550 research outputs found

    A novel c.-22T>C mutation in GALK1 promoter is associated with elevated galactokinase phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many genetic variations of <it>GALK1 </it>have been identified in the patients with galactokinase (GALK1) deficiency. However, the molecular characteristics of <it>GALK1 </it>in individuals with elevated GALK1 activity are relatively unknown.</p> <p>Methods</p> <p>We investigated the relationship between elevated GALK1 activity and the molecular <it>GALK1 </it>gene variations, and the molecular mechanism underlying elevated GALK1 activity. PCR products from 63 subjects, without any attenuation of galactose degradation enzymes, were sequenced to screen for nucleotide alterations in the <it>GALK1 </it>promoter.</p> <p>Results</p> <p>Three nucleotide substitutions were identified: c.-179A>G, c.-27A>C, and c.-22T>C. With respect to the c.-22T>C mutation, GALK1 activity in 13 subjects with the T/C or C/C genotype was significantly higher than those in 50 subjects with the T/T genotype (p < 0.001). The dual luciferase reporter assay in Hep3B cells showed that the luciferase activity with the <it>GALK1 </it>promoter with the c.-22C mutant allele increased approximately 2.5-fold, compared to that with the c.-22T. A specific DNA-protein complex was observed in an electrophoretic mobility shift assay, with slightly higher affinity to c.-22C than to c.-22T.</p> <p>Conclusion</p> <p>The c.-22T>C mutation, which was observed frequently in individuals with elevated GALK1 activity, increased the expression of a reporter gene through enhanced binding of a currently unidentified nuclear protein. These results suggest that the elevated GALK1 activity resulted from enhanced gene expression, due to nucleotide variation within <it>GALK1 </it>promoter.</p

    COVID-19 vaccines that reduce symptoms but do not block infection need higher coverage and faster rollout to achieve population impact

    Get PDF
    Trial results for two COVID-19 vaccines suggest at least 90% efficacy against symptomatic disease (VEDIS). It remains unknown whether this efficacy is mediated by lowering SARS-CoV-2 infection susceptibility (VESUSC) or development of symptoms after infection (VESYMP). We aim to assess and compare the population impact of vaccines with different efficacy profiles (VESYMP and VESUSC) satisfying licensure criteria. We developed a mathematical model of SARS-CoV-2 transmission, calibrated to data from King County, Washington. Rollout scenarios starting December 2020 were simulated with combinations of VESUSC and VESYMP resulting in up to 100% VEDIS. We assumed no reduction of infectivity upon infection conditional on presence of symptoms. Proportions of cumulative infections, hospitalizations and deaths prevented over 1 year from vaccination start are reported. Rollouts of 1 M vaccinations (5000 daily) using vaccines with 50% VEDIS are projected to prevent 23–46% of infections and 31–46% of deaths over 1 year. In comparison, vaccines with 90% VEDIS are projected to prevent 37–64% of infections and 46–64% of deaths over 1 year. In both cases, there is a greater reduction if VEDIS is mediated mostly by VESUSC. The use of a “symptom reducing” vaccine will require twice as many people vaccinated than a “susceptibility reducing” vaccine with the same 90% VEDIS to prevent 50% of the infections and death over 1 year. Delaying the start of the vaccination by 3 months decreases the expected population impact by more than 50%. Vaccines which prevent COVID-19 disease but not SARS-CoV-2 infection, and thereby shift symptomatic infections to asymptomatic infections, will prevent fewer infections and require larger and faster vaccination rollouts to have population impact, compared to vaccines that reduce susceptibility to infection. If uncontrolled transmission across the U.S. continues, then expected vaccination in Spring 2021 will provide only limited benefit

    QCD Sum Rule Analysis of the Decays BK+B \to K \ell^+ \ell^- and BK+B \to K^* \ell^+ \ell^-

    Full text link
    We use QCD sum rules to calculate the hadronic matrix elements governing the rare decays BK+B \to K \ell^+ \ell^- and BK+B \to K^* \ell^+ \ell^- induced by the flavour changing neutral current bsb \to s transition. We also study relations among semileptonic and rare BK()B \to K^{(*)} decay form factors. The analysis of the invariant mass distribution of the lepton pair in BK()+B \to K^{(*)} \ell^+ \ell^- and of the angular asymmetry in BK+B \to K^* \ell^+ \ell^- provides us with interesting tests of the Standard Model and its extensions.Comment: 26 pages REVTEX + 7 figures. Some typos corrected, figure 5 and 7 modified. This version will appear on Physical Review

    Estimating the Impact of Plasma HIV-1 RNA Reductions on Heterosexual HIV-1 Transmission Risk

    Get PDF
    Background: The risk of sexual transmission of HIV-1 is strongly associated with the level of HIV-1 RNA in plasma making reduction in HIV-1 plasma levels an important target for HIV-1 prevention interventions. A quantitative understanding of the relationship of plasma HIV-1 RNA and HIV-1 transmission risk could help predict the impact of candidate HIV-1 prevention interventions that operate by reducing plasma HIV-1 levels, such as antiretroviral therapy (ART), therapeutic vaccines, and other non-ART interventions. Methodology/Principal Findings: We use prospective data collected from 2004 to 2008 in East and Southern African HIV-1 serodiscordant couples to model the relationship of plasma HIV-1 RNA levels and heterosexual transmission risk with confirmation of HIV-1 transmission events by HIV-1 sequencing. The model is based on follow-up of 3381 HIV-1 serodiscordant couples over 5017 person-years encompassing 108 genetically-linked HIV-1 transmission events. HIV-1 transmission risk was 2.27 per 100 person-years with a log-linear relationship to log10 plasma HIV-1 RNA. The model predicts that a decrease in average plasma HIV-1 RNA of 0.74 log10 copies/mL (95% CI 0.60 to 0.97) reduces heterosexual transmission risk by 50%, regardless of the average starting plasma HIV-1 level in the population and independent of other HIV-1-related population characteristics. In a simulated population with a similar plasma HIV-1 RNA distribution the model estimates that 90% of overall HIV-1 infections averted by a 0.74 copies/mL reduction in plasma HIV-1 RNA could be achieved by targeting this reduction to the 58% of the cohort with plasma HIV-1 levels ≥4 log10 copies/mL. Conclusions/Significance: This log-linear model of plasma HIV-1 levels and risk of sexual HIV-1 transmission may help estimate the impact on HIV-1 transmission and infections averted from candidate interventions that reduce plasma HIV-1 RNA levels

    Demographics of sources of HIV-1 transmission in Zambia: a molecular epidemiology analysis in the HPTN 071 PopART study

    Get PDF
    BACKGROUND: In the last decade, universally available antiretroviral therapy (ART) has led to greatly improved health and survival of people living with HIV in sub-Saharan Africa, but new infections continue to appear. The design of effective prevention strategies requires the demographic characterisation of individuals acting as sources of infection, which is the aim of this study. METHODS: Between 2014 and 2018, the HPTN 071 PopART study was conducted to quantify the public health benefits of ART. Viral samples from 7124 study participants in Zambia were deep-sequenced as part of HPTN 071-02 PopART Phylogenetics, an ancillary study. We used these sequences to identify likely transmission pairs. After demographic weighting of the recipients in these pairs to match the overall HIV-positive population, we analysed the demographic characteristics of the sources to better understand transmission in the general population. FINDINGS: We identified a total of 300 likely transmission pairs. 178 (59·4%) were male to female, with 130 (95% CI 110-150; 43·3%) from males aged 25-40 years. Overall, men transmitted 2·09-fold (2·06-2·29) more infections per capita than women, a ratio peaking at 5·87 (2·78-15·8) in the 35-39 years source age group. 40 (26-57; 13·2%) transmissions linked individuals from different communities in the trial. Of 288 sources with recorded information on drug resistance mutations, 52 (38-69; 18·1%) carried viruses resistant to first-line ART. INTERPRETATION: HIV-1 transmission in the HPTN 071 study communities comes from a wide range of age and sex groups, and there is no outsized contribution to new infections from importation or drug resistance mutations. Men aged 25-39 years, underserved by current treatment and prevention services, should be prioritised for HIV testing and ART. FUNDING: National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health

    Expanding ART for Treatment and Prevention of HIV in South Africa: Estimated Cost and Cost-Effectiveness 2011-2050

    Get PDF
    Background: Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa. Methods: We model a best case scenario of 90% annual HIV testing coverage in adults 15-49 years old and four ART eligibility scenarios: CD4 count <200 cells/mm3(current practice), CD4 count <350, CD4 count <500, all CD4 levels. 2011-2050 outcomes include deaths, disability adjusted life years (DALYs), HIV infections, cost, and cost per DALY averted. Service and ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses. Results: Expanding ART to CD4 count <350 cells/mm3prevents an estimated 265,000 (17%) and 1.3 million (15%) new HIV infections over 5 and 40 years, respectively. Cumulative deaths decline 15%, from 12.5 to 10.6 million; DALYs by 14% from 109 to 93 million over 40 years. Costs drop 504millionover5yearsand504 million over 5 years and 3.9 billion over 40 years with breakeven by 2013. Compared with the current scenario, expanding to <500 prevents an additional 585,000 and 3 million new HIV infections over 5 and 40 years, respectively. Expanding to all CD4 levels decreases HIV infections by 3.3 million (45%) and costs by 10billionover40years,withbreakevenby2023.By2050,usinghigherARTandmonitoringcosts,allCD4levelssaves10 billion over 40 years, with breakeven by 2023. By 2050, using higher ART and monitoring costs, all CD4 levels saves 0.6 billion versus current; other ART scenarios cost 9194perDALYaverted.IfARTreducestransmissionby999-194 per DALY averted. If ART reduces transmission by 99%, savings from all CD4 levels reach 17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%. Conclusion: Increasing the provision of ART to <350 cells/mm3 may significantly reduce costs while reducing the HIV burden. Feasibility including HIV testing and ART uptake, retention, and adherence should be evaluated

    Novel Use of Surveillance Data to Detect HIV-Infected Persons with Sustained High Viral Load and Durable Virologic Suppression in New York City

    Get PDF
    Background: Monitoring of the uptake and efficacy of ART in a population often relies on cross-sectional data, providing limited information that could be used to design specific targeted intervention programs. Using repeated measures of viral load (VL) surveillance data, we aimed to estimate and characterize the proportion of persons living with HIV/AIDS (PLWHA) in New York City (NYC) with sustained high VL (SHVL) and durably suppressed VL (DSVL). Methods/Principal Findings: Retrospective cohort study of all persons reported to the NYC HIV Surveillance Registry who were alive and 12yearsoldbytheendof2005andwhohad12 years old by the end of 2005 and who had 2 VL tests in 2006 and 2007. SHVL and DSVL were defined as PLWHA with 2 consecutive VLs $100,000 copies/mL and PLWHA with all VLs #400 copies/mL, respectively. Logistic regression models using generalized estimating equations were used to model the association between SHVL and covariates. There were 56,836 PLWHA, of whom 7 % had SHVL and 38 % had DSVL. Compared to those without SHVL, persons with SHVL were more likely to be younger, black and have injection drug use (IDU) risk. PLWHA with SHVL were more likely to die by 2007 and be younger by nearly ten years, on average. Conclusions/Significance: Nearly 60 % of PLWHA in 2005 had multiple VLs, of whom almost 40 % had DSVL, suggesting successful ART uptake. A small proportion had SHVL, representing groups known to have suboptimal engagement in care. This group should be targeted for additional outreach to reduce morbidity and secondary transmission. Measures based o
    corecore