129 research outputs found

    Fission yeast sec3 bridges the exocyst complex to the actin cytoskeleton.

    Get PDF
    The exocyst complex tethers post-Golgi secretory vesicles to the plasma membrane prior to docking and fusion. In this study, we identify Sec3, the missing component of the Schizosaccharomyces pombe exocyst complex (SpSec3). SpSec3 shares many properties with its orthologs, and its mutants are rescued by human Sec3/EXOC1. Although involved in exocytosis, SpSec3 does not appear to mark the site of exocyst complex assembly at the plasma membrane. It does, however, mark the sites of actin cytoskeleton recruitment and controls the organization of all three yeast actin structures: the actin cables, endocytic actin patches and actomyosin ring. Specifically, SpSec3 physically interacts with For3 and sec3 mutants have no actin cables as a result of a failure to polarize this nucleating formin. SpSec3 also interacts with actin patch components and sec3 mutants have depolarized actin patches of reduced endocytic capacity. Finally, the constriction and disassembly of the cytokinetic actomyosin ring is compromised in these sec3 mutant cells. We propose that a role of SpSec3 is to spatially couple actin machineries and their independently polarized regulators. As a consequence of its dual role in secretion and actin organization, Sec3 appears as a major co-ordinator of cell morphology in fission yeast.This work was supported by Cancer Research UK (T. T.)

    Investigation of the role of WIPI2 in autophagosome formation: Functional characterisation of the WIPI2-Atg16L1 interaction

    Get PDF
    Macroautophagy, here called autophagy, is a catabolic process that is required for cell homeostasis and cell survival under nutrient starvation, as well as development and immunity in higher eukaryotes. Characterised by the formation of double membrane-bound vesicles, termed autophagosomes, macroautophagy results in degradation of intracellular proteins in the lysosome. Autophagy initiation leads to the formation of a double membrane phagophore, which expands and sequesters cytoplasm components before autophagosome closure and fusion with endosomes and lysosomes. Autophagosome formation requires the sequential and concerted action of a number of core autophagy proteins. First identified in yeast, characterisation of mammalian autophagy proteins has shed light on the molecular mechanisms of autophagy initiation and phagophore expansion. However, a number of key questions remain unanswered, including what the functions of the core autophagy proteins mAtg9 and WIPI2 are. mAtg9 is the only transmembrane protein required for autophagy while WIPI2 is a PtdIns(3)P-binding protein. To address the function of these proteins, I used and explored immunoprecipitation - mass spectrometry based approaches to identify and characterise novel interactors. I showed that mAtg9 binds transferrin receptor and this interaction supports a model whereby mAtg9 traffics from a tubular-vesicular mAtg9 compartment, with recycling endosome-like characteristics, to support autophagosome formation. β-propeller proteins such as WIPI2 frequently act in mediating protein-protein interactions and so WIPI2 may recruit autophagy proteins to the PtdIns(3)P-positive site of autophagosome formation. I characterised the Atg16L1-WIPI2b interaction and investigated possible regulation of WIPI2 function by phosphorylation. I used immunoprecipitation to map the interacting regions of WIPI2b and Atg16L1 and to demonstrate that these proteins interact directly. I produced binding mutants of each protein and subsequently characterised the function of Atg16L1-WIPI2b binding, showing that the interaction is required for starvation- and pathogen-induced autophagy. Preliminary data was also obtained on the phosphorylation of the C-terminus of WIPI2 as a possible mechanism of WIPI2 function regulation. I propose a model in which WIPI2b is a PtdIns(3)P effector protein required for recruitment of the Atg12–5-16L1 complex to the site of autophagosome formation and LC3 lipidation

    The US stock market leads the Federal funds rate and Treasury bond yields

    Get PDF
    Using a recently introduced method to quantify the time varying lead-lag dependencies between pairs of economic time series (the thermal optimal path method), we test two fundamental tenets of the theory of fixed income: (i) the stock market variations and the yield changes should be anti-correlated; (ii) the change in central bank rates, as a proxy of the monetary policy of the central bank, should be a predictor of the future stock market direction. Using both monthly and weekly data, we found very similar lead-lag dependence between the S&P500 stock market index and the yields of bonds inside two groups: bond yields of short-term maturities (Federal funds rate (FFR), 3M, 6M, 1Y, 2Y, and 3Y) and bond yields of long-term maturities (5Y, 7Y, 10Y, and 20Y). In all cases, we observe the opposite of (i) and (ii). First, the stock market and yields move in the same direction. Second, the stock market leads the yields, including and especially the FFR. Moreover, we find that the short-term yields in the first group lead the long-term yields in the second group before the financial crisis that started mid-2007 and the inverse relationship holds afterwards. These results suggest that the Federal Reserve is increasingly mindful of the stock market behavior, seen at key to the recovery and health of the economy. Long-term investors seem also to have been more reactive and mindful of the signals provided by the financial stock markets than the Federal Reserve itself after the start of the financial crisis. The lead of the S&P500 stock market index over the bond yields of all maturities is confirmed by the traditional lagged cross-correlation analysis.Comment: 12 pages, 7 figures, 1 tabl

    Lack of Association of SULT1A1 R213H Polymorphism with Colorectal Cancer: A Meta-Analysis

    Get PDF
    BACKGROUND: A number of case-control studies were conducted to investigate the association of SULT1A1 R213H polymorphisms with colorectal cancer (CRC) in humans. But the results were not always consistent. We performed a meta-analysis to examine the association between the SULT1A1 R213H polymorphism and CRC. METHODS AND FINDINGS: Data were collected from the following electronic databases: PubMed, Elsevier Science Direct, Excerpta Medica Database, and Chinese Biomedical Literature Database, with the last report up to September 2010. A total of 12 studies including 3,549 cases and 5,610 controls based on the search criteria were involved in this meta-analysis. Overall, no significant association of this polymorphism with CRC was found (H versus R: OR = 1.04, 95%CI = 0.94-1.16, P = 0.46; HR+HH versus RR: OR = 1.01, 95%CI = 0.92-1.11, P = 0.81; HH versus RR+HR: OR = 1.01, 95%CI = 0.74-1.38, P = 0.95; HH versus RR: OR = 1.00, 95%CI = 0.77-1.31, P = 0.98; HR versus RR: OR = 1.01, 95%CI = 0.92-1.11, P = 0.86). In subgroup analysis, we also did not find any significant association in Cauasians (H versus R: OR = 1.02, 95%CI = 0.92-1.15, P = 0.68; HR+HH versus RR: OR = 0.99, 95%CI = 0.91-1.09, P = 0.90; HH versus RR+HR: OR = 1.01, 95%CI = 0.73-1.39, P = 0.97; HH versus RR: OR = 0.99, 95%CI = 0.75-1.31, P = 0.94; HR versus RR: OR = 0.99, 95%CI = 0.90-1.09, P = 0.85). The results were not materially altered after the studies which did not fulfill Hardy-Weinberg equilibrium were excluded (H versus R: OR = 1.06, 95%CI = 0.95-1.19, P = 0.31; HR+HH versus RR: OR = 1.03, 95%CI = 0.93-1.13, P = 0.56; HH versus RR+HR: OR = 1.10, 95%CI = 0.78-1.56, P = 0.57; HH versus RR: OR = 1.09, 95%CI = 0.83-1.44, P = 0.53; HR versus RR: OR = 1.02, 95%CI = 0.92-1.13, P = 0.75). CONCLUSION: This meta-analysis demonstrates that there is no association between the SULT1A1 R213H polymorphism and CRC

    A prediction rule to stratify mortality risk of patients with pulmonary tuberculosis

    Get PDF
    Tuberculosis imposes high human and economic tolls, including in Europe. This study was conducted to develop a severity assessment tool for stratifying mortality risk in pulmonary tuberculosis (PTB) patients. A derivation cohort of 681 PTB cases was retrospectively reviewed to generate a model based on multiple logistic regression analysis of prognostic variables with 6-month mortality as the outcome measure. A clinical scoring system was developed and tested against a validation cohort of 103 patients. Five risk features were selected for the prediction model: hypoxemic respiratory failure (OR 4.7, 95% CI 2.8-7.9), age >= 50 years (OR 2.9, 95% CI 1.7-4.8), bilateral lung involvement (OR 2.5, 95% CI 1.44.4), >= 1 significant comorbidity-HIV infection, diabetes mellitus, liver failure or cirrhosis, congestive heart failure and chronic respiratory disease-(OR 2.3, 95% CI 1.3-3.8), and hemoglobin = 6) mortality risk. The mortality associated with each group was 2.9%, 22.9% and 53.9%, respectively. The model performed equally well in the validation cohort. We provide a new, easy-to-use clinical scoring system to identify PTB patients with high-mortality risk in settings with good healthcare access, helping clinicians to decide which patients are in need of closer medical care during treatment.This work was supported by Fundacao Amelia de Mello/Jose de Mello Saude and Sociedade Portuguesa de Pneumologia (SPP). This work was developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NSO is a FCT (Fundacao para a Ciencia e Tecnologia) investigator. MS is an Associate FCT Investigator. The fundershad no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Rugged Single Domain Antibody Detection Elements for Bacillus anthracis Spores and Vegetative Cells

    Get PDF
    Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs) were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors

    Development of an In Vitro Model for the Multi-Parametric Quantification of the Cellular Interactions between Candida Yeasts and Phagocytes

    Get PDF
    We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes

    Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics.</p> <p>Discussion</p> <p>In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.</p> <p>As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy.</p> <p>Summary</p> <p>Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness of the therapeutic effect, and allow doctors (and, in self-medication with OTC medications, the patients themselves) to customize treatment to the patient's specific needs. There is substantial clinical evidence that such a multi-component therapy is more effective than mono-component therapies.</p

    Standardized and reproducible methodology for the comprehensive and systematic assessment of surgical resection margins during breast-conserving surgery for invasive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary goal of breast-conserving surgery (BCS) is to completely excise the tumor and achieve "adequate" or "negative" surgical resection margins while maintaining an acceptable level of postoperative cosmetic outcome. Nevertheless, precise determination of the adequacy of BCS has long been debated. In this regard, the aim of the current paper was to describe a standardized and reproducible methodology for comprehensive and systematic assessment of surgical resection margins during BCS.</p> <p>Methods</p> <p>Retrospective analysis of 204 BCS procedures performed for invasive breast cancer from August 2003 to June 2007, in which patients underwent a standard BCS resection and systematic sampling of nine standardized re-resection margins (superior, superior-medial, superior-lateral, medial, lateral, inferior, inferior-medial, inferior-lateral, and deep-posterior). Multiple variables (including patient, tumor, specimen, and follow-up variables) were evaluated.</p> <p>Results</p> <p>6.4% (13/204) of patients had positive BCS specimen margins (defined as tumor at inked edge of BCS specimen) and 4.4% (9/204) of patients had close margins (defined as tumor within 1 mm or less of inked edge but not at inked edge of BCS specimen). 11.8% (24/204) of patients had at least one re-resection margin containing additional disease, independent of the status of the BCS specimen margins. 7.1% (13/182) of patients with negative BCS specimen margins (defined as no tumor cells seen within 1 mm or less of inked edge of BCS specimen) had at least one re-resection margin containing additional disease. Thus, 54.2% (13/24) of patients with additional disease in a re-resection margin would not have been recognized by a standard BCS procedure alone (P < 0.001). The nine standardized resection margins represented only 26.8% of the volume of the BCS specimen and 32.6% of the surface area of the BCS specimen.</p> <p>Conclusion</p> <p>Our methodology accurately assesses the adequacy of surgical resection margins for determination of which individuals may need further resection to the affected breast in order to minimize the potential risk of local recurrence while attempting to limit the volume of additional breast tissue excised, as well as to determine which individuals are not realistically amendable to BCS and instead need a completion mastectomy to successfully remove multifocal disease.</p
    corecore