39 research outputs found

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth

    Get PDF
    The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions. Here the authors show that extremes in the summer jet stream position over Europe create a beech forest productivity dipole between northwestern and southeastern Europe and can result in regional anomalies in forest carbon uptake and growth.This work was supported by Fundacio La Caixa through the Junior Leader Program (LCF/BQ/LR18/11640004) and the Universidad Politécnica de Madrid through the Programa Propio (PINV-18-SBSYN2-105-F1TXYR). The following authors acknowledge funding support. I.D.L.: Agnese N. Haury Visiting Scholar & Trainee Fellowship (Laboratory of Tree-Ring Research, University of Arizona), the Mobility Award Jose Castillejo, Ministry of Education, Spanish Government (CAS19/00331) and the Programa de Ayudas Beatriz Galindo, Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación (#BG20/00065). V.T.: National Science Foundation CAREER grant (AGS-1349942). B.A.: Spanish Ministry of Science and Innovation through the JeDiS project (RTI-2018-096402-B-I00). F.B.: project "Inside out" (#POIR.04.04.00-00-5F85/18-00) funded by the HOMING program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. AB, AM, CSZ: Bavarian Ministry of Science and the Arts in the context of the Bavarian Climate Research Network (BayKliF). A.H.: PinCaR project (UHU-1266324) by ERD Funds, Andalucía Regional Government, Consejería de Economía, Conocimiento, Empresas y Universidad 2014-2020. EM-S: Swiss National Science Foundation project TRoxy (No. 200021_175888). A.S.J.: Natural Environment Research Council grants NE/V00929X/1 and NE/S010041/1. J.K., L.M., M.M.T., R.W., M.W.: research training group RESPONSE funded by the German Research Council (DFG Fi 846/8-1, DFG GRK2010). AMP: Romanian Ministry of Research, Innovation, and Digitization, Project-PN-19070506/Ctr. no. 12N/2019. I.C.P.: grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI within PNCDI III (PN-III-P4-ID-PCE-2020-2696). R.S.S.: DendrOlavide I (EQC2018-005303-P), Ministry of Science, Innovation and Universities, Spain; DendrOlavide II (IE19_074 UPO), VURECLIM (P20_00813) and VULBOS (UPO-1263216). T.L.: Slovenian Research Agency-research core funding no. P4-0107 Program research group "Forest Biology, Ecology and Technology". We thank Virgilio Gómez-Rubio for assistance and advice on the LMM development. We thank Christoph Dittmar, Wolfram Elling, and numerous students of the University of Applied Sciences Weihenstephan-Triesdorf for providing European beech tree-ring chronologies

    Contrasting Hydraulic Architectures of Scots Pine and Sessile Oak at Their Southernmost Distribution Limits

    Get PDF
    Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species’ responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy

    Hydrological evidence for a North Atlantic oscillation during the Little Ice Age outside its range observed since 1850.

    Get PDF
    An annual-resolved precipitation reconstruction for the last 800 yr in Southern Spain has been performed using stable carbon isotope (δ13C) of Pinus nigra tree rings. The reconstruction exhibits high- to low-frequency variability and distinguishes a Little Ice Age (LIA, AD 13501850) characterized by lower averaged rainfall than both in the transition from the Medieval Climate Anomaly to the LIA and in the 20th century. The driest conditions are recorded during the Maunder solar Minimum (mid 17thearly 18th centuries), in good agreement with the Spanish documentary archive. Similar linkage between solar activity (maximum/minimum) and precipitation (increase/decrease) is observed throughout the entire LIA. Additionally, the relationship between the hydrological pattern in the Iberian Peninsula and Morocco during the LIA suggests different spatial distribution of precipitation in the south-eastern sector of the North Atlantic region such as it is known currently. Whereas in the instrumental record the precipitation evolves similarly in both regions and opposite to the North Atlantic oscillation (NAO) index, the coldest periods of the LIA shows a contrasting pattern with drier conditions in the South of Spain and wetter in Northern Africa. We suggest an extreme negative NAO conditions, accompanied by a southward excursion of the winter rainfall band beyond that observed in the last century, can explain this contrast. The sustained NAO conditions could have been triggered by solar minima and higher volcanic activity during the LIA

    Changes in surface solar radiation in Northeastern Spain over the past six centuries recorded by tree-ring δ13C.

    Get PDF
    Although solar radiation at the surface plays a determinant role in carbon discrimination in tree rings, stable carbon isotope chronologies (δ13C) have often been interpreted as a temperature proxy due to the co-variability of temperature and surface solar radiation. Furthermore, even when surface solar radiation is assumed to be the main driver of 13C discrimination in tree rings, δ13C records have been calibrated against sunshine duration or cloud cover series for which longer observational records exists. In this study, we use different instrumental and satellite data over northeast Spain (southern Europe) to identify the main driver of tree-ring 13C discrimination in this region. Special attention is paid to periods in which the co-variability of those climate variables may have been weaker, such as years after large volcanic eruptions. The analysis identified surface solar radiation as the main driver of tree-ring δ13C changes in this region, although the influence of other climatic factors may not be negligible. Accordingly, we suggest that a reconstruction of SSR over the last 600 years is possible. The relation between multidecadal variations of an independent temperature reconstruction and surface solar radiation in this region shows no clear sign, and warmer (colder) periods may be accompanied by both higher and lower surface solar radiation. However, our reconstructed records of surface solar radiation reveals a sunnier Little Ice Age in agreement with other δ13C tree-ring series used to reconstruct sunshine duration in central and northern Europe

    Biogeographic, atmospheric, and climatic factors influencing tree growth in Mediterranean Aleppo pine forests

    Get PDF
    There is a lack of knowledge on how tree species respond to climatic constraintslike water shortages and related atmospheric patterns across broad spatial and temporal scales.These assessments are needed to project which populations will better tolerate or respond to globalwarming across the tree species distribution range. Warmer and drier conditions have been forecastedfor the Mediterranean Basin, where Aleppo pine (Pinus halepensisMill.) is the most widely distributedconifer in dry sites. This species shows plastic growth responses to climate, being particularly sensitiveto drought. We evaluated how 32 Aleppo pine forests responded to climate during the second half ofthe 20th century by using dendrochronology. Climatic constraints of radial growth were inferred byfitting the Vaganov-Shashkin (VS-Lite) growth model to ring-width data from our Aleppo pine forestnetwork. Our findings reported that Aleppo pine growth decreased and showed the highest commoncoherence among trees in dry, continental sites located in southeastern and eastern inland Spain andAlgeria. In contrast, growth increased in wetter sites located in northeastern Spain. Overall, across theAleppo pine network tree growth was enhanced by prior wet winters and cool and wet springs,whilst warm summers were associated with less growth. The relationships between site ring-widthchronologies were higher in nearby forests. This explains why Aleppo pine growth was distinctlylinked to indices of atmospheric circulation patterns depending on the geographical location of theforests. The western forests were more influenced by moisture and temperature conditions drivenby the Western Mediterranean Oscillation (WeMO) and the Northern Atlantic Oscillation (NAO),the southern forests by the East Atlantic (EA) and the august NAO, while the Balearic, Tunisian andnortheastern sites by the Arctic Oscillation (AO) and the Scandinavian pattern (SCA). The climaticconstraints for Aleppo pine tree growth and its biogeographical variability were well captured by theVS-Lite model. The model performed better in dry and continental sites, showing strong growthcoherence between trees and climatic limitations of growth. Further research using similar broad-scaleapproaches to climate-growth relationships in drought-prone regions deserves more attention

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth

    Get PDF
    The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions

    Aged but withstanding: Maintenance of growth rates in old pines is not related to enhanced water-use efficiency

    Get PDF
    Growth of old trees in cold-limited forests may benefit from recent climate warming and rising atmospheric CO2 concentrations (ca) if age-related constraints do not impair wood formation. To test this hypothesis, we studied old Mountain pine trees at three Pyrenean high-elevation forests subjected to cold-wet (ORD, AIG) or warmer-drier (PED) conditions. We analyzed long-term trends (1450–2008) in growth (BAI, basal area increment), maximum (MXD) and minimum (MID) wood density, and tree-ring carbon (δ13C) and oxygen (δ18O) isotope composition, which were used as proxies for intrinsic water-use efficiency (iWUE) and stomatal conductance (gs), respectively. Old pines showed positive (AIG and ORD) or stable (PED) growth trends during the industrial period (since 1850) despite being older than 400 years. Growth and wood density covaried from 1850 onwards. In the cold-wet sites (AIG and ORD) enhanced photosynthesis through rising ca was likely responsible for the post-1850 iWUE improvement. However, uncoupling between BAI and iWUE indicated that increases in iWUE were not responsible for the higher growth but climate warming. A reduction in gs was inferred from increased δ18O for PED trees from 1960 onwards, the warmest site where the highest iWUE increase occurred (34%). This suggests that an emergent drought stress at warm-dry sites could trigger stomatal closure to avoid excessive transpiration. Overall, carbon acquisition as lasting woody pools is expected to be maintained in aged trees from cold and high-elevation sites where old forests constitute unique long-term carbon reservoirs.We are very grateful to several projects financed by “Organismo Autónomo de Parques Nacionales” (projects 12/2008 387/2011). E.G. was funded by a Juan de la Cierva post-doctoral research contract (FJCI-2014-19615, MEC, Spain). Spanish (AMB95-0160, CGL2011-26654) and EU projects ISONET (contract EV K2-2001-00237) and MILLENNIUM (017008–2) also supported this study by contributing additional datasets

    Climatically controlled reproduction drives interannual growth variability in a temperate tree species

    Get PDF
    Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent‐wide datasets of tree‐ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort (‘mast years’) is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.Additional co-authors: Ernst van der Maaten, Marieke van der Maaten‐Theunissen, Lena Muffler, Renzo Motta, Catalin‐Constantin Roibu, Ionel Popa, Tobias Scharnweber, Robert Weigel, Martin Wilmking, Christian S Zan

    Jet stream position explains regional anomalies in European beech forest productivity and tree growth

    Get PDF
    The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.Additional co-authors: Andrew Hacket-Pain, Claudia Hartl, Andrea Hevia, Pavel Janda, Marko Kazimirovic, Srdjan Keren, Juergen Kreyling, Alexander Land, Nicolas Latte, Tom Levanič, Ernst van der Maaten, Marieke van der Maaten-Theunissen, Elisabet Martínez-Sancho, Annette Menzel, Martin Mikoláš, Renzo Motta, Lena Muffler, Paola Nola, Momchil Panayotov, Any Mary Petritan, Ion Catalin Petritan, Ionel Popa, Peter Prislan, Catalin-Constantin Roibu, Miloš Rydval, Raul Sánchez-Salguero, Tobias Scharnweber, Branko Stajić, Miroslav Svoboda, Willy Tegel, Marius Teodosiu, Elvin Toromani, Volodymyr Trotsiuk, Daniel-Ond Turcu, Robert Weigel, Martin Wilmking, Christian Zang, Tzvetan Zlatanov & Valerie Troue

    Climate-change-driven growth decline of European beech forests

    Get PDF
    The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.Additional co-authors: Ernst van der Maaten, Sjepan Mikac, Bat-Enerel Banzragch, Wolfgang Beck, Hugues Claessens, Vojtěch Čada, Katarina Čufar, Choimaa Dulamsuren, Jozica Gričar, Eustaquio Gil-Pelegrín, Pavel Janda, Marko Kazimirovic, Juergen Kreyling, Nicolas Latte, Christoph Leuschner, Luis Alberto Longares, Annette Menzel, Maks Merela, Renzo Motta, Lena Muffler, Paola Nola, Any Mary Petritan, Ion Catalin Petritan, Peter Prislan, Álvaro Rubio-Cuadrado, Miloš Rydval, Branko Stajić, Miroslav Svoboda, Elvin Toromani, Volodymyr Trotsiuk, Martin Wilmking, Tzvetan Zlatanov & Martin de Lui
    corecore