24 research outputs found

    Motion for a Resolution tabled by Mr Richard Balfe for entry in the register pursuant to Rule 49 of the Rules of Procedure on supply of military equipment to states where basic human rights are not respected. Working Documents 1982-83, Document 1-265/82, 19 May 1982

    Get PDF
    Abstract Background The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called “germline leakage”. The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. Results The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. Conclusions The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software

    Identifying molecular features that distinguish fluvastatin-sensitive breast tumor cells

    Get PDF
    Statins, routinely used to treat hypercholesterolemia, selectively induce apoptosis in some tumor cells by inhibiting the mevalonate pathway. Recent clinical studies suggest that a subset of breast tumors is particularly susceptible to lipophilic statins, such as fluvastatin. To quickly advance statins as effective anticancer agents for breast cancer treatment, it is critical to identify the molecular features defining this sensitive subset. We have therefore characterized fluvastatin sensitivity by MTT assay in a panel of 19 breast cell lines that reflect the molecular diversity of breast cancer, and have evaluated the association of sensitivity with several clinicopathological and molecular features. A wide range of fluvastatin sensitivity was observed across breast tumor cell lines, with fluvastatin triggering cell death in a subset of sensitive cell lines. Fluvastatin sensitivity was associated with an estrogen receptor alpha (ERa)-negative, basal-like tumor subtype, features that can be scored with routine and/or strong preclinical diagnostics. To ascertain additional candidate sensitivity-associated molecular features, we mined publicly available gene expression datasets, identifying genes encoding regulators of mevalonate production, nonsterol lipid homeostasis, and global cellular metabolism, including the oncogene MYC. Further exploration of this data allowed us to generate a 10-gene mRNA abundance signature predictive of fluvastatin sensitivity, which showed preliminary validation in an independent set of breast tumor cell lines. Here, we have therefore identified several candidate predictors of sensitivity to fluvastatin treatment in breast cancer, which warrant further preclinical and clinical evaluation.Fil: Goard, Carolyn A.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; CanadáFil: Chan Seng Yue, Michelle . University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Mullen, Peter J.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; CanadáFil: Quiroga, Ariel Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina. University of Alberta; CanadáFil: Wasylishen, Amanda R.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; CanadáFil: Clendening, James W.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; CanadáFil: Sendorek, Dorota H. S.. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Haider, Syed. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Lehner, Richard. University of Alberta; CanadáFil: Boutros, Paul C.. University Of Toronto; Canadá. Ontario Institute of Cancer Research. Informatics and Biocomputing Platform; CanadáFil: Penn, Linda Z.. University Health Network. Princess Margaret Cancer Centre. Ontario Cancer Institute and Campbell Family Institute for Breast Cancer Research; Canadá. University Of Toronto; Canad

    Tumour genomic and microenvironmental heterogeneity as integrated predictors for prostate cancer recurrence: a retrospective study

    Get PDF
    Clinical prognostic groupings for localised prostate cancers are imprecise, with 30–50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors

    NanoStringNormCNV: pre-processing of NanoString CNV data

    No full text

    A comparative study of survival models for breast cancer prognostication revisited: the benefits of multi-gene models

    No full text
    Abstract Background The development of clinical -omic biomarkers for predicting patient prognosis has mostly focused on multi-gene models. However, several studies have described significant weaknesses of multi-gene biomarkers. Indeed, some high-profile reports have even indicated that multi-gene biomarkers fail to consistently outperform simple single-gene ones. Given the continual improvements in -omics technologies and the availability of larger, better-powered datasets, we revisited this “single-gene hypothesis” using new techniques and datasets. Results By deeply sampling the population of available gene sets, we compare the intrinsic properties of single-gene biomarkers to multi-gene biomarkers in twelve different partitions of a large breast cancer meta-dataset. We show that simple multi-gene models consistently outperformed single-gene biomarkers in all twelve partitions. We found 270 multi-gene biomarkers (one per ~11,111 sampled) that always made better predictions than the best single-gene model. Conclusions The single-gene hypothesis for breast cancer does not appear to retain its validity in the face of improved statistical models, lower-noise genomic technology and better-powered patient cohorts. These results highlight that it is critical to revisit older hypotheses in the light of newer techniques and datasets

    NanoStringNormCNV: pre-processing of NanoString CNV data.

    No full text
    Summary:The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. Availability and implementation:NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. Contact:[email protected]. Supplementary information:Supplementary data are available at Bioinformatics online
    corecore