64 research outputs found

    Effect of He-appm/DPA ratio on the damage microstructure of tungsten

    Get PDF
    In-situ ion irradiation and transmission electron microscopy has been used to examine the effects of the He appm to DPA ratio, temperature and dose on the damage structure of tungsten (W). Irradiations were performed with 15 or 60 keV He+ ions, achieving He-appm/displacements per atom (DPA) ratios of ~40,000 and ~2000, respectively, at temperatures between 500 and 1000°C to a dose of ~3 DPA. A high number of small dislocation loops with sizes around 5–20 nm and a He bubble lattice were observed for both He-appm/DPA ratios at 500°C with a bubble size ~1.5 nm. Using the g.b=0 criterion the loops were characterised as b = ±1/2 type. At 750°C bubbles do not form an ordered array and are larger in size compared to the irradiations at 500°C, with a diameter of ~3 nm. Fewer dislocation loops were observed at this temperature and were also characterised to be b = ±1/2 type. At 1000°C, no dislocation loops were observed and bubbles grew as a function of fluence attributed to vacancy mobility being higher and vacancy clusters becoming mobile

    Effects of temperature on the ion-induced bending of germanium and silicon nanowires

    Get PDF
    Nanowires can be manipulated using an ion beam via a phenomenon known as ion-induced bending (IIB). While the mechanisms behind IIB are still the subject of debate, accumulation of point defects or amorphisation are often cited as possible driving mechanisms. Previous results in the literature on IIB of Ge and Si nanowires have shown that after irradiation the aligned nanowires are fully amorphous. Experiments were recently reported in which crystalline seeds were preserved in otherwise-amorphous ion-beam-bent Si nanowires which then facilitated solid-phase epitaxial growth (SPEG) during subsequent annealing. However, the ion-induced alignment of the nanowires was lost during the SPEG. In this work, in situ ion irradiations in a transmission electron microscope at 400°C and 500°C were performed on Ge and Si nanowires, respectively, to supress amorphisation and the build-up of point defects. Both the Ge and Si nanowires were found to bend during irradiation thus drawing into question the role of mechanisms based on damage accumulation under such conditions. These experiments demonstrate for the first time a simple way of realigning single-crystal Ge and Si nanowires via IIB whilst preserving their crystal structure

    Preliminary assessment of the irradiation behaviour of the FeCrMnNi High-Entropy Alloy for nuclear applications

    Get PDF
    In the search for new nuclear materials with improved radiation tolerance and behavior, the high-entropy alloys (HEAs) have arisen as new candidates for structural components in nuclear reactors due to their suspected superior stability under irradiation. The metallurgical definition of HEAs is any alloy with multiple elements, five or more all in equiatomic compositions. The basic principle is the high mixing entropy of its solid solution lowers the Gibbs free energy giving a strong enhancement of the microstructural stability at low and high temperatures. The objective of this project is to assess the irradiation behaviour of the FeCrMnNi HEA system in order to investigate whether the high entropy effect is responsible for a microstructure with better radiation resistance compared to conventional alloys. In this work transmission electron microscopy (TEM) with in-situ ion irradiation has been used at the MIAMI-1 facility at the University of Huddersfield, UK: a 100 kV ion accelerator coupled with a JEOL JEM-2000FX TEM. This methodology allows the evolution of the HEA microstructure to be studied on the nanoscale during the ion irradiation

    Preliminary assessment of the irradiation behaviour of the FeCrMnNi High-Entropy Alloy for nuclear applications

    Get PDF
    In the search for new nuclear materials with improved radiation tolerance and behavior, the high-entropy alloys (HEAs) have arisen as new candidates for structural components in nuclear reactors due to their suspected superior stability under irradiation. The metallurgical definition of HEAs is any alloy with multiple elements, five or more all in equiatomic compositions. The basic principle is the high mixing entropy of its solid solution lowers the Gibbs free energy giving a strong enhancement of the microstructural stability at low and high temperatures. The objective of this project is to assess the irradiation behaviour of the FeCrMnNi HEA system in order to investigate whether the high entropy effect is responsible for a microstructure with better radiation resistance compared to conventional alloys. In this work transmission electron microscopy (TEM) with in-situ ion irradiation has been used at the MIAMI-1 facility at the University of Huddersfield, UK: a 100 kV ion accelerator coupled with a JEOL JEM-2000FX TEM. This methodology allows the evolution of the HEA microstructure to be studied on the nanoscale during the ion irradiation

    A candidate fusion engineering material, WC-FeCr

    Get PDF
    A new candidate fusion engineering material, WC-FeCr, has been irradiated with He ions at 25 and 500 °C. Ions were injected at 6 keV to a dose of ~15 dpa and 50 at. % He, simulating direct helium injection from the plasma. The microstructural evolution was continuously characterised in situ using transmission electron microscopy. In the FeCr phase, a coarse array of 3–6 nm bubbles formed. In the WC, bubbles were less prominent and smaller (~2 nm). Spherical-cap bubbles formed at hetero-phase interfaces of tertiary precipitates, indicating that enhanced processing routes to minimise precipitation could further improve irradiation tolerance

    Rapid and damage-free outgassing of implanted helium from amorphous silicon oxycarbide

    Get PDF
    Damage caused by implanted helium (He) is a major concern for material performance in future nuclear reactors. We use a combination of experiments and modeling to demonstrate that amorphous silicon oxycarbide (SiOC) is immune to He-induced damage. By contrast with other solids, where implanted He becomes immobilized in nanometer-scale precipitates, He in SiOC remains in solution and outgasses from the material via atomic-scale diffusion without damaging its free surfaces. Furthermore, the behavior of He in SiOC is not sensitive to the exact concentration of carbon and hydrogen in this material, indicating that the composition of SiOC may be tuned to optimize other properties without compromising resistance to implanted He

    The effect of temperature on bubble lattice formation in copper under in situ He ion irradiation

    Get PDF
    In situ ion irradiation in a transmission electron microscope was used to investigate the effects of temperature on radiation-induced bubble lattice formation in Cu by low energy (12 keV) helium ions. Bubble lattices were observed to form between − 100 and 100 °C, but at 200 °C lattice formation was impeded by continued growth and agglomeration of bubbles. Both nucleation of bubbles, and to a lesser extent bubble lattice formation, are observed at lower fluences as temperature increases, which we suggest is due to increased point defect mobility. Previous work on point defect concentrations in irradiated copper is considered when interpreting these results
    • …
    corecore