6 research outputs found

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP

    Maternal dietary patterns and acute leukemia in infants: results from a case control study in Mexico

    Get PDF
    BackgroundChildhood cancer is the leading cause of disease-related mortality among children aged 5–14 years in Mexico, with acute leukemia being the most common cancer among infants. Examining the overall dietary patterns allows for a comprehensive assessment of food and nutrient consumption, providing a more predictive measure of disease risk than individual foods or nutrients. This study aims to evaluate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in Mexican infants.MethodsA hospital-based case–control study was conducted, comparing 109 confirmed acute leukemia cases with 152 age-matched controls. All participants (≤24 months) were identified at hospitals in Mexico City between 2010 and 2019. Data on a posteriori dietary patterns and other relevant variables were collected through structured interviews and dietary questionnaires. Multivariate logistic regression was employed to estimate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in infants.ResultsThe “Balanced & Vegetable-Rich” pattern, characterized by a balanced consumption of various food groups and higher vegetable intake, exhibited a negative association with acute leukemia when compared to the “High Dairy & Cereals” Pattern (adjusted odds ratio [OR] = 0.51; 95% confidence interval [CI]: 0.29, 0.90). We observed that mothers who gave birth to girls and adhered to a healthy dietary pattern during pregnancy exhibited significantly lower odds of their children developing AL compared to those who gave birth to boys [OR = 0.32 (95% CI 0.11, 0.97)]. Our results underscore the significance of maternal nutrition as a modifiable factor in disease prevention and the importance of prenatal health education

    Conserved Peptide Upstream Open Reading Frames are Associated with Regulatory Genes in Angiosperms

    Get PDF
    Upstream open reading frames (uORFs) are common in eukaryotic transcripts, but those that encode conserved peptides (CPuORFs) occur in less than 1% of transcripts. The peptides encoded by three plant CPuORF families are known to control translation of the downstream ORF in response to a small signal molecule (sucrose, polyamines and phosphocholine). In flowering plants, transcription factors are statistically over-represented among genes that possess CPuORFs, and in general it appeared that many CPuORF genes also had other regulatory functions, though the significance of this suggestion was uncertain (Hayden and Jorgensen, 2007). Five years later the literature provides much more information on the functions of many CPuORF genes. Here we reassess the functions of 27 known CPuORF gene families and find that 22 of these families play a variety of different regulatory roles, from transcriptional control to protein turnover, and from small signal molecules to signal transduction kinases. Clearly then, there is indeed a strong association of CPuORFs with regulatory genes. In addition, 16 of these families play key roles in a variety of different biological processes. Most strikingly, the core sucrose response network includes three different CPuORFs, creating the potential for sophisticated balancing of the network in response to three different molecular inputs. We propose that the function of most CPuORFs is to modulate translation of a downstream major ORF (mORF) in response to a signal molecule recognized by the conserved peptide and that because the mORFs of CPuORF genes generally encode regulatory proteins, many of them centrally important in the biology of plants, CPuORFs play key roles in balancing such regulatory networks

    The renaissance and enlightenment of Marchantia as a model system.

    No full text
    The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha
    corecore