47 research outputs found

    Identification and synthesis of a unique thiocarbazate cathepsin L inhibitor

    Get PDF
    Library samples containing 2,5-disubstituted oxadiazoles were identified as potent hits in a high throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR) directed at discovering inhibitors of cathepsin L. However, when synthesized in pure form, the putative actives were found to be devoid of biological activity. Analyses by LC–MS of original library samples indicated the presence of a number of impurities, in addition to the oxadiazoles. Synthesis and bioassay of the probable impurities led to the identification of a thiocarbazate that likely originated via ring opening of the oxadiazole. Previously unknown, thiocarbazates (-)-11 and (-)-12 were independently synthesized as single enantiomers and found to inhibit cathepsin 20 L in the low nanomolar range

    Identification and characterization of 3-substituted pyrazolyl esters as alternate substrates for cathepsin B: The confounding effects of DTT and cysteine in biological assays

    Get PDF
    Substituted pyrazole esters were identified as hits in a high throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR) to identify inhibitors of the enzyme cathepsin B. Members of this class, along with functional group analogs, were synthesized in an effort to define the structural requirements for activity. Analog characterization was hampered by the need to include a reducing agent such as dithiothreitol (DTT) or cysteine in the assay, highlighting the caution required in interpreting biological data gathered in the presence of such nucleophiles. Despite the confounding effects of DTT and cysteine, our studies demonstrate that the pyrazole 1 acts as alternate substrate for cathepsin B, rather than as an inhibitor

    Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum

    Get PDF
    Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC50 values from 30 nM to 1.6 μM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents. © 2009 Elsevier Ltd. All rights reserved

    Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway

    Get PDF
    A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts

    Identification of Novel Inhibitors of Dietary Lipid Absorption Using Zebrafish

    Get PDF
    Pharmacological inhibition of dietary lipid absorption induces favorable changes in serum lipoprotein levels in patients that are at risk for cardiovascular disease and is considered an adjuvant or alternative treatment with HMG-CoA reductase inhibitors (statins). Here we demonstrate the feasibility of identifying novel inhibitors of intestinal lipid absorption using the zebrafish system. A pilot screen of an unbiased chemical library identified novel compounds that inhibited processing of fluorescent lipid analogues in live zebrafish larvae. Secondary assays identified those compounds suitable for testing in mammals and provided insight into mechanism of action, which for several compounds could be distinguished from ezetimibe, a drug used to inhibit cholesterol absorption in humans that broadly inhibited lipid absorption in zebrafish larvae. These findings support the utility of zebrafish screening assays to identify novel compounds that target complex physiological processes

    AIDS-driven nucleoside chemistry.

    No full text

    Medicinal Chemistry: Where Are All the Women?

    No full text
    A review of multiple parameters including membership in professional organizations, corresponding authorship of medicinal chemistry journal articles, and representation in professional and leadership positions reveals that the percentage of women who participate in professional medicinal chemistry activities is less than 20%. These surrogate demographics are consistent across organizations, regions in the world and the various parameters evaluated, and parallel statistics compiled on the broader participation of women in all STEM fields. As in other STEM fields, a leaky pipeline is also evident. Suggestions for how to encourage and support women in medicinal chemistry in order to provide a more balanced representation are provided

    PTPRT epigenetic silencing defines lung cancer with STAT3 activation and can direct STAT3 targeted therapies

    No full text
    Signal Transducers and Activators of Transcription-3 (STAT3), a potent oncogenic transcription factor, is constitutively activated in lung cancer, but mutations in pathway genes are infrequent. Protein Tyrosine Phosphatase Receptor-T (PTPRT) is an endogenous inhibitor of STAT3 and PTPRT loss-of-function represents one potential mechanism of STAT3 hyperactivation as observed in other malignancies. We determined the role of PTPRT promoter methylation and sensitivity to STAT3 pathway inhibitors in non-small cell lung cancer (NSCLC). TCGA and Pittsburgh lung cancer cohort methylation data revealed hypermethylation of PTPRT associated with diminished mRNA expression in a subset of NSCLC patients. We report frequent hypermethylation of the PTPRT promoter which correlates with transcriptional silencing of PTPRT and increased STAT3 phosphorylation (Y705) as determined by methylation-specific PCR (MSP) and real time quantitative reverse transcription (RT)-PCR in NSCLC cell lines. Silencing of PTPRT using siRNA in H520 lung cancer cell line resulted in increased pSTAT3Tyr705 and upregulation of STAT3 target genes such as Cyclin D1 and Bcl-XL expression. We show this association of PRPRT methylation with upregulation of the STAT3 target genes Cyclin D1 and Bcl-XL in patient derived lung tumour samples. We further demonstrate that PTPRT promoter methylation associated with different levels of pSTAT3Ty705 in lung cancer cell lines had selective sensitivity to STAT3 pathway small molecule inhibitors (SID 864,669 and SID 4,248,543). Our data strongly suggest that silencing of PTPRT by promoter hypermethylation is an important mechanism of STAT3 hyperactivation and targeting STAT3 may be an effective approach for the development of new lung cancer therapeutics
    corecore