16 research outputs found

    Precambrian Animal Life: Probable Developmental and Adult Cnidarian Forms from Southwest China

    Get PDF
    The evolutionary divergence of cnidarian and bilaterian lineages from their remote metazoan ancestor occurred at an unknown depth in time before the Cambrian, since crown group representatives of each are found in Lower Cambrian fossil assemblages. We report here a variety of putative embryonic, larval, and adult microfossils deriving from Precambrian phosphorite deposits of Southwest China, which may predate the Cambrian radiation by 25–45 million years. These are most probably of cnidarian affinity. Large numbers of fossilized early planula-like larvae were observed under the microscope in sections. Though several forms are represented, the majority display remarkable conformity, which is inconsistent with the alternative that they are artifactual mineral inclusions. Some of these fossils are preserved in such high resolution that individual cells can be discerned. We confirm in detail an earlier report of the presence in the same deposits of tabulates, an extinct crown group anthozoan form. Other sections reveal structures that most closely resemble sections of basal modern corals. A large number of fossils similar to modern hydrozoan gastrulae were also observed. These again displayed great morphological consistency. Though only a single example is available, a microscopic animal remarkably similar to a modern adult hydrozoan is also presented. Taken together, the new observations reported in this paper indicate the existence of a diverse and already differentiated cnidarian fauna, long before the Cambrian evolutionary event. It follows that at least stem group bilaterians must also have been present at this time

    Cambrian Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian

    Get PDF
    Ten phosphatized specimens of a small (<180 micrometers) animal displaying clear bilaterian features have been recovered from the Doushantuo Formation, China, dating from 40 to 55 million years before the Cambrian. Seen in sections, this animal (Vernanimalcula guizhouena gen. et sp. nov.) had paired coeloms extending the length of the gut; paired external pits that could be sense organs; bilateral, anterior-posterior organization; a ventrally directed anterior mouth with thick walled pharynx; and a triploblastic structure. The structural complexity is that of an adult rather than a larval form. These fossils provide the first evidence confirming the phylogenetic inference that Bilateria arose well before the Cambrian

    Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China

    Get PDF
    In developing embryos of some extant spiralian animals, polar lobe formation is one of the symmetry-breaking mechanisms for segregation of maternal cytoplasmic substances to certain blastomeres and not others. Polar lobe formation leads to unique early cleavage morphologies that include trilobed, J-shaped, and five-lobed structures. Fossil embryos similar to modern lobeforming embryos are recognized from the Precambrian Doushantuo Formation phosphates, Weng'an, Guizhou Province, China. These embryos are abundant and form a developmental sequence comparable to different developing stages observed in lobe-forming embryos of extant spiralians. These data imply that lobe formation is an evolutionarily ancient process of embryonic specification

    Mat-decay features

    No full text

    Data from: Substrate adaptations of sessile benthic metazoans during the Cambrian radiation

    No full text
    Many marine benthic metazoans must stabilize themselves upon the seafloor for survival, and as a result their morphologies are controlled in part by local substrate conditions. The Agronomic Revolution (AR), spurred by increasing vertical bioturbation during the Ediacaran–Cambrian transition, permanently altered the nature of shallow marine substrate conditions and led to a major shift in adaptive strategies among benthic metazoans. These ecological and evolutionary changes, known as the Cambrian Substrate Revolution (CSR), are generally understood from observations of benthic metazoan fossils across the Ediacaran/Cambrian boundary, but the timing and geographic extent of this transition are less well known. This analysis attempts to constrain the temporal and spatial pattern of the AR and CSR by performing a global-scale paleoecological analysis of the adaptive strategies of benthic fauna living during the Cambrian. This analysis focused on Burgess Shale-type (BST) faunas because of their exceptional preservation, and was conducted through direct observation of fossil specimens, analysis of data compiled from the Paleobiology Database, and literature review. From these analyses, faunal groups are assigned a metric, the Substrate Adaptability Index (SAI), that relates the overall affinity the fauna demonstrates toward either Proterozoic-style (SAI=0) or Phanerozoic-style (SAI=1) substrate conditions. The results of this analysis demonstrate that most early and middle Cambrian faunas were mixtures of Phanerozoic- and Proterozoic-style adaptive strategists, suggesting that Proterozoic-style substrates were still influential in controlling adaptive strategies in marine environments until at least that time. This is further supported by ichnofabric analysis of many of these localities, where overall bioturbation levels are exceedingly low, indicating a lack of mixed-layer development and the prevalence of firm Proterozoic-style substrates well into the Cambrian

    The Cambrian Substrate Revolution

    No full text
    The broad marine ecological settings prevalent during the late Neoproterozoic– early Phanerozoic (600–500 Ma) interval of early metazoan body plan origination strongly impacted the subsequent evolution and development of benthic metazoans. Recent work demonstrates that late Neoproterozoic seafloor sediment had well-developed microbial mats and poorly developed, vertically oriented bioturbation, thus producing fairly stable, relatively low water content substrates and a sharp water-sediment interface. Later in the Cambrian, seafloors with microbial mats became increasingly scarce in shallow-marine environments, largely due to the evolution of burrowing organisms with an increasing vertically oriented component to their bioturbation. The evolutionary and ecological effects of these substrate changes on benthic metazoans, referred to as the Cambrian substrate revolution, are presented here for two major animal phyla, the Echinodermata and the Mollusca
    corecore