10 research outputs found

    Feasibility of deep learning-based tumor segmentation for target delineation and response assessment in grade-4 glioma using multi-parametric MRI

    Get PDF
    Background Tumor burden assessment is essential for radiation therapy (RT), treatment response evaluation, and clinical decision-making. However, manual tumor delineation remains laborious and challenging due to radiological complexity. The objective of this study was to investigate the feasibility of the HD-GLIO tool, an ensemble of pre-trained deep learning models based on the nnUNet-algorithm, for tumor segmentation, response prediction, and its potential for clinical deployment. Methods We analyzed the predicted contrast-enhanced (CE) and non-enhancing (NE) HD-GLIO output in 49 multi-parametric MRI examinations from 23 grade-4 glioma patients. The volumes were retrospectively compared to corresponding manual delineations by 2 independent operators, before prospectively testing the feasibility of clinical deployment of HD-GLIO-output to a RT setting. Results For CE, median Dice scores were 0.81 (95% CI 0.71–0.83) and 0.82 (95% CI 0.74–0.84) for operator-1 and operator-2, respectively. For NE, median Dice scores were 0.65 (95% CI 0.56–0,69) and 0.63 (95% CI 0.57–0.67), respectively. Comparing volume sizes, we found excellent intra-class correlation coefficients of 0.90 (P .01) for non-responders, and 0.80 (P = .05) for intermediate/mixed responders. Conclusions HD-GLIO was feasible for RT target delineation and MRI tumor volume assessment. CE/NE tumor-compartment growth correlation showed potential to predict clinical response to treatment.publishedVersio

    Sequential bortezomib and temozolomide treatment promotes immunological responses in glioblastoma patients with positive clinical outcomes: A phase 1B study

    Get PDF
    Background Glioblastoma (GBM) is an aggressive malignant brain tumor where median survival is approximately 15 months after best available multimodal treatment. Recurrence is inevitable, largely due to O6 methylguanine DNA methyltransferase (MGMT) that renders the tumors resistant to temozolomide (TMZ). We hypothesized that pretreatment with bortezomib (BTZ) 48 hours prior to TMZ to deplete MGMT levels would be safe and tolerated by patients with recurrent GBM harboring unmethylated MGMT promoter. The secondary objective was to investigate whether 26S proteasome blockade may enhance differentiation of cytotoxic immune subsets to impact treatment responses measured by radiological criteria and clinical outcomes. Methods Ten patients received intravenous BTZ 1.3 mg/m2 on days 1, 4, and 7 during each 4th weekly TMZ‐chemotherapy starting on day 3 and escalated from 150 mg/m2 per oral 5 days/wk via 175 to 200 mg/m2 in cycles 1, 2, and 3, respectively. Adverse events and quality of life were evaluated by CTCAE and EQ‐5D‐5L questionnaire, and immunological biomarkers evaluated by flow cytometry and Luminex enzyme‐linked immunosorbent assay. Results Sequential BTZ + TMZ therapy was safe and well tolerated. Pain and performance of daily activities had greatest impact on patients' self‐reported quality of life and were inversely correlated with Karnofsky performance status. Patients segregated a priori into three groups, where group 1 displayed stable clinical symptoms and/or slower magnetic resonance imaging radiological progression, expanded CD4+ effector T‐cells that attenuated cytotoxic T‐lymphocyte associated protein‐4 and PD‐1 expression and secreted interferon Îł and tumor necrosis factor α in situ and ex vivo upon stimulation with PMA/ionomycin. In contrast, rapidly progressing group 2 patients exhibited tolerised T‐cell phenotypes characterized by fourfold to sixfold higher interleukin 4 (IL‐4) and IL‐10 Th‐2 cytokines after BTZ + TMZ treatment, where group 3 patients exhibited intermediate clinical/radiological responses. Conclusion Sequential BTZ + TMZ treatment is safe and promotes Th1‐driven immunological responses in selected patients with improved clinical outcomes (Clinicaltrial.gov (NCT03643549)).publishedVersio

    Bortezomib abrogates temozolomide-induced autophagic flux through an ATG5 dependent pathway

    No full text
    Introduction: Glioblastoma (GBM) is invariably resistant to temozolomide (TMZ) chemotherapy. Inhibiting the proteasomal pathway is an emerging strategy to accumulate damaged proteins and inhibit their lysosomal degradation. We hypothesized that pre-treatment of glioblastoma with bortezomib (BTZ) might sensitize glioblastoma to temozolomide by abolishing autophagy survival signals to augment DNA damage and apoptosis. Methods: P3 patient-derived glioblastoma cells, as well as the tumour cell lines U87, HF66, A172, and T98G were investigated for clonogenic survival after single or combined treatment with temozolomide and bortezomib in vitro. We investigated the requirement of functional autophagy machinery by utilizing pharmacological inhibitors or CRISPR-Cas9 knockout (KO) of autophagy-related genes -5 and -7 (ATG5 and ATG7) in glioblastoma cells and monitored changes in autophagic flux after temozolomide and/or bortezomib treatments. P3 wild-type and P3 ATG5−/− (ATG5 KO) cells were implanted orthotopically into NOD-SCID mice to assess the efficacy of bortezomib and temozolomide combination therapy with and without functional autophagy machinery. Results: The chemo-resistant glioblastoma cells increased autophagic flux during temozolomide treatment as indicated by increased degradation of long-lived proteins, diminished expression of autophagy markers LC3A/B-II and p62 (SQSTM1), increased co-localisation of LC3A/B-II with STX17, augmented and no induction of apoptosis. In contrast, bortezomib treatment abrogated autophagic flux indicated by the accumulation of LC3A/B-II and p62 (SQSTM1) positive autophagosomes that did not fuse with lysosomes and thus reduced the degradation of long-lived proteins. Bortezomib synergistically enhanced temozolomide efficacy by attenuating cell proliferation, increased DNA double-strand breaks, and apoptosis in an autophagy-dependent manner. Abolishing autophagy in ATG5 KOs reversed the bortezomib-induced toxicity, rescued glioblastoma cell death and reduced animal survival. Discussion: We conclude that bortezomib abrogates temozolomide induced autophagy flux through an ATG5 dependent pathway.publishedVersio

    Adjuvant chemotherapy and postoperative radiotherapy in high-risk soft tissue sarcoma patients defined by biological risk factors—A Scandinavian Sarcoma Group study (SSG XX)

    No full text
    Purpose: To investigate the outcome following adjuvant doxorubicin and ifosfamide in a prospective non-randomised study based on a soft tissue sarcoma (STS) patient subgroup defined by specific morphological characteristics previously shown to be at a high-risk of metastatic relapse. The expected 5-year cumulative incidence of metastases in patients with this risk profile has previously been reported to be about 50% without adjuvant chemotherapy. Methods: High-risk STS was defined as high-grade morphology (according to the FĂ©dĂ©ration Nationale des Centres de Lutte Contre le Cancer [FNCLCC] grade II–III) and either vascular invasion or at least two of the following criteria: tumour size ≄8.0 cm, infiltrative growth and necrosis. Six cycles of doxorubicin (60 mg/m2) and ifosfamide (6 g/m2) were given. Postoperative accelerated radiotherapy was applied and scheduled between cycles 3 and 4. Results: For the 150 eligible patients, median follow-up time for metastases-free survival was 3.9 years (range 0.2–8.7). Five-year metastases-free survival (MFS) was 70.4% (95% confidence interval [CI]: 63.1–78.4) with a local recurrence rate of 14.0% (95% CI: 7.8–20.2). For overall survival (OS), the median follow-up time was 4.4 years (range: 0.2–8.7). The five-year OS was 76.1% (95% CI: 68.8–84.2). Tumour size, deep location and reduced dose intensity (<80%) had a negative impact on survival. Toxicity was moderate with no treatment-related death. Conclusions: A benefit of adjuvant chemotherapy, compared to similar historical control groups, was demonstrated in STS patients with defined poor prognostic factors. Vascular invasion, tumour size, growth pattern and necrosis may identify patients in need of adjuvant chemotherapy

    Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival

    No full text
    Background Resistance to temozolomide (TMZ) is due in part to enhanced DNA repair mediated by high expression of O6-methyl guanine DNA methyltransferase (MGMT) that is often characterised by unmethylated promoter. Here, we investigated pre-treatment of glioblastoma (GBM) cells with the 26S-proteasome inhibitor bortezomib (BTZ) as a strategy to interfere with MGMT expression and thus sensitise them to TMZ. Methods Cell lines and patient GBM-derived cells were examined in vitro, and the latter also implanted orthotopically into NOD-SCID C.B.-Igh-1b/lcrTac-Prkdc mice to assess efficacy and tolerability of BTZ and TMZ combination therapy. MGMT promoter methylation was determined using pyrosequencing and PCR, protein signalling utilised western blotting while drug biodistribution was examined by LC-MS/MS. Statistical analysis utilised Analysis of variance and the Kaplan–Meier method. Results Pre-treatment with BTZ prior to temozolomide killed chemoresistant GBM cells with unmethylated MGMT promoter through MGMT mRNA and protein depletion in vitro without affecting methylation. Chymotryptic activity was abolished, processing of NFkB/p65 to activated forms was reduced and corresponded with low MGMT levels. BTZ crossed the blood–brain barrier, diminished proteasome activity and significantly prolonged animal survival. Conclusion BTZ chemosensitized resistant GBM cells, and the schedule may be amenable for temozolomide refractory patients with unmethylated MGMT promoter

    αB-Crystallin Is Elevated in Highly Infiltrative Apoptosis-Resistant Glioblastoma Cells

    Get PDF
    We have previously established two distinct glioma phenotypes by serial xenotransplantation of human glioblastoma (GBM) biopsies in nude rats. These tumors undergo a gradual transition from a highly invasive nonangiogenic to a less-invasive angiogenic phenotype. In a protein screen to identify molecular markers associated with the infiltrative phenotype, we identified α-basic-crystallin (αBc), a small heat-shock protein with cytoprotective properties. Its increased expression in the infiltrative phenotype was validated by immunohistochemistry and Western blots, confirming its identity to be tumor-derived and not from the host. Stereotactic human GBM biopsies taken from MRI-defined areas verified stronger αBc expression in the infiltrative edge compared to the tumor core. Cell migration assays and immunofluorescence staining showed αBc to be expressed by migrating cells in vitro. To determine αBc function, we altered its expression levels. αBc siRNA depletion caused a loss of migrating tumor cells from biopsy spheroids and delayed monolayer wound closure. In contrast, glioma cell migration in a Boyden chamber assay was unaffected by either αBc knockdown or overexpression, indicating that αBc is not functionally linked to the cell migration machinery. However, after siRNA αBc depletion, a significant sensitization of cells to various apoptotic inducers was observed (actinomycin, tumor necrosis factor α, and TNF-related apoptosis-inducing ligand [TRAIL]). In conclusion, αBc is overexpressed by highly migratory glioma cells where it plays a functional role in apoptosis resistance

    Investigating survival, quality of life and cognition in PROton versus photon therapy for IDH-mutated diffuse grade 2 and 3 GLIOmas (PRO-GLIO): a randomised controlled trial in Norway and Sweden

    No full text
    Introduction The use of proton therapy increases globally despite a lack of randomised controlled trials demonstrating its efficacy and safety. Proton therapy enables sparing of non-neoplastic tissue from radiation. This is principally beneficial and holds promise of reduced long-term side effects. However, the sparing of seemingly non-cancerous tissue is not necessarily positive for isocitrate dehydrogenase (IDH)-mutated diffuse gliomas grade 2–3, which have a diffuse growth pattern. With their relatively good prognosis, yet incurable nature, therapy needs to be delicately balanced to achieve a maximal survival benefit combined with an optimised quality of life.Methods and analysis PRO-GLIO (PROton versus photon therapy in IDH-mutated diffuse grade 2 and 3 GLIOmas) is an open-label, multicentre, randomised phase III non-inferiority study. 224 patients aged 18–65 years with IDH-mutated diffuse gliomas grade 2–3 from Norway and Sweden will be randomised 1:1 to radiotherapy delivered with protons (experimental arm) or photons (standard arm). First intervention-free survival at 2 years is the primary endpoint. Key secondary endpoints are fatigue and cognitive impairment, both at 2 years. Additional secondary outcomes include several survival measures, health-related quality of life parameters and health economy endpoints.Ethics and dissemination To implement proton therapy as part of standard of care for patients with IDH-mutated diffuse gliomas grade 2–3, it should be deemed safe. With its randomised controlled design testing proton versus photon therapy, PRO-GLIO will provide important information for this patient population concerning safety, cognition, fatigue and other quality of life parameters. As proton therapy is considerably more costly than its photon counterpart, cost-effectiveness will also be evaluated. PRO-GLIO is approved by ethical committees in Norway (Regional Committee for Medical &amp; Health Research Ethics) and Sweden (The Swedish Ethical Review Authority) and patient inclusion has commenced. Trial results will be published in international peer-reviewed journals, relevant conferences, national and international meetings and expert forums.Trial registration number ClinicalTrials.gov Registry (NCT05190172)

    Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival

    Get PDF
    Background Resistance to temozolomide (TMZ) is due in part to enhanced DNA repair mediated by high expression of O6-methyl guanine DNA methyltransferase (MGMT) that is often characterised by unmethylated promoter. Here, we investigated pre-treatment of glioblastoma (GBM) cells with the 26S-proteasome inhibitor bortezomib (BTZ) as a strategy to interfere with MGMT expression and thus sensitise them to TMZ. Methods Cell lines and patient GBM-derived cells were examined in vitro, and the latter also implanted orthotopically into NOD-SCID C.B.-Igh-1b/lcrTac-Prkdc mice to assess efficacy and tolerability of BTZ and TMZ combination therapy. MGMT promoter methylation was determined using pyrosequencing and PCR, protein signalling utilised western blotting while drug biodistribution was examined by LC-MS/MS. Statistical analysis utilised Analysis of variance and the Kaplan–Meier method. Results Pre-treatment with BTZ prior to temozolomide killed chemoresistant GBM cells with unmethylated MGMT promoter through MGMT mRNA and protein depletion in vitro without affecting methylation. Chymotryptic activity was abolished, processing of NFkB/p65 to activated forms was reduced and corresponded with low MGMT levels. BTZ crossed the blood–brain barrier, diminished proteasome activity and significantly prolonged animal survival. Conclusion BTZ chemosensitized resistant GBM cells, and the schedule may be amenable for temozolomide refractory patients with unmethylated MGMT promoter
    corecore