (G◦vH)SR connecting vertices belonging

UNIVERSITAT ROVIRA I VIRGILI 
STRONG RESOLVABILITY IN PRODUCT GRAPHS. 
Dorota Kuziak 
Dipòsit Legal: T 156-2015



94 Rooted product graphs

to V (G)× (∂(H)− (MH(v)∪ i′(v)) to vertices belonging to V (G)× (MH(v)∪
i′(v)). With this idea in mind, we proceed to prove the results.

In order to prove (i) we consider that v 6∈ ∂(H). Note that in this

case by Proposition 8.3 (ii), ∂(G ◦v H) = V (G) × ∂(H). By Lemma 8.2

we have that for every mutually maximally distant vertices a, a′ ∈ ∂(H) −
(MH(v) ∪ i′(v)) and every j ∈ {1, ..., n} the vertices (xj, a) and (xj, a

′) are

mutually maximally distant in G ◦v H and, as a consequence, (xj, a) 6∈ B

if and only if (xj, a
′) ∈ B. Thus, the subgraph of (G ◦v H)SR induced by

V (G)× (∂(H)−MH(v)∪ i′(v)) is composed by n
2
(|∂(H)| − |MH(v)| − |i′(v)|)

components isomorphic to K2.

On the other hand, by Lemma 8.1 we have that (xj, a), (xk, a) are mu-

tually maximally distant in G ◦v H, for every a ∈ MH(v) and j 6= k. Thus,

if (xj, a) 6∈ B for some j, then (xk, a) ∈ B for every k 6= j. Moreover, as

above, Lemma 8.2 allows us to conclude that given two mutually maximally

distant vertices a, a′ ∈MH(v)∪ i′(v) it follows that (xj, a) 6∈ B if and only if

(xj, a
′) ∈ B. Thus, B contains exactly (n− 1)|MH(v) + |MH(v)∪i′(v)|

2
vertices

belonging to V (G)× (MH(v) ∪ i′(v)). Therefore,

|B| = n(|∂(H)| − |MH(v)| − |i(v)|)
2

+ (n− 1)|MH(v)|+ |MH(v)|+ |i(v)|
2

=
n(|∂(H)|+ |MH(v)| − |i(v)|)− |MH(v)|+ |i(v)|

2

The proof of (i) is complete.

From now on we suppose v ∈ ∂(H). Note that in this case by Proposition

8.3 (i) we have ∂(G ◦v H) = V (G)× (∂(H)− {v}). To prove (ii) we proceed

by analogy to the proof of (i). In this case we obtain that the subgraph

of (G ◦v H)SR induced by V (G) × (∂(H) − (MH(v) ∪ i′(v)) is composed by
n
2
|∂(H)−MH(v)∪i′(v)| = n

2
(|∂(H)|−|MH(v)|−|i(v)|) components isomorphic

to K2 and B contains exactly (n − 1)|MH(v)| + |(MH(v)−{v′})∪(i′(v)−{v})|
2

=

(n − 1)|MH(v)| + |MH(v)|+|i(v)|−2
2

vertices of G ◦v H belonging to V (G) ×
(MH(v) ∪ (i′(v)− {v})). Thus,

|B| = n(|∂(H)| − |MH(v)| − |i(v)|)
2

+ (n− 1)|MH(v)|+ |MH(v)|+ |i(v)| − 2

2

=
n(|∂(H)|+ |MH(v)| − |i(v)|)− |MH(v)|+ |i(v)| − 2

2
.

The proof of (ii) is complete.

We conjecture that if v 6∈ ∂(H), then i(v) = i′(v) = ∅. In order to show

a particular case of Theorem 8.7 where i(v) 6= ∅ we consider the graph H
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D. Kuziak 95

shown in the left hand side of Figure 8.1 where ∂(H) = {a, a′, b, b′, v, v′},
MH(v) = i(v) = {a, v′} and i′(v) = {a′, v}. In the case of the graph H

shown in the right hand side of Figure 8.1 we have ∂(H) = {a, a′, b, b′, v, v′},
MH(v) = {a, a′, v′}, i(v) = {v′} and i′(v) = {v}. In both cases

B = (V (G)− {un})× (MH(v) ∪ {b}) ∪ {(un, a), (un, b)}

is a strong metric basis of G ◦v H for any graph G with vertex set V (G) =

{u1, u2, ..., un}.

a′ a

v′ b′

b v

a′ a

v′ b′

b v

Figure 8.1: In left hand side graph i(v) = {a, v′} and i′(v) = {a′, v}. In right

hand side graph i(v) = {v′} and i′(v) = {v}.

Corollary 8.8. Let G be a connected graph of order n ≥ 2 and let H be a

connected 2-antipodal graph of order n′. Then

dims(G ◦∗ H) =
nn′

2
− 1.

Now we study the strong metric dimension of G ◦∗ Ct for any nontrivial

graph G and t greater than or equal to three.

Theorem 8.9. Let Ct be a cycle of order t ≥ 3. For any connected graph G

of order r ≥ 2,

dims(G ◦∗ Ct) = r

⌈
t

2

⌉
− 1.

Proof. Let V (G) = {x1, x2, ..., xr} and V (Ct) = {y0, y1, ..., yt−1} be the vertex

sets of G and Ct, respectively. We assume y0 ∼ y1 ∼ ... ∼ yt−1 ∼ y0 in Ct and

from now on all the operations with the subscripts of yi are done modulo t.

Since Ct is a vertex-transitive graph, we can take without loss of generality

v = y0 as the root of Ct.

If t be an even number, then Ct is 2-antipodal. So the result follows by

Corollary 8.8. Now let t be an odd number. Note that exactly two vertices
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96 Rooted product graphs

yd t
2e and yb t

2c are maximally distant from v in Ct. So, from Lemma 8.1 we

have that every vertex (xi, yl) is mutually maximally distant from (xj, yk) in

G ◦∗ Ct, with j 6= i and l, k ∈
{⌈

t
2

⌉
,
⌊
t
2

⌋}
. Moreover, from Lemma 8.2 we

have that for every i ∈ {1, 2, ..., r}, (xi, yk) is mutually maximally distant

from (xi, yk+b t
2c) and (xi, yk+d t

2e) in G ◦∗Ct with k ∈ {1, 2, ...,
⌊
t
2

⌋
− 1,

⌈
t
2

⌉
+

1, ..., t − 1}. Also, the vertex (xi, yb t
2c) is mutually maximally distant from

(xi, yt−1) and the vertex (xi, yd t
2e) is mutually maximally distant from (xi, y1).

Thus, we obtain that the graph (G ◦∗ Ct)SR is isomorphic to a graph with

set of vertices U ∪ (
⋃r
i=1 Vi) where 〈U〉 is isomorphic to a complete r-partite

graph K2,2,...,2 and for every i ∈ {1, ..., r}, 〈Vi〉 is isomorphic to a path graph

Pt−1. Notice that the leaves of Pt−1 belong to U , so for every i ∈ {1, ..., r},
|Vi ∩ U | = 2. Thus, we have the following:

dims(G ◦∗ Ct) = β((G ◦∗ Ct)SR)

= β(〈U〉) + (r − 1)β(Pt−3) + β(Pt−1)

= 2(r − 1) + (r − 1)
t− 3

2
+
t− 1

2

= r

⌈
t

2

⌉
− 1.

The proof is complete.

As we mention in Chapter 1, there exists a relationship between rooted

product graphs and corona product graphs. Given a vertex v of a graph H,

we denote by H − v the graph obtained by removing v from H. Now, if v

is a vertex of H of degree n − 1, then the rooted product graph G ◦v H is

isomorphic to the corona product graph G� (H − v).

According to this connection above mentioned, from some results of

Chapter 6 we can deduce some direct consequences. The next corollary is

obtained from Theorem 6.7 (ii).

Corollary 8.10. Let G be a connected graph of order r ≥ 2. Let H be a

connected graph of order t ≥ 2 and let v be a vertex of H of degree t − 1.

Then

dims(G ◦v H) = r(t− 1)−$(H − v).

Corollary 6.9 gives the exact value of the strong metric dimension of

G�H when H is a triangle-free graph. As a direct consequence of this result

we have the following.
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D. Kuziak 97

Corollary 8.11. Let G be a connected graph of order r ≥ 2. Let H be a

connected graph of order t ≥ 2 and let v be a vertex of H of degree t− 1. If

H − v is a triangle-free graph. Then

dims(G ◦v H) = r(t− 1)− 2.

Theorem 6.10 (ii) and (iii) shows that the strong metric dimension of

G�H depends on the diameter of H. Therefore, by using Theorem 6.10 we

obtain the following result for G ◦v H.

Corollary 8.12. Let G be a connected graph of order r ≥ 2. Let H be a

graph of order t ≥ 2 and let v be a vertex of H of degree t− 1.

(i) If H − v has diameter two, then

dims(G ◦v H) = (r − 1)(t− 1) + dims(H − v).

(ii) If H − v has diameter greater than two, then

dims(G ◦v H) = (r − 1)(t− 1) + dims(H).

The strong metric dimension of G�H depends on the existence or not

of true twins in H. Hence, the strong metric dimension of rooted product

graphs also depends on the existence or not of true twins in the second factor.

Our next result is an interesting consequence of Corollary 6.8 (iii) and (v).

Corollary 8.13. Let G be a connected graph of order r ≥ 2. Let H be a

connected graph of order t ≥ 2 and let v be a vertex of H of degree t− 1. Let

c(H − v) be the number of vertices of H − v having degree t− 2.

(i) If H − v has no true twins, then

dims(G ◦v H) = r(t− 1)− ω(H − v).

(ii) If the only true twins of H − v are vertices of degree t− 2, then

dims(G ◦v H) = r(t− 1) + c(H − v)− 1− ω(H − v).
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98 Rooted product graphs

8.3 Tight bounds

In this section we present sharp lower and upper bounds on the strong metric

dimension of the rooted product graphs and give some families of graphs

where these bounds are attained. To begin with, we need to introduce more

notation. Given x ∈ V (G), v ∈ V (H) and B ⊂ V (G)× V (H) we denote by

Bx the set of element of B whose first component is x, i.e., Bx = B ∩ ({x}×
V (H)).

Lemma 8.14. Let G and H be two connected graphs. Let x ∈ V (G), v ∈
V (H), and B be a strong metric basis of G◦vH. Then the following assertions

hold.

(i) |Bx| ≥ dims(H)− 1.

(ii) If Bx ⊃ {x} ×MH(v), then |Bx| ≥ dims(H).

(iii) If v does not belong to any strong metric basis of H, then |Bx| ≥
dims(H).

Proof. First we consider a pair (x, y), (x, y′) of adjacent vertices in (Hx)SR,

where y, y′ 6= v. Since B is a vertex cover of (G ◦v H)SR, either (x, y) ∈ Bx

or (x, y′) ∈ Bx. Thus, Bx ∪ {(x, v)} is a vertex cover of (Hx)SR. Note that

(x, v) 6∈ ∂(G ◦v H) and, as a consequence, (x, v) 6∈ Bx. Hence, |Bx| + 1 =

|Bx ∪ {(x, v)}| ≥ dims(Hx) = dims(H). Therefore, (i) follows.

Now we suppose Bx ⊃ {x} ×MH(v). If (x, y) and (x, v) are adjacent in

(Hx)SR, then y ∈ MH(v). So the edge {(x, y), (x, v)} of (Hx)SR is covered

by (x, y) ∈ Bx. Thus, Bx is a vertex cover of (Hx)SR and, as a result,

|Bx| ≥ dims(H). Therefore, (ii) follows.

Finally, suppose that v does not belong to any strong metric basis of H.

Since the function f : {x} × V (H) → V (H), where f(x, y) = y, is a graph

isomorphism and Bx ∪ {(x, v)} is a strong metric generator for Hx, the set

A = f(Bx ∪ {(x, v)}) = {v} ∪ {u : (x, u) ∈ Bx}

is a strong metric generator for H. Thus, since v does not belong to any

strong metric basis of H, |A| > dims(H). Taking into account that (x, v) 6∈
Bx we obtain |Bx| = |Bx ∪ {(x, v)}| − 1 = |A| − 1 ≥ dims(H). The proof is

complete.
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D. Kuziak 99

Theorem 8.15. Let G be a connected graph of order n ≥ 2 and let H be a

connected graph.

(i) If v ∈ V (H) belongs to a strong metric basis of H, then

n · dims(H)− 1 ≤ dims(G ◦v H) ≤ (|∂(H)| − 1)(n− 1) + dims(H)− 1.

(ii) If v ∈ V (H) does not belong to any strong metric basis of H, then

dims(G ◦v H) ≥ n · dims(H)

and

dims(G ◦v H) ≤


|∂(H)|(n− 1) + dims(H), if v 6∈ ∂(H),

(|∂(H)| − 1)(n− 1) + dims(H), if v ∈ ∂(H).

Proof. Let W be a strong metric basis of H such that v ∈ W and let B be a

strong metric basis of G◦vH. Since v belongs to a metric basis of H, we have

v ∈ ∂(H). Suppose there exists x ∈ V (G) such that (x, u) 6∈ Bx for some

u ∈ MH(v). By Lemma 8.14 (i) we obtain |Bx| ≥ dims(H) − 1. Moreover,

by Lemma 8.1 we have that for x′ ∈ V (G)−{x} and u′ ∈MH(v) the vertices

(x, u) and (x′, u′) are mutually maximally distant in G ◦v H. Hence, since

(x, u) 6∈ Bx and B is a vertex cover of (G ◦vH)SR, for every x′ ∈ V (G)−{x}
we have Bx′ ⊃ {x′} × MH(v). So, according to Lemma 8.14 (ii) we have

|Bx′ | ≥ dims(H). Therefore,

dims(G ◦v H) = |B| = |Bx|+
∑

x′∈V (G)−{x}

|Bx′| ≥ n · dims(H)− 1.

On the other hand, since v ∈ ∂(H), Proposition 8.3 (ii) leads to ∂ (G ◦v H) =

V (G)× (∂(H)−{v}). We show that S = ∂ (G ◦v H)−P is a vertex cover of

(G ◦v H)SR, where P = {a} × (∂(H) −W ∪ {v}) and a ∈ V (G). Let (x, y)

and (x′, y′) be two adjacent vertices in (G ◦v H)SR. If x 6= a or x′ 6= a, then

(x, y) ∈ S or (x′, y′) ∈ S. Now let, x = x′ = a. Since Ha
∼= H and W is a

vertex cover of H, {a} ×W is a vertex cover of Ha and, as a consequence,

(x, y) ∈ {a} ×W ⊂ S or (x′, y′) ∈ {a} ×W ⊂ S. Hence, S is a vertex cover

of (G ◦v H)SR. Therefore,

dims(G ◦v H) ≤ |S| = (|∂(H)| − 1)(n− 1) + dims(H)− 1.
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100 Rooted product graphs

The proof of (i) is complete.

From now on we assume that v does not belong to any strong metric

basis of H. The lower bound of (ii) is a direct consequence of Lemma 8.14

(iii). Suppose v 6∈ ∂(H). In this case, by Proposition 8.3 (i) we conclude

∂ (G ◦v H) = V (G) × ∂(H). By analogy with the proof of the upper bound

of (i) we show that S ′ = ∂ (G ◦v H) − P ′ is a vertex cover of (G ◦v H)SR,

where P ′ = {a}× (∂(H)−W ′), a ∈ V (G) and W ′ is a strong metric basis of

H. Hence,

dims(G ◦v H) ≤ |S ′| = |∂(H)|(n− 1) + dims(H).

Finally, for the case v ∈ ∂(H) we have ∂ (G ◦v H) = V (G)×(∂(H)−{v})
and proceeding by analogy with the proof of the upper bound of (i) we

show that S ′′ = ∂ (G ◦v H) − P ′′ is a vertex cover of (G ◦v H)SR, where

P ′′ = {a} × (∂(H) −W ′′), a ∈ V (G) and W ′′ is a strong metric basis of H.

Thus, in this case

dims(G ◦v H) ≤ |S ′′| = (|∂(H)| − 1)(n− 1) + dims(H).

The proof of (ii) is complete.

As Corollary 8.6 shows, the bounds of Theorem 8.15 (i) are tight and

the upper bound dims(G ◦v H) ≤ |∂(H)|(n− 1) + dims(H) of Theorem 8.15

(ii) is tight. To show the tightness of the upper bound dims(G ◦v H) ≤
(|∂(H)| − 1)(n− 1) + dims(H) we consider the graph J shown in Figure 8.2.

Notice that any strong metric basis of J is formed by the vertices y2, y4 and

three vertices of the set {y1, y3, y5, x6}.

x1 x2

x3

x4x5

x6 y3w

y1 y2

y5 y4

x6 y3 w

y1 y2

y5 y4

Figure 8.2: The graph J and its strong resolving graph JSR.
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D. Kuziak 101

Remark 8.16. Let G be a connected graph of order n. Let v be the vertex

of the graph J denoted by w. Then

dims(G ◦v J) = (∂(J)− 1)(n− 1) + dims(J).

Proof. Let V = {u1, u2, ..., un} be the set of vertices of G. From Figure

8.2 we have that there exits six vertices y1, y2, y3, y4, y5 and x6 which are

maximally distant from v. So, by using Lemma 8.1, we have that every

two vertices (ui, y), (uj, y
′) ∈ V × {y1, y2, y3, y4, y5, x6}, where i 6= j, are

mutually maximally distant. Moreover, by Lemma 8.2 for every two mutually

maximally distant vertices z, z′ in J we have that (ui, z), (ui, z
′) are mutually

maximally distant in G ◦v J for every vertex ui of G. Thus, (G ◦v J)SR is

isomorphic to K6n. Therefore,

dims(G ◦v J) = 6n− 1 = (∂(J)− 1)(n− 1) + dims(J).

To see the tightness of the lower bound of Theorem 8.15 (ii) we define

the family F of graphs H containing a vertex of degree one not belonging to

any strong metric basis of H. We begin with the cycle Ct, where t is an odd

number such that t ≥ 5, with set of vertices X = {x1, x2, ..., xt}. To obtain

a graph Ht,p,r ∈ F we add the sets of vertices Y = {y}, W = {w1, w2, ..., wp}
and Z = {z1, z2, ..., zr}, where p, r ≥ 1, and edges yxt, x1xt−1, xb t

2cwi,
for every i ∈ {1, 2, ..., p}, and xd t

2ezj, for every j ∈ {1, 2, ..., r}. Notice

that vertices of Y ∪ W ∪ Z have degree one in Ht,p,r and they are mutu-

ally maximally distant between them. Also, for any vertex a ∈ NHt,p,r(x1),

dHt,p,r(a, zj) ≤ dHt,p,r(x1, zj), where j ∈ {1, 2, ..., r}. Similarly, for any ver-

tex b ∈ NHt,p,r(xt−1), dHt,p,r(b, wi) ≤ dHt,p,r(xt−1, wi), where i ∈ {1, 2, ..., p}.
Moreover, we can observe that xk and xk+b t

2c are mutually maximally dis-

tant for every k ∈ 2, 3, ...,
⌊
t
2

⌋
− 1. So, (Ht,p,r)SR is formed by

⌊
t
2

⌋
− 1 con-

nected components, that is,
⌊
t
2

⌋
−2 connected components isomorphic to K2

and also, a connected component isomorphic to a graph with set of vertices

Y ∪W ∪ Z ∪ {x1, xt−1} where 〈Y ∪W ∪ Z〉 is isomorphic to K|Y ∪W∪Z|, x1

is adjacent to every vertex zj, j ∈ {1, 2, ..., r}, and xt−1 is adjacent to every

vertex wi, i ∈ {1, 2, ..., p}. Notice that every β((Ht,p,r)SR)-set is formed only

by the vertices of W ∪ Z and one vertex from each subgraph isomorphic to

K2. Therefore,

dims(Ht,p,r) =
t− 5

2
+ p+ r
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102 Rooted product graphs

and y is a vertex of degree one not belonging to any strong metric basis of

Ht,p,r. The graphs H9,3,4 and (H9,3,4)SR are shown in Figure 8.3.

x1

x2 x3

x4

x5

x6x7

x8

x9

y

w1 w2

w3

w4

z1
z2

z3
x1

x8

x2 x6 x3 x7

y w1

w2

w3

w4

z1

z2

z3

Figure 8.3: The graphs H9,3,4 and (H9,3,4)SR. The set S = {w1, w2, w3, w4, z1,

z2, z3, x2, x3} is a strong metric basis of H9,3,4.

Remark 8.17. Let G be a connected graph of order n. Let v be the vertex of

degree one not belonging to any strong metric basis of the graph Ht,p,r ∈ F .

Then

dims(G ◦v Ht,p,r) = n

(
t− 5

2
+ p+ r

)
= n · dims(Ht,p,r).

Proof. Let V be the vertex set of G and let Ht,p,r ∈ F with set of vertices

W∪X∪Y ∪Z, where W = {w1, w2, ..., wp}, X = {x1, x2, ..., xt}, Y = {y} and

Z = {z1, z2, ..., zr}. Since every vertex u ∈ W∪Z is maximally distant from v,

by Lemma 8.1, we have that every two different vertices (x, y), (x′, y′) ∈ V ×
(W ∪ Z), x 6= x′, are mutually maximally distant. Moreover, by Lemma 8.2

for every two mutually maximally distant vertices vi, vj in Ht,p,r we have that

(u, vi), (u, vj) are mutually maximally distant in G◦vHt,p,r for every vertex u

of G. Thus, (G◦vHt,p,r)SR is formed by n t−5
2

+1 connected components, i.e.,

n t−5
2

connected components isomorphic to K2 and one connected component

isomorphic to a graph G1 with set of vertices V × (W ∪Z ∪{x1, xt−1)} where

〈V × (W ∪ Z)〉 is isomorphic to Kn|W∪Z| and for every u ∈ V , (u, x1) is

adjacent to every vertex (u, zj), j ∈ {1, 2, ..., r}, and (u, xt−1) is adjacent to

every vertex (u,wi), i ∈ {1, 2, ..., p}. Since in G1 every vertex of 〈V ×(W∪Z)〉
has a neighbor not belonging to V ×(W ∪Z) we have that β(G1) = n|W ∪Z|.
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D. Kuziak 103

Therefore, we obtain that

dims(G ◦v Ht,p,r) = β((G ◦v Ht,p,r)SR)

= n|W ∪ Z|+ n
t− 5

2

= n

(
t− 5

2
+ p+ r

)
.

According to the Remark 8.17 we have that for every graph H ∈ F and

any connected graph G of order n, dims(G◦vH) = n ·dims(H) where v is the

vertex of degree one not belonging to any strong metric basis of the graph

H.

Proposition 8.18. Let G be a connected graph of order n ≥ 2 and let v be

a vertex of a graph H. If v does not belong to the boundary of H and there

exists a vertex different from v, of degree one in H, not belonging to any

strong metric basis of H, then

dims(G ◦v H) ≥ n(dims(H) + 1)− 1.

Proof. Let w be a vertex of degree one in H not belonging to any strong

metric basis of H. Notice that the vertices of the set A = {(ui, w) : i ∈
{1, 2, ..., n}} are also vertices of degree one inG◦vH. Thus, they are simplicial

vertices and from Lemma 2.14 we have that at least all but one vertices of A

belongs to every strong metric basis of G ◦v H. Thus,

dims(G ◦v H) = β((G ◦v H)SR)

≥ nβ(〈∂(H)〉) + |A| − 1

= nβ(HSR) + n− 1

= n(dims(H) + 1)− 1.

As the following remark shows, the bound above is tight.

Remark 8.19. Let G be a connected graph of order n. Let v be the vertex

of the graph Ht,p,r ∈ F adjacent to the vertex of degree one not belonging to

any strong metric basis of Ht,p,r. Then

dims(G ◦v Ht,p,r) = n

(
t− 5

2
+ p+ r + 1

)
− 1 = n(dims(Ht,p,r) + 1)− 1.
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104 Rooted product graphs

Proof. Let V be the vertex set of G. Now, according to the construction of

the family F , let the graph Ht,p,r with set of vertices W ∪X ∪ Y ∪Z, where

W = {w1, w2, ..., wp}, X = {x1, x2, ..., xt}, Y = {y} and Z = {z1, z2, ..., zr}.
Since every vertex y ∈ W ∪ Y ∪ Z is maximally distant from v, by Lemma

8.1, we have that every two different vertices (x, y), (x′, y′) ∈ V × (W ∪ Y ∪
Z), x 6= x′, are mutually maximally distant. Moreover, by Lemma 8.2 for

every two mutually maximally distant vertices vi, vj in Ht,p,r we have that

(u, vi), (u, vj) are mutually maximally distant in G ◦v Ht,p,r for every vertex

u of G. Thus, (G ◦v Ht,p,r)SR is formed by n t−5
2

+ 1 connected components,

that is, n t−5
2

connected components isomorphic to K2 and one connected

component isomorphic to a graph G1 with set of vertices V × (W ∪ Y ∪
Z ∪ {x1, xt−1)} where 〈V × (W ∪ Y ∪ Z)〉 is isomorphic to Kn|W∪Y ∪Z| and

for every u ∈ V , (u, x1) is adjacent to every vertex (u, zj), j ∈ {1, 2, ..., r},
and (u, xt−1) is adjacent to every vertex (u,wi), i ∈ {1, 2, ..., p}. Notice that

β(G1) = n|W ∪ Y ∪ Z| − 1. Therefore, we obtain that

dims(G ◦v Ht,p,r) = β((G ◦v Ht,p,r)SR)

= n|W ∪ Y ∪ Z| − 1 + n
t− 5

2

= n

(
t− 5

2
+ p+ r + 1

)
− 1.
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Conclusion

In this thesis we study the strong metric dimension of product graphs. The

central results of the thesis are focused on finding relationships between the

strong metric dimension of product graphs and that of its factors together

with other invariants of these factors. We have studied the following pro-

ducts: Cartesian product graphs, direct product graphs, strong product

graphs, lexicographic product graphs, corona product graphs, join graphs,

Cartesian sum graphs, and rooted product graphs, from now on “product

graphs”.

We have obtained closed formulaes for the strong metric dimension of

several nontrivial families of product graphs involving, for instance, bipartite

graphs, vertex-transitive graphs, Hamiltonian graphs, trees, cycles, complete

graphs, etc., or we have given general lower and upper bounds, and have

expressed these in terms of invariants of the factor graphs like, for example,

order, independence number, vertex cover number, matching number, alge-

braic connectivity, clique number, and twin-free clique number. We have also

described some classes of product graphs where these bounds are achieved.

Oellermann and Peters-Fransen [82] showed that the problem of finding

the strong metric dimension of a connected graph can be transformed to the

problem of finding the vertex cover number of its strong resolving graph.

In the thesis we have strongly exploited this tool. We have found several

relationships between the strong resolving graph of product graphs and that

of its factor graphs. For instance, it is remarkable that the strong resolving

graph of the Cartesian product of two graphs is isomorphic to the direct

product of the strong resolving graphs of its factors.

In addition to the strong resolving graphs, for some product graphs we

have also developed a transformation of the problem of computing the strong

metric dimension of these product graphs to the problem of finding the clique

number or twin-free clique number of its factor graphs.

105

UNIVERSITAT ROVIRA I VIRGILI 
STRONG RESOLVABILITY IN PRODUCT GRAPHS. 
Dorota Kuziak 
Dipòsit Legal: T 156-2015



106 Conclusion

Contributions of the thesis

The results presented in this work led to elaborate several papers, which

have been either published or submitted to ISI-JCR journals. Furthermore,

some of the principal results have been presented in international conferences

or in recognized foreign seminaries.

Publications in ISI-JCR journals

• J. A. Rodŕıguez-Velázquez, I. G. Yero, D. Kuziak and O. R. Oeller-

mann, On the strong metric dimension of Cartesian and direct products

of graphs, Discrete Mathematics 335 (2014) 8–19.

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, On the strong metric

dimension of the strong products of graphs, Open Mathematics (for-

merly Central European Journal of Mathematics) 13 (2015) 64–74.

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, On the strong metric

dimension of corona product graphs and join graphs, Discrete Applied

Mathematics 161 (7–8) (2013) 1022–1027.

Publications in conference proceedings

• D. Kuziak, J. A. Rodŕıguez-Velázquez, I. G. Yero, On the strong metric

dimension of product graphs, Proceedings of “IX Jornadas de Matemá-

tica Discreta y Algoŕıtmica”. Electronic Notes in Discrete Mathematics

46 (0) (2014) 169–176.

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, Resolvability in

rooted product graphs, Proceedings of “VIII Encuentro Andaluz de

Matemática Discreta”. Avances en Matemática Discreta en Andalućıa,

Edited by: M. Cera López, P. Garćıa Vázquez, R. Moreno Casablanca,

and J. C. Valenzuela Tripodoro, vol. III (2013) 197–204. ISBN: 978-

84-15881-46-9.
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Papers submitted to journals

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, On the strong metric

dimension of Cartesian sum graphs. Submitted to Fundamenta Infor-

maticae (2014).

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, Closed formulae for

the strong metric dimension of lexicographic product graphs. Submit-

ted to Electronic Journal of Combinatorics (2014).

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, Strong metric di-

mension of rooted product graphs. Submitted to International Journal

of Computer Mathematics (2013).

Participations in specialized conferences

• D. Kuziak, J. A. Rodŕıguez-Velázquez, I. G. Yero, On the strong metric

dimension of product graphs, IX Jornadas de Matemática Discreta y

Algoŕıtmica, Tarragona, Spain (2014).

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, Resolvability in

rooted product graphs, VIII Encuentro Andaluz de Matemática Dis-

creta, Sevilla, Spain (2013).

• D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, Strong metric genera-

tors of Cartesian product graphs, Gdańsk Workshop on Graph Theory,

Gdańsk, Poland (2013).

• I. G. Yero, D. Kuziak, J. A. Rodŕıguez-Velázquez, Resolvability of

corona graphs, Colourings, Independence and Domination: 14th Work-

shop on Graph Theory, Szklarska Porȩba, Poland (2011).

Talks in seminaries

• Strong resolving sets for products of graphs. Seminary of the Mathe-

matics, Physics and Informatics Department, University of Gdańsk,

Gdańsk, Poland (December 19th, 2013).
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108 Conclusion

• On the strong metric dimension of Cartesian and direct products of

graphs. Seminary of the Mathematics and Computer Science Depart-

ment, University of Maribor, Maribor, Slovenia (June 3rd, 2013).

Future works

• The strong resolving graph of a graph.

It can be noticed the very important role that plays the strong re-

solving graph of a graph into computing its strong metric dimension.

According to this interesting usefulness of the strong resolving graph we

propose to describe the strong resolving graph of other (some) families

of graphs. This problem was already mentioned (but not remarked) in

the article [82], where was open the question of characterizing the class

of all graphs having a strong resolving graph isomorphic to a bipartite

graph. The motivation for this question is related to the fact that, in

this case, the vertex cover number can be computed in polynomial time

and, in concordance with Theorem 1.11, also the strong metric dimen-

sion. Moreover, is there another interesting application of the strong

resolving graph?

• Strong metric dimension in product graphs.

We have studied the strong metric dimension of Cartesian sum graphs

G ⊕ H for all the possibilities but the situation (and the equivalent

one, according to the commutativity of this product) in which G has

an isolated vertex, H has no isolated vertices and D(H) > 2. Also, it

remains to study the strong metric dimension of lexicographic product

graphs G ◦ H when G is any connected graph and H is a nontrivial

graph having maximum degree equal to its order minus one. For the

case of the direct product of graphs, only specific families of graphs

have been studied. In this sense, it would be desirable to obtain some

relationships for the strong metric dimension of general direct product

graphs.

• Metric dimension related parameters in product graphs.

As we mention in Introduction, there are several variations of metric

generators. Not all of them have been studied in product graphs. Our
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objective is to obtain mathematical properties of other variations of

metric generators in product graphs.
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[45] R. Hammack, W. Imrich, S. Klavžar, Handbook of product graphs, 2nd

ed., Discrete Mathematics and its Applications Series, CRC Press,

2011.

UNIVERSITAT ROVIRA I VIRGILI 
STRONG RESOLVABILITY IN PRODUCT GRAPHS. 
Dorota Kuziak 
Dipòsit Legal: T 156-2015



D. Kuziak 115

[46] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading,

MA, 1969.

[47] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars

Combinatoria 2 (1976) 191–195.

[48] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domi-

nation in Graphs, Chapman and Hall/CRC Pure and Applied Mathe-

matics Series, Marcel Dekker, Inc., New York, 1998.

[49] C. Hernando, M. Mora, I. M. Pelayo, C. Seara, J. Cáceres, M. L.
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metric dimension: a survey, Yugoslav Journal of Operations Research

24 (2) (2014) 187–198.
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[70] D. Kuziak, J. A. Rodŕıguez-Velázquez, I. G. Yero, On the strong metric

dimension of product graphs, Electronic Notes in Discrete Mathematics

46 (0) (2014) 169–176.

[71] D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, On the strong metric

dimension of corona product graphs and join graphs, Discrete Applied

Mathematics 161 (7–8) (2013) 1022–1027.

[72] D. Kuziak, I. G. Yero, J. A. Rodŕıguez-Velázquez, On the strong metric
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[101] S. Špacapan, Connectivity of strong products of graphs, Graphs and

Combinatorics 26 (2010) 457–467.

UNIVERSITAT ROVIRA I VIRGILI 
STRONG RESOLVABILITY IN PRODUCT GRAPHS. 
Dorota Kuziak 
Dipòsit Legal: T 156-2015



120 Bibliography
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product graphs, ISRN Discrete Mathematics 2011 (2011) 7, article ID

262183.

[118] E. Yi, On strong metric dimension of graphs and their complements,

Acta Mathematica Sinica, English Series 29 (8) (2013) 1479–1492.

[119] H. Zhang, Independent sets in direct products of vertex-transitive

graphs, Journal of Combinatorial Theory, Series B 102 (3) (2012)

832–838.

[120] A. A. Zykov, On some properties of linear complexes, Matematičeskǐi
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Symbol Index

The symbols are arranged in the order of the first appearance in the work.

Page numbers refer to definitions.

G simple graph, 7

V (G) set of vertices of G, 7

E(G) set of edges of G, 7

n order of a graph, 7

u ∼ v vertex u is adjacent to v, 7

NG(v) open neighborhood of a vertex v in G, 7

NG[v] closed neighborhood of a vertex v in G, 7

δG(v) degree of a vertex v of G, 7

NS(v) open neighborhood of a vertex v in the set S, 7

NS [v] closed neighborhood of a vertex v in the set S, 7

δ(G) minimum degree of the graph G, 7

∆(G) maximum degree of the graph G, 7

Kn complete graph of order n, 7

Cn cycle of order n, 7

Pn path of order n, 7

Nn empty graph of order n, 7

Ks,t complete bipartite graph of order s+ t, 7

K1,n star of order n+ 1, 7

T tree, 7

l(T ) number of leaves in the tree T , 7

dG(u, v) distance between two vertices u and v in G, 7

D(G) diameter of the graph G, 7

Gc complement of the graph G, 7
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124 Symbol Index

〈X〉 subgraph induced by the set X, 8

σ(G) set of simplicial vertices of G, 8

ω(G) clique number of G, 8

$(G) twin-free clique number of G, 8

G�H Cartesian product of two graphs G and H, 9

Hk,n Hamming graph of order nk, 9

Qn hypercube of order 2n, 9

Pk�Pn grid graph, 9

Ck�Pn cylinder graph, 9

Ck�Cn torus graph, 10

G×H direct product of two graphs G and H, 11

G�H strong product of two graphs G and H, 12

Gk strong product of G with itself k times, 13

G ◦H lexicographic product of two graphs G and H, 13

G�H corona product of two graphs G and H, 14

G+H join graph of two graphs G and H, 15

Kp1,...,pk complete k-partite graph of order p1 + ...+ pk, 15

G⊕H Cartesian sum of two graphs G and H, 16

H sequence of n rooted graphs H1, H2,...,Hn, 17

G(H) general rooted product graph, 17

G ◦v H rooted product of two graphs G and H with root v, 17

G ◦∗ H rooted product of two graphs G and H when H is

a vertex-transitive graph, 18

dim(G) metric dimension of G, 19

dims(G) strong metric dimension of G, 19

MG(v) set of vertices of G which are maximally distant from v, 20

∂(G) boundary of the graph G, 20

GSR strong resolving graph of G, 21

GSR+I strong resolving graph of G, as defined in [82], 21

β(G) vertex cover number of G, 23

α(G) independence number of G, 23

ν(G) matching number of G, 31

IG[u, v] interval between u and v in G, 34
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PG(S) projection of the set S onto the factor G of a product graph, 35

CR(n,M) circulant graph of order n, 39

G′ v G G′ as a subgraph of G, 51

G∗ graph obtained from V (G), where two vertices u, v are adjacent

if and only if either dG(u, v) ≥ 2 or u, v are true twins, 60

G− graph obtained from G by removing all its isolated vertices, 60

G∗− graph obtained from G∗ by removing all its isolated vertices, 60

∂TF (G) TF-boundary of the graph G, 65

GSRS strong resolving TF-graph of G, 65

µ algebraic connectivity, 76.

F1,n fan graph of order n+ 1, 85

W1,n wheel graph order n+ 1, 85
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