11 research outputs found

    The DAMIC-M experiment: Status and first results

    Get PDF
    The DAMIC-M (DArk Matter In CCDs at Modane) experiment employs thick, fully depleted silicon charged-coupled devices (CCDs) to search for dark matter particles with a target exposure of 1 kg-year. A novel skipper readout implemented in the CCDs provides single electron resolution through multiple non-destructive measurements of the individual pixel charge, pushing the detection threshold to the eV-scale. DAMIC-M will advance by several orders of magnitude the exploration of the dark matter particle hypothesis, in particular of candidates pertaining to the so-called “hidden sector.” A prototype, the Low Background Chamber (LBC), with 20g of low background Skipper CCDs, has been recently installed at Laboratoire Souterrain de Modane and is currently taking data. We will report the status of the DAMIC-M experiment and first results obtained with LBC commissioning data

    Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype

    No full text
    The spectroscopic performances of the new integrated ASIC (Application-Specific Integrated Circuit) preamplifiers for highly segmented silicon detectors have been evaluated with an early silicon detector prototype of the TRacking Array for light Charged Ejectiles (TRACE). The ASICS were mounted on a custom-designed PCB (Printed Circuit Board) and the detector plugged on it. Energy resolution tests, performed on the same detector before and after irradiation, yielded a resolution of 21 keV and 33 keV FWHM respectively. The output signals were acquired with an array of commercial 100-MHz 14-bit digitizers. The preamplifier chip is equipped with an innovative Fast-Reset device that has two functions: it reduces dramatically the dead time of the preamplifier in case of saturation (from milliseconds to microseconds) and extends the spectroscopic dynamic range of the preamplifier by more than one order of magnitude. Other key points of the device are the low noise and the wide bandwidth

    New methods to identify low energy 3He with Silicon-based detectors

    No full text
    International audienceMethods to discriminate low energy mass-3 particles using Silicon detectors are reviewed. The time-of-flight technique based on analog electronics and measuring time between a reference signal and the charge signal from the Silicon detector does not allow to discriminate 3He from H. One method consists in adding a thin layer of Silicon (typically of ) to recover the standard discrimination by E-E identification matrix. Strong inhomogeneities in thickness are observed for these thin detectors. Difficulties in handling such detectors have led to investigate numerical approaches using reverse-mounted neutron transmutation doped Silicon detectors. First, the pulse shape analysis (PSA) technique has been investigated on the current and charge signals. PSA enables the discrimination of tritons and 3He and also 3He and 4He with good figures of merit. Secondly, the time of flight between two digitized signals (a reference signal from the beam pulse and the current or the charge signal) is presented. Both numerical techniques give promising results for the identification of light particles with Silicon detectors

    Characterization of light particles (Z ≤ 2) discrimination performances by pulse shape analysis techniques with high-granularity silicon detector

    No full text
    International audiencePulse shape analysis for light particles () is studied in a 500 μm thick Double-Sided Stripped Silicon Detector (DSSSD) of nTD type with a pitch lower than 500 μm. Good separation between the isotopes is achieved irrespective of the side used for signal pick up with the detector biased at depletion voltage. The low energy threshold for discrimination between isotopes is found to be around 2.5 MeV at depletion voltage and the quality of the separation can be slightly improved by using filtering methods. On the other hand, the discrimination performances are enhanced when lowering the bias of the detector at the expense of energy resolution. At nominal bias (i.e. overdepletion) where the energy resolution is the best, no separation between the three hydrogen isotopes is achieved when using the amplitude of the current signal. Discrimination can still be obtained by acquiring the time over a threshold set at 10% of the amplitude after applying a square bipolar filter to the current signal. Besides, in view of the design of the front-end electronics, the effect of the sampling rate needed for pulse shape analysis has been investigated and shows that below 200 MSa/s, the discrimination quality is strongly reduced

    The DAMIC-M Experiment: Status and First Results

    No full text
    International audienceThe DAMIC-M (DArk Matter In CCDs at Modane) experiment employs thick, fully depleted silicon charged-coupled devices (CCDs) to search for dark matter particles with a target exposure of 1 kg-year. A novel skipper readout implemented in the CCDs provides single electron resolution through multiple non-destructive measurements of the individual pixel charge, pushing the detection threshold to the eV-scale. DAMIC-M will advance by several orders of magnitude the exploration of the dark matter particle hypothesis, in particular of candidates pertaining to the so-called "hidden sector." A prototype, the Low Background Chamber (LBC), with 20g of low background Skipper CCDs, has been recently installed at Laboratoire Souterrain de Modane and is currently taking data. We will report the status of the DAMIC-M experiment and first results obtained with LBC commissioning data

    The DAMIC-M Experiment: Status and First Results

    No full text
    International audienceThe DAMIC-M (DArk Matter In CCDs at Modane) experiment employs thick, fully depleted silicon charged-coupled devices (CCDs) to search for dark matter particles with a target exposure of 1 kg-year. A novel skipper readout implemented in the CCDs provides single electron resolution through multiple non-destructive measurements of the individual pixel charge, pushing the detection threshold to the eV-scale. DAMIC-M will advance by several orders of magnitude the exploration of the dark matter particle hypothesis, in particular of candidates pertaining to the so-called "hidden sector." A prototype, the Low Background Chamber (LBC), with 20g of low background Skipper CCDs, has been recently installed at Laboratoire Souterrain de Modane and is currently taking data. We will report the status of the DAMIC-M experiment and first results obtained with LBC commissioning data

    The DAMIC-M Experiment: Status and First Results

    No full text
    International audienceThe DAMIC-M (DArk Matter In CCDs at Modane) experiment employs thick, fully depleted silicon charged-coupled devices (CCDs) to search for dark matter particles with a target exposure of 1 kg-year. A novel skipper readout implemented in the CCDs provides single electron resolution through multiple non-destructive measurements of the individual pixel charge, pushing the detection threshold to the eV-scale. DAMIC-M will advance by several orders of magnitude the exploration of the dark matter particle hypothesis, in particular of candidates pertaining to the so-called "hidden sector." A prototype, the Low Background Chamber (LBC), with 20g of low background Skipper CCDs, has been recently installed at Laboratoire Souterrain de Modane and is currently taking data. We will report the status of the DAMIC-M experiment and first results obtained with LBC commissioning data
    corecore