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Effect of He-appm/DPA ratio on the damage 

microstructure of tungsten 
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Abstract 

In-situ ion irradiation and transmission electron microscopy has been used to examine the effects of 

the He appm to DPA ratio, temperature and dose on the damage structure of tungsten (W). 

Irradiations were performed with 15 or 60 keV He
+ 

ions, achieving He-appm/displacements per atom 

(DPA) ratios of ~40,000 and ~2000, respectively, at temperatures between 500 and 1000°C to a dose 

of ~3 DPA. A high number of small dislocation loops with sizes around 5–20 nm and a He bubble 

lattice were observed for both He-appm/DPA ratios at 500°C with a bubble size ~1.5 nm. Using the 

g.b=0 criterion the loops were characterised as b = ±1/2<111> type. At 750°C bubbles do not form an 

ordered array and are larger in size compared to the irradiations at 500°C, with a diameter of ~3 nm. 

Fewer dislocation loops were observed at this temperature and were also characterised to be b = 

±1/2<111> type. At 1000°C, no dislocation loops were observed and bubbles grew as a function of 

fluence attributed to vacancy mobility being higher and vacancy clusters becoming mobile.  

1 Introduction 

Tungsten (W) is regarded as the primary candidate for use as a plasma facing material in the divertor 

of the ITER and DEMO fusion reactors due to its high melting temperature (~3400°C), low sputter 

yield and high thermal conductivity (~170 W.m
-1

.K
-1

 at room temperature)[1]. However, during 

service, the divertor will be exposed to high heat fluxes, radiation damage from 14.1 MeV neutrons 

and He injection from the plasma as well as He production from (n,α) reactions. The production of He 

from (n,α) reactions in W is low, with only around 5 atomic parts per million (appm) He being 

produced after 2 full power years in the DEMO reactor [2] resulting in a He-appm per displacement 

per atom (DPA) ratio of ~0.6. However, towards the surface the He-appm/DPA ratio will rise to 

1000s from He injection from the plasma.  

Tanno et al. [3], [4] report the formation of a void lattice in fast neutron irradiated W in the JOYO 

reactor at 750°C at 1.54 DPA (He-appm/DPA ~0.6). The authors report the formation of small voids 

of around 5 nm in samples irradiated at 400 and 750°C. Fukuda et al. [5] observed void formation 

only at higher (800°C) temperatures, however, these irradiations were performed in HFIR under 

thermal neutron irradiation which may be the cause of the difference in temperature that voids were 

observed at compared with Tanno et al. Yi et al. [6], [7] examined the effect of self-ion irradiation on 

the damage microstructure of W using 2 MeV W
+ 

to fluences of 3.7×10
13

 and 2.5×10
15

 W.cm
–2

 to a 

total of 3 DPA at temperatures of 300, 500 and 750°C (He-appm/DPA = 0). Small dislocation loops, 

mainly of b = ±1/2<111> type which consisted of an equal amount of vacancy and interstitial type 

loops, a minority of <100> type loops were also observed.  

Much work has focused on the effect of low energy He ions (< 5 keV, He-appm/DPA >1000s) on W 

to mimic the plasma-W interaction [8]–[15]. This results in the formation of so called ‘surface fuzz’ 

which leads to a reduction in effective thermal conductivity and increase in embrittlement leading to 

issues with surface melting and plasma erosion.  

The effects of how the He-appm to DPA ratio effect the damage microstructure of W in the literature 

are often difficult to extract and compare due to variations in the experimental conditions between 

studies. This work aims to study the damage microstructure of W using He
+
 ion irradiation to 

concomitantly impart damage and implant He. Using the in-situ ion irradiation technique with He
+
 the 

He-appm/DPA ratio can be altered simply by changing the energy of the incident He
+
 beam, by 

increasing the beam energy the amount of He implantation into a transmission electron microscope 



 

(TEM) foil of around 50–60 nm thickness will decrease, reducing the He-appm/DPA ratio. By 

altering the He-appm/DPA ratio, temperature and total fluence (dose), we will be able to generate a 

consistent dataset of how these 3 parameters affect the damage microstructure of W. 

2 Experimental 

Samples of W were prepared by punching 3 mm discs from foil (Alfa-Aesar, 99.95 wt-%, main 

impurity C 0.003 wt%). The discs were then annealed at 1400°C for 2 hours under vacuum (0.1 Pa) to 

remove any pre-existing effects from cold working. After annealing the discs were electropolished 

with 0.5 wt-% NaOH solution with a Tenupol-5 at room temperature. Samples were washed in three 

separate baths of CH3OH to remove any residue from the electrolyte. 

In-situ ion irradiation was performed using the Microscope and Ion Accelerator for Materials 

Investigation facility (MIAMI-1) consisting of a JEOL JEM-2000FX operated at 200 kV were the 

electron beam was incident to the sample normal and the ion beam was 30° to the sample normal. 

Post-irradiation examination (PIE) was also performed with a JEOL JEM-3010 operated at 300 kV.  

Damage and He implantation were calculated using the Stopping Range of Ions in Matter (SRIM) 

Monte Carlo computer code [16]. DPA was calculated using the method proposed by Stoller et al. [17] 

using a displacement energy for W of 90 eV [18]. Samples were irradiated using 15 or 60 keV He
+
 

ions to achieve He-appm/DPA ratios of ~40,000 and ~2,000, respectively. The flux was set for each 

He
+
 energy to keep the DPA rate constant at ~9×10

–4
 DPA.s

–1
 with a flux of ~3.40×10

13 
and

 

~6.8×10
13

 ions.cm
–2

.s
–1

 for 15 and 60 keV, respectively. The difference in the rise of temperature 

induced from the ion beam was calculated to be 0.5-2.5°C for the 15 and 60 keV experiments 

respectively across the entire sample and so the difference in heating between the different fluxes is 

considered negligible. The effect of temperature was examined with irradiations performed at 500 and 

750°C for both He-appm/DPA ratios and also 1000°C for the He-appm/DPA ratio of ~2000.  

3 Results and Discussion 

3.1 Damage microstructure with a He apppm/DPA ratio ~2000 

Samples irradiated at 500°C showed the formation of small (<5 nm) loops which grew in number 

density but did not grow in size (Figure 1). It was observed that the loops appeared/disappeared 

randomly across the grains throughout the experiments and as such we did not observe a significant 

change in number density as a function of local changes in diffraction contrast. Figure 2 shows post 

irradiation two-beam bright field (BF) imaging of the dislocation loops after 3 DPA with the circled 

loops generating contrast when g = 1̅10 and 020 were excited but no contrast when g = 121̅ is excited, 

indicating they have a Burgers vector of b = ±1/2[1̅11].  He bubbles with a diameter of around 1.5 nm 

were observed to form a bubble lattice (Figure 3) which has been observed previously in W under He
+
 

irradiation at similar temperatures [19].  

 
Figure 1. BF-TEM images of W sample irradiated at 500°C with 60 keV He+ ions achieving a He appm/DPA ratio of 

~2000 to: a) 1.0 DPA, b) 2.0 DPA and c) 3.0 DPA. 



 

  

 

 

 

 

 

 

 

 

 

 

Increasing the irradiation temperature to 750°C revealed a largely different microstructure. In this 

case, larger bubbles of around 3 nm in diameter appeared and grew in number density as a function of 

fluence. Figure 4 shows the evolution of the microstructure, bubble size and density as a function of 

DPA using 60 keV He
+
 ions, achieving a He-appm/DPA ratio of ~2000 at 750°C to 3 DPA. Post-

irradiation analysis revealed the presence of small (< 5 nm) dislocation loops shown in Figure 5, it can 

be seen that the loops were of b = ±1/2<111> type. Monovacancy migration in W has an activation 

energy of 1.7 eV and becomes important at temperatures above 0.15 of the melting temperature (Tm) 

Figure 2. Two-beam TEM images of W sample irradiated at 500°C with 60 keV He+ ions to 3 DPA with a He 

appm/DPA ratio of ~2000, arrows indicate excited g vector, a) g = �̅�𝟏𝟎, b) g = 𝟏�̅�𝟎 and c) g = 𝟏𝟐�̅�. 

Figure 3. a) BF-TEM image of sample irradiated at 500°C with 60 keV He+ ions to 3 DPA with a He appm/DPA ratio of 

~2000 taken at +0.76 µm overfocus showing bubble lattice formed. Inset shows reduced fast Fourier transform (FFT) of 

image showing a 3D ordering of the bubbles and b) shows enlarged area within square in a 

 

Figure 4. BF-TEM images of bubbles in W sample irradiated at 750°C with 60 keV He+ ions, achieving a He 

appm/DPA ratio of ~2,000 to: a) 1.0 DPA, b) 2.0 DPA and c) 3.0 DPA. Images taken at +3.1μm focus with 

bubbles appearing as dark circles. 

a) b) 



 

[20]. At the irradiation temperature of 750°C, larger bubble formation compared to the 500°C 

irradiation is evidence for a higher mobility of vacancies.  

Irradiations at 1000°C revealed a damage microstructure than consisted solely of He bubbles and no 

loops shown in Figure 6. The bubbles grew in size, from around 4 to 7 nm in diameter from 0.25 to 

1.0 DPA respectively (fluence =1×10
17

 ions.cm
-2

).  

 

 

A high temperature recovery stage in W is reported at around 0.31 Tm, ~850°C. However, the process 

behind this recovery stage is still a subject of debate and has been attributed to the migration of larger 

clusters and emission of monovacancies from clusters resulting in void coarsening [21]. 

Monovacancies will be very mobile at this temperature (0.35 Tm). Bubble coalescence was also 

observed with bubble growth resulting in agglomeration with other bubbles in close proximity and not 

via bubble migration. 

3.2 Damage microstructure with a He-apppm/DPA ratio ~40,000   

Samples irradiated at 500°C showed the formation of a bubble lattice with bubbles ~1.5 nm in 

diameter, similar to the sample irradiated with a He-appm/DPA ratio of ~2000. Figure 7 shows the 

evolution of the microstructure as a function of fluence. Figure 7a shows the presence of small (≤ 5 

nm) dislocation loops and a bubble lattice is confirmed by the FFT inset in Figure 7a showing 4 lobes 

confirming 2D ordering in the image, however, as this is a transmission image it indicates the 

ordering will also be into the plane of the image, suggesting 3D ordering of bubbles. PIE revealed a 

range of dislocation loop sizes in the region of ~5–20 nm – larger than those seen in the lower He-

appm/DPA ratio. Figure 8 shows post irradiation two-beam imaging of the dislocation loops after 3 

DPA with the solid line circled loops showing contrast when g = 020 and 1̅2̅1 and no contrast when g 

= 211̅ was excited indicating they have a Burgers vector of b = ±1/2[11̅1]. The loops circled with a 

dashed line were determined to also be b = ±1/2<111> type dislocation loops with a Burgers vector of 

Figure 5. Two-beam TEM taken at –304 nm underfocus, images of sample irradiated at 750 °C using 60 keV He+ ions 

to achieve a He appm/DPA ratio ~2,000 to 3.0 DPA, arrows indicate g vector excited a) �̅�𝟏𝟎 b) �̅��̅�𝟏  and c) 𝟎�̅�𝟎. 

Figure 6. BF-TEM images of sample irradiated at 1000°C using 60 keV He ions to achieve a He appm/DPA ratio of 

~2,000 , all images at +4.6 μm focus a) 0.25 DPA, b) 0.5 DPA and c) 1.0 DPA 

 

 



 

±1/2[1̅11]. 

 

Figure 7. BF-TEM images of sample irradiated at 500°C with 15 keV He+ ions to achieve a He-appm/DPA ratio of 

~40,000. Images taken with +3.1 μm overfocus a) 1.0 DPA (inset is FFT of image showing 4 lobes indicative of 3D 

ordering), b) 2.0 DPA and c) 3.0 DPA. 

 

Figure 8. Two-beam TEM images taken close to focus of sample irradiated at 500°C with 15 keV He+ ions to achieve 

a He-appm/DPA ratio of ~40,000 to 3.0 DPA: a) g = 020, b) g = 𝟐𝟏�̅�, and c) g = �̅��̅�𝟏. 

Increasing the irradiation temperature to 750°C resulted in larger bubbles, ~3 nm in diameter which 

grew in number density as a function of fluence but remained around constant in size, similar to the 

samples irradiated with a He-appm/DPA ratio ~2,000. Figure 9 shows the evolution of the 

microstructure a function of DPA. At the irradiation temperature of 750°C, a larger average bubble 

size is evidence for a higher mobility of vacancies compared to the irradiation at 500°C.  

 

Figure 9. BF-TEM images of W sample irradiated at 750°C: a) 0.7 DPA, b) 1.5 DPA and c) 2.2 DPA. All images taken 

with +3.1 µm underfocus. 

 

a) b) 



 

4 Conclusions 

W samples were observed in situ via TEM whilst being irradiated using He
+ 

ions at 15 or 60 keV 

achieving a He-appm/DPA ratio of ~40,000 or ~2000, respectively, at temperatures between 500 and 

1000°C to a dose of ~3 DPA. A high number of small dislocation loops with sizes around 5–10 nm 

and a He bubble lattice were observed for both He-appm/DPA ratios at 500°C with a bubble size ~1.5 

nm. Using the g.b=0 criterion, the loops were characterised as b = ±1/2<111> type and it is assumed 

that with vacancies forming the bubble lattice it is likely the loops are interstitial in nature. At 750°C 

bubbles do not form an ordered array and are larger in size compared to the irradiations at 500°C, with 

a diameter of ~3 nm. A lower density of dislocation loops were observed at this temperature and were 

also characterised to be b = ±1/2<111> type loops. At 1000°C no dislocation loops are observed and 

bubbles grow as a function of fluence from ~4 to 7 nm in diameter up to 1.0 DPA (fluence ~1×10
17

 

ions.cm
-2

). This is attributed to vacancy mobility being higher and larger vacancy clusters becoming 

mobile at temperatures above 0.31 Tm (stage V recovery step) as well as becoming unstable via 

dissociation into monovacancies providing a high flux of vacancies for growth as well as by bubble 

coalescence.  
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