38 research outputs found

    A Rare Second Year - Lake Ice Cover in the Canadian High Arctic

    Get PDF
    Colour Lake, Axel Heiberg Island, N.W.T. (79 25 N; 90 45 W), remained largely ice covered from autumn 1985 to summer 1987. This is a relatively rare event. Observations and measurements of the thickness and specific conductance of the lake ice cover were made at the end of the 1986 summer and again in the following spring. The residual ice cover (second-year ice with first-year ice beneath it) was significantly thicker and had a lower specific conductance than first-year ice formed in marginal leads (moat) that had been ice free in 1986. The first-year ice that grew beneath the residual ice cover had the lowest specific conductance. Distribution of snow on the lake was affected by the roughness of the second-year ice (as compared to the smoother moat ice) and differences in elevation between second-year (high) and moat ice.Key words: High Arctic, specific conductance, residual ice cover, snow distributionMots clés: Extrême-Arctique, conductivité spécifique, couverture de glace résiduelle, répartition de la neig

    Antarctic microbial mats: a modern analogue for Archean lacustrine oxygen oases.

    Get PDF
    The evolution of oxygenic photosynthesis was the most important geochemical event in Earth history, causing the Great Oxidation Event (GOE) ~2.4 b.y. ago. However, evidence is mixed as to whether O2 production occurred locally as much as 2.8 b.y. ago, creating O2 oases, or initiated just prior to the GOE. The biogeochemical dynamics of possible O2 oases have been poorly constrained due to the absence of modern analogs. However, cyanobacteria in microbial mats in a perennially anoxic region of Lake Fryxell, Antarctica, create a 1–2 mm O2-containing layer in the upper mat during summer, providing the first known modern analog for formation of benthic O2 oases. In Lake Fryxell, benthic cyanobacteria are present below the oxycline in the lake. Mat photosynthesis rates were slow due to low photon flux rate (1–2 μmol m-2 s-1) under thick ice cover, but photosynthetic O2 production was sufficient to sustain up to 50 μmol O2 L-1, sandwiched between anoxic overlying water and anoxic sediments. We hypothesize that Archean cyanobacteria could have similarly created O2 oases in benthic mats prior to the GOE. Analogous mats may have been at least partly responsible for geological evidence of oxidative weathering prior to the GOE, and habitats such as Lake Fryxell provide natural laboratories where the impact of benthic O2 oases on biogeochemical signatures can be investigated

    The COSPAR planetary protection policy for missions to Icy Worlds: A review of history, current scientific knowledge, and future directions

    Get PDF
    Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection. This paper summarizes the results of those discussions, reviewing the current knowledge and the history of planetary protection considerations for Icy Worlds as well as suggesting ways forward. Based on those discussions, we therefore suggest to (1) Establish a new definition for Icy Worlds for Planetary Protection that captures the outer Solar System moons and dwarf planets like Pluto, but excludes more primitive bodies such as comets, centaurs, and asteroids: Icy Worlds in our Solar System are defined as all bodies with an outermost layer that is believed to be greater than 50% water ice by volume and have enough mass to assume a nearly round shape. (2) Establish indices for the lower limits of Earth life with regards to water activity (LLAw) and temperature (LLT) and apply them into all areas of the COSPAR Planetary Protection Policy. These values are currently set at 0.5 and -28°C and were originally established for defining Mars Special Regions; (3) Establish LLT as a parameter to assign categorization for Icy Worlds missions. The suggested categorization will have a 1000-year period of biological exploration, to be applied to all Icy Worlds and not just Europa and Enceladus as is currently the case. (4) Have all missions consider the possibility of impact. Transient thermal anomalies caused by impact would be acceptable so long as there is less than 10−4, probability of a single microbe reaching deeper environments where temperature is >LLT in the period of biological exploration. (5) Restructure or remove Category II* from the policy as it becomes largely redundant with this new approach, (6) Establish that any sample return from an Icy World should be Category V restricted Earth return

    An Infinite Class of Extremal Horizons in Higher Dimensions

    Get PDF
    We present a new class of near-horizon geometries which solve Einstein's vacuum equations, including a negative cosmological constant, in all even dimensions greater than four. Spatial sections of the horizon are inhomogeneous S^2-bundles over any compact Kaehler-Einstein manifold. For a given base, the solutions are parameterised by one continuous parameter (the angular momentum) and an integer which determines the topology of the horizon. In six dimensions the horizon topology is either S^2 x S^2 or CP^2 # -CP^2. In higher dimensions the S^2-bundles are always non-trivial, and for a fixed base, give an infinite number of distinct horizon topologies. Furthermore, depending on the choice of base we can get examples of near-horizon geometries with a single rotational symmetry (the minimal dimension for this is eight). All of our horizon geometries are consistent with all known topology and symmetry constraints for the horizons of asymptotically flat or globally Anti de Sitter extremal black holes.Comment: 42 pages, latex. v2: corrected section 6.1, two references added. v3: modified angular momentum and corrected area comparison, version to be published in Commun. Math. Phy

    A Dynamic Physical Model for Soil Temperature and Water in Taylor Valley, Antarctica

    Get PDF
    We developed a simulation model for terrestrial sites including sensible heat exchange between the atmosphere and ground surface, inter- and intra-layer heat conduction by rock and soil, and shortwave and longwave radiation. Water fluxes included snowmelt, freezing/thawing of soil water, soil capillary flow, and vapour flows among atmosphere, soil, and snow. The model accounted for 96-99% of variation in soil temperature data. No long-term temporal trends in soil temperature were apparent. Soil water vapour concentration in thawed surface soil in summer often was higher than in frozen deeper soils, leading to downward vapour fluxes. Katabatic winds caused a reversal of the usual winter pattern of upward vapour fluxes. The model exhibited a steady state depth distribution of soil water due to vapour flows and in the absence of capillary flows below the top 0.5 cm soil layer. Beginning with a completely saturated soil profile, soil water was lost rapidly, and within a few hundred years approached a steady state characterized by dry soil (,0.5% gravimetric) down to one metre depth and saturated soil below that. In contrast, it took 42,000 years to approach steady state beginning from a completely dry initial condition

    Micro-hole and multigrain quartz luminescence dating of Paleodeltas at Lake Fryxell, McMurdo Dry Valleys (Antarctica), and relevance for lake history

    No full text
    Relict (perched) lacustrine deltas around the perennially ice-covered lakes in the Taylor Valley, Antarctica, imply that these lakes were up to 40 times larger in area than at present since the last glacial maximum (LGM). These deltas have been used to constrain ice-margin positions in Taylor Valley, and the boundaries of the proposed LGM ice-damned Glacial Lake Washburn. The timing of these high lake levels has depended on 14C chronologies of algal layers within relict lacustrine deltas. To provide additional geochronometric data for the post-LGM lake-level history, we applied photon-stimulated-luminescence (PSL) sediment dating to polymineral fine silt and sand-size quartz from 7 perched-delta and 3 active-delta sites of different elevations along 3 major meltwater streams entering Lake Fryxell. Our PSL dating of 4 quartz-sand samples from core tops in the seasonal ice-free moat of Lake Fryxell (elevation ~18ma.s.l.) and two core-top moat samples from the seasonal moat of Lake Vanda in nearby Wright Valley establish that adequate PSL clock zeroing (by daylight) occurs in regional, modern shoreline deposits. Minimum-age micro-hole PSL results from the moats are consistently near 100 a. Minimum-age micro-hole age estimates for the deltas range from ~50 to 100 a near the present lake level up to 13.4±1.3ka at 240m. These are systematically younger than the comparable, reservoir-uncorrected, 14Cages that range from 7ka (calyr BP) to 13ka (calyr BP) near lake level up to 20ka (calyr BP) at 220-240m elevation. Our results indicate the occurrence of a dramatic discrepancy between PSL minimum-age and 14C age estimates that is presently unresolved. © 2013 Elsevier B.V

    Single-grain and multigrain luminescence dating of on-ice and lake-bottom deposits at Lake Hoare, Taylor Valley, Antarctica

    No full text
    The large radiocarbon (14C) reservoir effect in Antarctica varies regionally and with settings. Luminescence sediment dating has potential as an alternate geochronometer. Extending our earlier tests of the effectiveness of resetting of photon-stimulated-luminescence (PSL) that employed only multi-aliquot analyses of fine-silt grains, we applied single-aliquot multigrain, and single-grain-quartz (SGQ) PSL procedures to a variety of samples from on and under the meters-thick perennial ice cover at Lake Hoare. These procedures yielded quartz sand age estimates for ice-surface sand (the source of the lake-bottom sand) of 10-80 a. Sand within a small dune on the perennial lake ice in front of Canada Glacier gave an SGQ age estimate of 48 ± 23 a. These methods produced realistic age estimates in lake-bottom short cores that are at least 5-20 times younger than comparable (uncorrected-for-reservoir) 14C results. Near-core-top PSL age estimates ranged from zero to ∼500 a, depending on the core site. Four of the 7 short cores revealed clear linear age-depth trends for the upper few cm of core. These results demonstrate that for such lake-core deposits, single-aliquot and single-grain PSL dating can replace 14C dating, at least in Lake Hoare, because PSL dating lacks a significant \u27zero-point\u27 offset such as the 14C reservoir effect, and because PSL dating of quartz is applicable to samples as old as ∼150 ka under normal sedimentary conditions. Moreover, these results imply that isolated paleo-lake-bottom deposits (e.g., microbial-mat sand mounds above present lake levels) throughout the McMurdo Dry Valleys can now be dated directly. © 2010 Elsevier B.V

    Paleolimnological studies from the Antarctic and subantarctic islands

    No full text
    To compile reference data for palaeolimnological studies using fossil pigment, we examined the extent to which environmental variables, gross morphology and species composition influence the modern pigment content of in situ microbial communities in 62 east Antarctic lakes. Pigment contents, measured using HPLC, were compared with 32 environmental variables, gross microbial mat morphology and cyanobacterial species composition in each lake. Results showed low concentrations or an absence of pigments in the water columns of most lakes. For benthic microbial communities, multivariate statistical analyses identified lake depth as the most important factor explaining pigment composition. In deeper lakes the pigment composition was dominated by chlorophylls, in intermediate depth lakes by chlorophylls and carotenoids, and in shallow lakes by scytonemins, ultraviolet-screening pigments found in cyanobacteria. In addition to lake depth, conductivity, turbidity, dissolved oxygen, sulphate and geographical location were all significant (p<0.05) in explaining variance in the pigment content. Significant differences in microbial mat gross morphologies ocurred at different lake depths (p<0.01), and were characterised by significant differences in their pigment content(p<0.004). Despite the high abundance of scytonemin in shallow lakes, there were only limited changes in the absolute concentrations of chlorophylls and carotenoids. We conclude that lake depth is the most significant factor influencing both gross mat morphology and pigment content presumably as a result of its influence on the light climate. In general, the ability of the cyanobacteria to regulate their pigment content, morphology, community composition and motility to best exploit thelight environment at different lake depths may explain their dominance in these systems
    corecore