8 research outputs found

    New synthetic methodologies to access 3-benz(o)ylmenadiones and their redox properties at the origin of their antipaludic mode(s) of action.

    No full text
    Le paludisme est une maladie parasitaire tropicale touchant particuliĂšrement les jeunes enfants en Afrique subsaharienne. La rĂ©sistance aux mĂ©dicaments antipaludiques s’est dĂ©veloppĂ©e dans le monde entier depuis prĂšs de 50 ans et le besoin de nouveaux composĂ©s actifs est urgent. La plasmodione, appartenant Ă  la sĂ©rie des 3-benzylmĂ©nadiones, est un candidat mĂ©dicament efficace agissant en interfĂ©rant avec l’équilibre rĂ©dox du parasite. Cependant ses proprietĂ©s physico-chimiques sont incompatibles avec un traitement antipaludique efficace par voie orale et son mĂ©canisme d’action est encore mal connu. Durant cette thĂšse nous avons dĂ©veloppĂ© diverses mĂ©thodes de synthĂšse, i) des mĂ©tabolites postulĂ©s : les 3-benzoylmĂ©nadiones, et ii) des analogues variĂ©s de la plasmodione. Les 3-benzoylmĂ©nadiones ont Ă©tĂ© obtenues par un nouveau variant de la rĂ©action de Friedel-Crafts clĂ©. Cette rĂ©action a permis Ă©galement de synthĂ©tiser des sondes chimiques (pro-)ABPP pour identifier les sites d’intĂ©ractions de ces mĂ©tabolites avec des enzymes. Une nouvelle voie alternative de synthĂšse photorĂ©dox vers la sĂ©rie 3-benzylmĂ©nadione a Ă©galement Ă©tĂ© dĂ©veloppĂ©e, permettant d’une part d’obtenir en une seule Ă©tape une plus grande variĂ©tĂ© de ces dĂ©rivĂ©s fonctionnalisĂ©s, mais aussi, grĂące son mĂ©canisme original impliquant des cascades rĂ©dox, de mieux comprendre la photorĂ©activitĂ© des naphtoquinones. Enfin, des analogues hĂ©tĂ©roaromatiques de la plasmodione, avec une solubilitĂ© potentielle amĂ©liorĂ©e, ont Ă©tĂ© obtenus grĂące Ă  un couplage de Suzuki-Miyaura.Malaria is a tropical parasitic disease that particularly affects young children in sub-Saharan Africa. Resistance to antimalarial drugs has been developing worldwide for nearly 50 years and there is an urgent need for new active compounds. Plasmodione, belonging to the 3-benzylmenadione series, is an effective drug candidate acting by interfering with the redox equilibrium of the parasite. However, its physicochemical properties are incompatible with an effective antimalarial treatment per os and its mechanism of action is still poorly understood. During this thesis we have developed various synthetic methods to synthesize i) the postulated metabolites: the 3-benzoylmenadiones, and ii) diverse analogues of plasmodione. The 3-benzoylmenadiones were obtained by a new variant of the key Friedel-Crafts reaction. This reaction also allowed the synthesis of (pro-)ABPP chemical probes to identify the sites of interaction of these metabolites with enzymes. A new alternative photoredox synthesis route to the 3-benzylmenadione series was also developed, allowing on the one hand to obtain in a single step a greater variety of these functionalized derivatives, but also, thanks to its original mechanism involving redox cascades, to better understand the photoreactivity of naphthoquinones. Finally, heteroaromatic analogues of plasmodione, with improved potential solubility, were obtained through a Suzuki-Miyaura coupling

    New synthetic methodologies to access 3-benz(o)ylmenadiones and their redox properties at the origin of their antipaludic mode(s) of action.

    No full text
    Le paludisme est une maladie parasitaire tropicale touchant particuliĂšrement les jeunes enfants en Afrique subsaharienne. La rĂ©sistance aux mĂ©dicaments antipaludiques s’est dĂ©veloppĂ©e dans le monde entier depuis prĂšs de 50 ans et le besoin de nouveaux composĂ©s actifs est urgent. La plasmodione, appartenant Ă  la sĂ©rie des 3-benzylmĂ©nadiones, est un candidat mĂ©dicament efficace agissant en interfĂ©rant avec l’équilibre rĂ©dox du parasite. Cependant ses proprietĂ©s physico-chimiques sont incompatibles avec un traitement antipaludique efficace par voie orale et son mĂ©canisme d’action est encore mal connu. Durant cette thĂšse nous avons dĂ©veloppĂ© diverses mĂ©thodes de synthĂšse, i) des mĂ©tabolites postulĂ©s : les 3-benzoylmĂ©nadiones, et ii) des analogues variĂ©s de la plasmodione. Les 3-benzoylmĂ©nadiones ont Ă©tĂ© obtenues par un nouveau variant de la rĂ©action de Friedel-Crafts clĂ©. Cette rĂ©action a permis Ă©galement de synthĂ©tiser des sondes chimiques (pro-)ABPP pour identifier les sites d’intĂ©ractions de ces mĂ©tabolites avec des enzymes. Une nouvelle voie alternative de synthĂšse photorĂ©dox vers la sĂ©rie 3-benzylmĂ©nadione a Ă©galement Ă©tĂ© dĂ©veloppĂ©e, permettant d’une part d’obtenir en une seule Ă©tape une plus grande variĂ©tĂ© de ces dĂ©rivĂ©s fonctionnalisĂ©s, mais aussi, grĂące son mĂ©canisme original impliquant des cascades rĂ©dox, de mieux comprendre la photorĂ©activitĂ© des naphtoquinones. Enfin, des analogues hĂ©tĂ©roaromatiques de la plasmodione, avec une solubilitĂ© potentielle amĂ©liorĂ©e, ont Ă©tĂ© obtenus grĂące Ă  un couplage de Suzuki-Miyaura.Malaria is a tropical parasitic disease that particularly affects young children in sub-Saharan Africa. Resistance to antimalarial drugs has been developing worldwide for nearly 50 years and there is an urgent need for new active compounds. Plasmodione, belonging to the 3-benzylmenadione series, is an effective drug candidate acting by interfering with the redox equilibrium of the parasite. However, its physicochemical properties are incompatible with an effective antimalarial treatment per os and its mechanism of action is still poorly understood. During this thesis we have developed various synthetic methods to synthesize i) the postulated metabolites: the 3-benzoylmenadiones, and ii) diverse analogues of plasmodione. The 3-benzoylmenadiones were obtained by a new variant of the key Friedel-Crafts reaction. This reaction also allowed the synthesis of (pro-)ABPP chemical probes to identify the sites of interaction of these metabolites with enzymes. A new alternative photoredox synthesis route to the 3-benzylmenadione series was also developed, allowing on the one hand to obtain in a single step a greater variety of these functionalized derivatives, but also, thanks to its original mechanism involving redox cascades, to better understand the photoreactivity of naphthoquinones. Finally, heteroaromatic analogues of plasmodione, with improved potential solubility, were obtained through a Suzuki-Miyaura coupling

    Nouvelles méthodologies de synthÚse de 3-benz(o)ylménadiones et propriétés rédox à l'origine de leur(s) mode(s) d'action antipaludique

    No full text
    Malaria is a tropical parasitic disease that particularly affects young children in sub-Saharan Africa. Resistance to antimalarial drugs has been developing worldwide for nearly 50 years and there is an urgent need for new active compounds. Plasmodione, belonging to the 3-benzylmenadione series, is an effective drug candidate acting by interfering with the redox equilibrium of the parasite. However, its physicochemical properties are incompatible with an effective antimalarial treatment per os and its mechanism of action is still poorly understood. During this thesis we have developed various synthetic methods to synthesize i) the postulated metabolites: the 3-benzoylmenadiones, and ii) diverse analogues of plasmodione. The 3-benzoylmenadiones were obtained by a new variant of the key Friedel-Crafts reaction. This reaction also allowed the synthesis of (pro-)ABPP chemical probes to identify the sites of interaction of these metabolites with enzymes. A new alternative photoredox synthesis route to the 3-benzylmenadione series was also developed, allowing on the one hand to obtain in a single step a greater variety of these functionalized derivatives, but also, thanks to its original mechanism involving redox cascades, to better understand the photoreactivity of naphthoquinones. Finally, heteroaromatic analogues of plasmodione, with improved potential solubility, were obtained through a Suzuki-Miyaura coupling.Le paludisme est une maladie parasitaire tropicale touchant particuliĂšrement les jeunes enfants en Afrique subsaharienne. La rĂ©sistance aux mĂ©dicaments antipaludiques s’est dĂ©veloppĂ©e dans le monde entier depuis prĂšs de 50 ans et le besoin de nouveaux composĂ©s actifs est urgent. La plasmodione, appartenant Ă  la sĂ©rie des 3-benzylmĂ©nadiones, est un candidat mĂ©dicament efficace agissant en interfĂ©rant avec l’équilibre rĂ©dox du parasite. Cependant ses proprietĂ©s physico-chimiques sont incompatibles avec un traitement antipaludique efficace par voie orale et son mĂ©canisme d’action est encore mal connu. Durant cette thĂšse nous avons dĂ©veloppĂ© diverses mĂ©thodes de synthĂšse, i) des mĂ©tabolites postulĂ©s : les 3-benzoylmĂ©nadiones, et ii) des analogues variĂ©s de la plasmodione. Les 3-benzoylmĂ©nadiones ont Ă©tĂ© obtenues par un nouveau variant de la rĂ©action de Friedel-Crafts clĂ©. Cette rĂ©action a permis Ă©galement de synthĂ©tiser des sondes chimiques (pro-)ABPP pour identifier les sites d’intĂ©ractions de ces mĂ©tabolites avec des enzymes. Une nouvelle voie alternative de synthĂšse photorĂ©dox vers la sĂ©rie 3-benzylmĂ©nadione a Ă©galement Ă©tĂ© dĂ©veloppĂ©e, permettant d’une part d’obtenir en une seule Ă©tape une plus grande variĂ©tĂ© de ces dĂ©rivĂ©s fonctionnalisĂ©s, mais aussi, grĂące son mĂ©canisme original impliquant des cascades rĂ©dox, de mieux comprendre la photorĂ©activitĂ© des naphtoquinones. Enfin, des analogues hĂ©tĂ©roaromatiques de la plasmodione, avec une solubilitĂ© potentielle amĂ©liorĂ©e, ont Ă©tĂ© obtenus grĂące Ă  un couplage de Suzuki-Miyaura

    A Class of Valuable (Pro-)Activity-Based Protein Profiling Probes: Application to the Redox-Active Antiplasmodial Agent, Plasmodione

    Get PDF
    Plasmodione (PD) is a potent antimalarial redox-active drug acting at low nM range concentrations on different malaria parasite stages. In this study, in order to determine the precise PD protein interactome in parasites, we developed a class of (pro-)activity-based protein profiling probes (ABPP) as precursors of photoreactive benzophenone-like probes based on the skeleton of PD metabolites (PDO) generated in a cascade of redox reactions. Under UV-photoirradiation, we clearly demonstrate that benzylic oxidation of 3-benzylmenadione 11 produces the 3-benzoylmenadione probe 7, allowing investigation of the proof-of-concept of the ABPP strategy with 3-benzoylmenadiones 7−10. The synthesized 3-benzoylmenadiones, probe 7 with an alkyne group or probe 9 with -NO2 in para position of the benzoyl chain, were found to be the most efficient photoreactive and clickable probes. In the presence of various H-donor partners, the UV-irradiation of the photoreactive ABPP probes generates different adducts, the expected “benzophenone-like” adducts (pathway 1) in addition to “benzoxanthone” adducts (via two other pathways, 2 and 3). Using both human and Plasmodium falciparum glutathione reductases, three protein ligand binding sites were identified following photolabeling with probes 7 or 9. The photoreduction of 3-benzoylmenadiones (PDO and probe 9) promoting the formation of both the corresponding benzoxanthone and the derived enone could be replaced by the glutathione reductase-catalyzed reduction step. In particular, the electrophilic character of the benzoxanthone was evidenced by its ability to alkylate heme, as a relevant event supporting the antimalarial mode of action of PD. This work provides a proof-of-principle that (pro-)ABPP probes can generate benzophenone-like metabolites enabling optimized activity-based protein profiling conditions that will be instrumental to analyze the interactome of early lead antiplasmodial 3-benzylmenadiones displaying an original and innovative mode of action

    Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands

    No full text
    G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets

    Exploring the Dispersion and Electrostatic Components in Arene–Arene Interactions between Ligands and G4 DNA to Develop G4-Ligands

    No full text
    G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene–arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets

    Exploring the Dispersion and Electrostatic Components in Arene–Arene Interactions between Ligands and G4 DNA to Develop G4-Ligands

    No full text
    G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene–arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets
    corecore