122 research outputs found

    Recent increases in assemblage rarity are linked to increasing local immigration

    Get PDF
    F.A.M.J.'s PhD was financed by the School of Biology, University of St Andrews. M.D. and A.E.M. acknowledge funding by the Leverhulme Trust. A.E.M. acknowledges funding from the European Research Council (ERC AdG BioTIME 250189 and ERC PoC BioCHANGE 727440).As pressures on biodiversity increase, a better understanding of how assemblages are responding is needed. Because rare species, defined here as those that have locally low abundances, make up a high proportion of assemblage species lists, understanding how the number of rare species within assemblages is changing will help elucidate patterns of recent biodiversity change. Here, we show that the number of rare species within assemblages is increasing, on average, across systems. This increase could arise in two ways: species already present in the assemblage decreasing in abundance but with no increase in extinctions, or additional species entering the assemblage in low numbers associated with an increase in immigration. The positive relationship between change in rarity and change in species richness provides evidence for the second explanation, i.e. higher net immigration than extinction among the rare species. These measurable changes in the structure of assemblages in the recent past underline the need to use multiple biodiversity metrics to understand biodiversity change.Publisher PDFPeer reviewe

    Partitioning colony size variation into growth and partial mortality

    Get PDF
    We thank the Australian Research Council for fellowship and research support. M.A.D. is funded by a Leverhulme Fellowship and by the John Templeton Foundation grant no. 60501.Body size is a trait that broadly influences the demography and ecology of organisms. In unitary organisms, body size tends to increase with age. In modular organisms, body size can either increase or decrease with age, with size changes being the net difference between modules added through growth and modules lost through partial mortality. Rates of colony extension are independent of body size, but net growth is allometric, suggesting a significant role of size-dependent mortality. In this study, we develop a generalizable model of partitioned growth and partial mortality and apply it to data from 11 species of reef-building coral. We show that corals generally grow at constant radial increments that are size independent, and that partial mortality acts more strongly on small colonies. We also show a clear life-history trade-off between growth and partial mortality that is governed by growth form. This decomposition of net growth can provide mechanistic insights into the relative demographic effects of the intrinsic factors (e.g. acquisition of food and life-history strategy), which tend to affect growth, and extrinsic factors (e.g. physical damage, and predation), which tend to affect mortality.PostprintPostprintPeer reviewe

    Measuring temporal change in alpha diversity : a framework integrating taxonomic, phylogenetic and functional diversity and the iNEXT.3D standardization

    Get PDF
    Funding: This work is jointly supported by the Natural Environment Research Council, UK (NE/T004487/1 for AM and MD) and the Taiwan Ministry of Science and Technology under Contracts NERC-MOST 108-2923-M-007-003 (for AC and CC). AM and MD also acknowledge support from the Leverhulme Trust (RPG-2019-401).1. Biodiversity is a multifaceted concept covering different levels of organisation from genes to ecosystems. Biodiversity has at least three dimensions: (i) Taxonomic diversity (TD): a measure that is sensitive to the number and abundances of species. (ii) Phylogenetic diversity (PD): a measure that incorporates not only species abundances but also species evolutionary histories. (iii) Functional diversity (FD): a measure that considers not only species abundances but also species? traits. 2. We integrate the three dimensions of diversity under a unified framework of Hill numbers and their generalizations. Our TD quantifies the effective number of equally-abundant species, PD quantifies the effective total branch length, mean-PD (PD divided by tree depth) quantifies the effective number of equally-divergent lineages, and FD quantifies the effective number of equally-distinct virtual functional groups (or functional ?species?). Thus, TD, mean-PD and FD are all in the same units of species/lineage equivalents and can be meaningfully compared. 3. Like species richness, empirical TD, PD and FD based on sampling data, depend on sampling effort and sample completeness. For TD (Hill numbers), the iNEXT (interpolation and extrapolation) standardization was developed for standardizing sample size or sample completeness (as measured by sample coverage, the fraction of individuals that belong to the observed species) to make objective comparisons across studies. This paper extends the iNEXT method to the iNEXT.3D standardization to encompass all three dimensions of diversity via sample-size- and sample-coverage-based rarefaction and extrapolation under the unified framework. The asymptotic diversity estimates (i.e., sample size tends to infinity and sample coverage tends to unity) are also derived. In addition to individual-based abundance data, the proposed iNEXT.3D standardization is adapted to deal with incidence-based occurrence data. 4. We apply the integrative framework and the proposed iNEXT.3D standardization to measure temporal alpha-diversity changes for estuarine fish assemblage data spanning four decades. The influence of environmental drivers on diversity change are also assessed. Our analysis informs a mechanistic interpretation of biodiversity change in the three dimensions of diversity. The accompanying freeware, iNEXT.3D, developed during this project, facilitates all computation and graphics.PostprintPeer reviewe

    Landscape-scale forest loss as a catalyst of population and biodiversity change

    Get PDF
    The BioTIME database was supported by ERC AdG BioTIME 250189 and ERC PoC BioCHANGE 727440. We thank the ERC projects BioTIME and BioCHANGE for supporting the initial data synthesis work that led to this study, and the Leverhulme Centre for Anthropocene Biodiversity for continued funding of the database. Also supported by a Carnegie-Caledonian PhD Scholarship and NERC doctoral training partnership grant NE/L002558/1 (G.N.D.), a Leverhulme Fellowship and the Leverhulme Centre for Anthropocene Biodiversity (M.D.), Leverhulme Project Grant RPG-2019-402 (A.E.M. and M.D.), and the German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (funded by the German Research Foundation; FZT 118, S.A.B.).Global biodiversity assessments have highlighted land-use change as a key driver of biodiversity change. However, there is little empirical evidence of how habitat transformations such as forest loss and gain are reshaping biodiversity over time. We quantified how change in forest cover has influenced temporal shifts in populations and ecological assemblages from 6090 globally distributed time series across six taxonomic groups. We found that local-scale increases and decreases in abundance, species richness, and temporal species replacement (turnover) were intensified by as much as 48% after forest loss. Temporal lags in population- and assemblage-level shifts after forest loss extended up to 50 years and increased with species’ generation time. Our findings that forest loss catalyzes population and biodiversity change emphasize the complex biotic consequences of land-use change.PostprintPeer reviewe

    Preparation of modified clay with cetylpyridinium chloride and evaluation of their interaction with PVC

    Get PDF
    Foi preparada uma argila modificada com cloreto de cetilpiridíneo a partir da argila sódica por troca de cátions em solução. Foi avaliada a quantidade de agente de modificação em relação à argila sódica e o tempo reacional. Os materiais obtidos foram caracterizados por difração de raio X (XRD), análise termogravimétrica (TGA) e ressonância magnética nuclear (RMN) de baixo campo. Após a caracterização foi confirmada a modificação da argila e, também, foi verificado que o produto obtido pode ser empregado na preparação de nanocompósitos de PVC, considerando que o início da degradação do material preparado ocorreu em temperatura superior às comumente utilizadas no processamento do polímero. A adição da argila modificada apresentou uma dispersão adequada no PVC e manteve o início da degradação do material em temperatura compatível com o processamento do polímero, gerando um nanocompósito com parte esfoliada e intercalada. _________________________________________________________________________________ ABSTRACTA modified silicate with cetylpyridinium was prepared from sodium clay with cation exchange in solution. The amount of modification agent for clay and the reaction time were evaluated. The materials produced were characterized using X ray diffraction (XRD), termogravimetric analysis (TGA) and low field nuclear magnetic resonance (NMR). The formation of new organic clay was confirmed, which was introduced in PVC for the formation of nanocomposites. The beginning of degradation of the new clay occurred at temperatures higher than commonly used in the processing of PVC. The nanocomposites were partially exfoliated and partially intercalated

    BioTIME: A Database of Biodiversity Time Series for the Anthropocene

    Get PDF
    Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates

    Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island

    Get PDF
    Funding was provided by the Australian Council Centre of Excellence for Coral Reef Studies (COE140100020) and the John Templeton Foundation (M.D., J.S.M. grant #60501 'Putting the Extended Evolutionary Synthesis to the Test’).Coral reefs are being subjected to an increase in the frequency and intensity of disturbance, such as bleaching and cyclones, and it is important to document the effects of such disturbance on reef coral assemblages. Between March 2014 and May 2017, the reefs of Lizard Island in the northern section of the Great Barrier Reef were affected by 4 consecutive disturbances: severe tropical cyclones Ita and Nathan in 2014 and 2015, and mass bleaching events in 2016 and 2017. Loss of coral cover following the cyclones was patchy and dependent on the direction of the waves generated. In contrast, loss of cover following bleaching was much more uniform. Overall, coral cover declined 5-fold from 36% pre-cyclone Ita to 7% post-bleaching in 2017, while mean species richness dropped from 10 to 4 species per transect. The spatial scale and magnitude of the loss of coral cover in the region suggests that it will be many years before these reefs recover.PostprintPeer reviewe

    Synthesis reveals approximately balanced biotic differentiation and homogenization

    Get PDF
    This work was supported by the German Research Foundation (FZT 118, to S.A.B., T.E., A.S., R.v.K., W.-B.X., and J.M.C.) and ERC GA 101044975 and the Leverhulme Centre for Anthropocene Biodiversity (to M.D.). This work was also supported by the German Research Foundation (DFG) project “Establishment of the National Research Data Infrastructure (NFDI)” in the consortium NFDI4Biodiversity (project number 442032008) (to T.E.), European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 894644 (to I.S.M.), USDA Hatch grant MAFES #1011538 and NSF EPSCOR Track II grant #2019470 (to B.M.), and NSF Track II grant #2019470 (to N.J.G.).It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of widespread (high occupancy) species and strongly associated with checklist data that have longer durations and large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can be driven by changes in the number and spatial distributions of both rare and common species. The multiscale perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and homogenization.Peer reviewe

    Pregnant women's responses to a tailored smoking cessation intervention: turning hopelessness into competence

    Get PDF
    Background: Cognitive behavioral interventions consisting of brief counseling and the provision of self-help material designed for pregnancy have been documented as effective smoking cessation interventions for pregnant women. However, there is a need to understand how such interventions are perceived by the targeted group. Aim: To understand the cognitive, emotional, and behavioral responses of pregnant women to a clinic-based smoking cessation intervention. Methods: In-depth interviews with women attending four antenatal clinics in Cape Town, South Africa, who were exposed to a smoking intervention delivered by midwives and peer counselors. Women were purposively selected to represent a variation in smoking behavior. Thirteen women were interviewed at their first antenatal visit and 10 were followed up and reinterviewed later in their pregnancies. A content analysis approach was used, which resulted in categories and themes describing women's experiences, thoughts, and feelings about the intervention. Results: Five women quit, five had cut down, and three could not be traced for follow-up. All informants perceived the intervention positively. Four main themes captured the intervention's role in influencing women's smoking behavior. The process started with ‘understanding their reality,’ which led to ‘embracing change’ and ‘deciding to hold nothing back,’ which created a basis for ‘turning hopelessness into a feeling of competence.’Conclusion: The intervention succeeded in shifting women from feeling pessimistic about ever quitting to feeling encouraged to try and quit. Informants rated the social support they received very highly and expressed the need for the intervention to become a routine component of clinic services
    corecore