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Identification and synthesis of a unique thiocarbazate cathepsin L inhibitor

Abstract
Library samples containing 2,5-disubstituted oxadiazoles were identified as potent hits in a high throughput
screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR) directed at discovering
inhibitors of cathepsin L. However, when synthesized in pure form, the putative actives were found to be
devoid of biological activity. Analyses by LC–MS of original library samples indicated the presence of a
number of impurities, in addition to the oxadiazoles. Synthesis and bioassay of the probable impurities led to
the identification of a thiocarbazate that likely originated via ring opening of the oxadiazole. Previously
unknown, thiocarbazates (-)-11 and (-)-12 were independently synthesized as single enantiomers and found
to inhibit cathepsin 20 L in the low nanomolar range.
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Abstract—Library samples containing 2,5-disubstituted oxadiazoles were identified as potent hits in a high throughput screen (HTS)
of the NIH Molecular Libraries Small Molecule Repository (MLSMR) directed at discovering inhibitors of cathepsin L. However,
when synthesized in pure form, the putative actives were found to be devoid of biological activity. Analyses by LC–MS of original
library samples indicated the presence of a number of impurities, in addition to the oxadiazoles. Synthesis and bioassay of the prob-
able impurities led to the identification of a thiocarbazate that likely originated via ring opening of the oxadiazole. Previously
unknown, thiocarbazates (�)-11 and (�)-12 were independently synthesized as single enantiomers and found to inhibit cathepsin

20 L in the low nanomolar range.
� 2007 Elsevier Ltd. All rights reserved.

The cathepsins comprise a family of lysosomal protease
enzymes whose primary function (i.e., protein degrada-
tion) plays a critical role in normal cellular homeosta-
sis.1 Overexpression of cathepsin L and/or abnormal
activity has been implicated in a number of disease
states.2 For example, cathepsin L is responsible for bone

30 resorption through degradation of collagen type I; this
disregulation is believed to lead to osteo- and rheuma-
toid arthritis.3 In addition, several infective organisms,
such as SARS and Ebola viruses, utilize cathepsin L-like
proteins for replication in human cells.4 The large num-
ber of disease states associated with cathepsin L calls for
an understanding of the biological function.2

Recently, the Penn Center for Molecular Discovery
(PCMD),5 completed a high throughput screening
(HTS) campaign of the NIH Molecular Libraries Small

40 Molecule Repository (MLSMR) to identify inhibitors of
members of the papain-like cysteine protease family,
including cathepsins B, L, and S.6 In this letter, we detail

our continuing efforts to create a comprehensive, pub-
licly available profile of small-molecule inhibitors of
the cysteine protease class, and herein describe the iden-
tification of a novel class of potent cathepsin L
inhibitors.

Previously reported inhibitors of cathepsin L include the
peptides, leupeptin and aprotinin, and the fluoromethyl

50ketone, Z-LLL-FMK.3,7 The few known, potent small-
molecule inhibitors are either peptidic and therefore
likely to suffer from physiological instability and poor
permeability, or are non-selective for cathepsin L.3,8,9

The identification of potent, selective, stable, and cell
permeable small-molecule inhibitors would therefore
be a valuable tool to interrogate cathepsin L and cathep-
sin L-like function, as well as to provide potential start-
ing points for drug discovery and development.10–15

Initial HTS results of our cathepsin L screen indicated
60that several structurally related oxadiazoles exhibited

potent inhibitory activity (Table 1).16–18

The most potent hit, cataloged in the MLSMR as disub-
stituted oxadiazole 1, exhibited an IC50 of 0.13 lM.17

Wells containing related analogs (2–5), differing only

0960-894X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Fin the amide nitrogen substitution, displayed a range of
activities (IC50 = 0.16–0.51 lM), suggesting a nascent
structure activity relationship. As is our practice, library
samples containing the putative active oxadiazoles were
evaluated for both purity and integrity by LC–MS anal-

70 ysis. This analysis indicated that the primary constituent
of each sample was indeed the expected oxadiazole, in
up to 60% purity, however numerous impurities were
also present. To confirm the biological activity attrib-
uted to 1, a synthetic sequence was developed to gener-
ate the oxadiazoles in pure form.

Although little literature precedence exists for the con-
struction of compounds such as 1, we realized that mod-
ification of the Woodward–Confalone19 approach to a-
amino acid substituted oxadiazolethiones could provide

80 an entry to this class of sulfur-based 2,5-disubstituted

oxadiazoles. Toward this end, commercially available
LL-Boc-Trp-OH was converted in high yield to the corre-
sponding hydrazide (+)-6, on a 10-g scale (Scheme 1).20

Cyclization with carbon disulfide in ethanol at reflux
afforded the expected substituted thione (+)-7 as a stable
solid in excellent yield, which upon chemoselective alkyl-
ation with 2-bromo-N-(2-ethyl-phenyl)-acetamide21 (9)
efficiently generated (+)-8 (94% yield). Further study
indicated that isolation of (+)-7 was unnecessary, and

90(+)-8 could be prepared directly from (+)-6, in a single
flask. Both sequences furnished (+)-8 in high yield. In
similar fashion, the antipode, (�)-8, was prepared start-
ing from DD-Boc-Trp-OH. High enantiomeric purities
(>99%) were demonstrated via chiral supercritical fluid
chromatography.

Initial attempts to remove the Boc-group utilizing HCl
in dioxane (4 N) or HCl in water (6 N) were compro-
mised by the poor solubility of (+)-8. However, small
quantities of the HCl salt of 1 could be obtained by

100treatment with 6 N HCl over 45 min. Upon LC–MS
analysis of synthetic 1, we recognized that the impurities
formed during the acid-promoted Boc-deprotection step
were identical to those found in the library screening
samples (vide infra). Optimal conditions to remove the
Boc-group were eventually developed. Specifically,
treatment of (+)-8 with 25% water in TFA for 15 min,
followed in turn by adjustment of the pH to 8.0 with
NaHCO3 and aqueous extraction with methylene chlo-
ride-furnished the free-base of 1 in 89% yield and 99%

110after column chromatography. In the end, oxadiazole
1 was prepared on gram scale from LL-Boc-Trp-OH;
the overall yield was 76%.

Table 1. Cathepsin L inhibitory activity of oxadiazole-containing

library samplesa

N N

O S

O

N

NH2  HClHN

R1

R2(S)
+  Impurities

PubChem SID R1 R2 IC50
b (lM)

861540 (1) 2-Ethylbenzene H 0.13 ± 0.01

861087 (2) 2,4-Dimethylbenzene H 0.16 ± 0.05

861840 (3) Me Me 0.17 ± 0.02

861542 (4) 2,3-Dimethylbenzene H 0.30 ± 0.04

861992 (5) Et Et 0.51 ± 0.02

a Library samples containing the parent oxadiazole with impurities.
b IC50 values are reported as means ± standard deviation (number of

determinations = 3).
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O
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a) Et3N, EtOCOCl
 THF, -10 oC, 15 min

b) NH2-NH2, MeOH
 0 oC, 45 min, (96%)

a) CS2, KOH, EtOH
reflux, 2 h;

b) HCl (1 N) (95%)

2-bromo-N-(2-ethyl-
phenyl)-acetamide (9)

Et3N, CHCl3, 23 oC, 1 h 
(94%)

(+)-8; R1 = H, R2 = Boc

1

6 N HCl (aq)
23 oC, 45 min (10%
plus recovered (+)-8

   or
TFA:H2O (3:1)
23 oC, 15 min (89%)

S

Scheme 1. Synthesis of 2,5-disubstituted oxadiazoles.

2 M. C. Myers et al. / Bioorg. Med. Chem. Lett. xxx (2007) xxx–xxx

BMCL 12187 No. of Pages 5

3 November 2007 Disk used
ARTICLE IN PRESS

Please cite this article in press as: Myers, M. C. et al., Bioorg. Med. Chem. Lett. (2007), doi:10.1016/j.bmcl.2007.10.107



U
N

C
O

R
R

EC
TE

D
PR

O
O

FTo our surprise, the free-base of 1 was found to be com-
pletely devoid of activity when assayed against cathepsin
L.18 This result suggested that an impurity present in the
original library sample was responsible for the observed
activity. Based on LC–MS analyses of the biologically
active samples, we hypothesized that the active compo-
nent was likely the ring-opened product 10, formed via

120 acid-promoted addition of H2O to (+)-8 (Fig. 1).

The presence of a molecular [M+1] ion equal to 440 amu
in the LC–MS analysis of impure samples was consistent
with the presence of 10, thereby providing strong sup-
port for the hypothesis.

Thiocarbazates such as 10 have not been described pre-
viously in the literature. However, these compounds do
bear structural resemblance to aza-peptides22–24 (e.g., A;
Fig. 2),25 examples, of which have been reported to ex-
hibit cysteine protease inhibitory activity through a

130mechanism involving attack by the active site cysteine
on the carbamate carbonyl.26

To test the hypothesis that 10 was indeed the active spe-
cies, we devised an expedient synthesis of this structural
class. We envisioned that introduction of the C2 car-
bonyl unit of 10 could be achieved via chemistry in par-
allel to that used to prepare 1, beginning with hydrazide
(+)-6. We began the synthesis by converting tryptophan
hydrazide (+)-6 to an intermediate thiosemicarbazide
(not shown) employing carbonyl sulfide (S@C@O) gas

140dissolved in ethanol (Scheme 2).27

The intermediate thiosemicarbazide did not precipitate
from solution, therefore 2-bromo-N-(2-ethyl-phenyl)-
acetamide21 (9) was added to the reaction flask to gener-
ate thiocarbazate (�)-11.28 Pleasingly, the yield for the
two-step, one-flask operation was 62%. Deprotection
of (�)-11, employing our previously developed condi-

N N

O S

O

N
H

NHBoc

Et

HN

N
H

H
N

O

O

S

O

N
H

Et

HCl H2N

HN

2

2

4

4

H2O

(+)-8

10

Inactive Series

Active Series

HCl

Figure 1. Conversion of oxadiazole (+)-8 to thiocarbazate 10.

N
H

H
N

O

O

OPh

kon = >11000 M-1s-1, papain

Abeles and Magrath (1992)

AcHN

A

Figure 2. Known aza-peptide cathepsin inhibitor A.

BocHN
NHNH2

O

HN
(+)-6

(-)-11; R1 = H, R2 = Boc

(-)-12; R1, R2 = H

N
H

H
N

O

O

S

O

N
H

Et

R2R1N

HN

a) SCO (gas), KOH, EtOH
23 oC, 15 h

b) 2-bromo-N-(2-ethyl-phenyl)-
acetamide (9), 23 oC, 20 min
(62%)

TFA:H2O (3:1)
23 oC, 20 min
(98%)

Scheme 2. Synthetic procedure to prepare thiocarbazates.
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tions (25% water in TFA), generated the free-base
(�)-12 in 98% yield with >95% purity. This three-step
sequence permitted construction of (�)-12 on gram

150 scale, starting from LL-Boc-Trp-OH; the overall yield
was 58%.

As anticipated, both (�)-11(S) and (�)-12(S) exhibited
potent inhibitory activity against cathepsin L with IC50

values of 56 nM and 133 nM, respectively.29 The R-
enantiomer, (+)-11(R),30 was only modestly active
against cathepsin L (IC50 = 34 lM).29 Some variability
in IC50 values determined for (�)-12 prompted us to ex-
plore the stability of both (�)-11 and (�)-12 in solvents
relevant to the bioassay. While (�)-11 was found to be

160 completely stable in DMSO, as well as in the buffer em-
ployed in the Cathepsin L assay [e.g., NaOAc (20 mM),
pH 5.5; EDTA (1 mM); cysteine (5 mM)], the free-base
(�)-12 proved unstable in DMSO, generating decompo-
sition products 13, 14, and 15 after only 1 h at room
temperature (Fig. 3).

Presumably 13–15 are formed from (�)-12 via intramo-
lecular attack of the primary amine on the C2 thiocar-
bazate moiety, and release of 13. These products,
prepared either via synthesis (13 and 14) or by HPLC

170 purification of decomposed material (15), were assayed
for cathepsin L activity and found to be inactive. Due
to the instability of (�)-12 under the assay conditions,
IC50 values vary somewhat, rendering interpretation of
the bioassay data difficult. We are, however, confident
in the accuracy of the bioassay results for (�)-11, as this
compound is stable under all conditions evaluated.
Thus, future efforts will be focused on the more stable
thiocarbazate (�)-11 and related congeners.

As most cysteine protease inhibitors contain an electro-
180 philic ‘warhead,’ and work through a mechanism involv-

ing reaction with the active site cysteine,7,26 we strongly
believe these novel thiocarbazates behave similarly, and
are active by virtue of their electrophilic carbonyl moi-
ety. The formation of 15 supports this mechanism and

is indicative of the electrophilicity of the C2 carbonyl
moiety. Reactivity at the anilide carbonyl is also a pos-
sibility and cannot be ruled out. However, we observe
no evidence of side-products resulting from reaction at
this position (cf. Fig. 3). A complete biochemical charac-

190terization of this novel chemotype is underway.31

In summary, samples from the NIH MLSMR revealed
promising cathepsin L inhibitory activity attributed to
a series of 2,5-disubstituted oxadiazoles (1–5). Analyti-
cal analyses (LC–MS) of the library samples, however,
indicated numerous impurities, thus requiring the
development of an efficient synthesis for the putative
active 2,5-disubstituted oxadiazoles. Synthetic samples
of pure 2,5-disubstituted oxadiazoles were found to
be completely devoid of cathepsin L inhibitory activity.

200Careful LC–MS investigation of both the library and
synthetic samples revealed a thiocarbazate to be the ac-
tive component. Bioassay of the synthetic thiocarbaz-
ates confirmed the hypothesis: (�)-11 and (�)-12
display potent inhibitory activity against cathepsin L,
with IC50 values of 56 nM and 133 nM, respectively,
however instability of (�)-12 was also noted. The de-
sign, syntheses, and biological evaluation of analogs
of the highly potent lead thiocarbazate class are now
ongoing in our laboratories, and will be reported in

210due course.
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3H), 7.05 (t, J = 7.1 Hz, 1H), 6.97 (t, J = 7.4 Hz, 1H), 6.47
(br s, 1H), 4.31 (br s, 1H), 3.73 (br s, 2H), 3.17 (dd,
J = 14.7, 4.1 Hz, 2H), 2.96 (m, 2H), 2.59 (q, J = 7.5 Hz,
2H), 1.29 (br s, 9H), 1.13 (t, J = 7.5 Hz, 3H); 13C NMR
(125 MHz, DMSO-d6, major rotamer) d 172.7, 171.6,
166.9, 155.2, 137.3, 136.0, 135.4, 128.5, 127.1, 125.7, 125.5,
125.2, 124.0, 120.9, 118.5, 118.1, 111.3, 109.9, 78.0, 53.6,

33033.1, 28.1, 27.7, 23.6, 14.2; high-resolution mass spectrum
(ES+) m/z 562.2126 [(M+Na)+; Calcd for C27H33N5O5S-
Na: 562.2100]. ½a�23

D �14.8.
29. IC50 values as means ± standard deviations: (�)-11(S)

56 nM ± 4 nM; (�)-12(S) 133 nM ± 2 nM; (+)-11(R)
34 lM ± 2 lM.

30. Optical rotation for (+)-11: ½a�23
D +12.8. The enantiomeric

purity of both (�)-11 and (+)-11 was assayed using an
OD-RH chiral column with the following LC parameters:
1.0 mL/min with a linear gradient of 90% water in

340acetonitrile to 10% water in acetonitrile over 15 min.
Using this method, baseline separation was obtained for
the enantiomers and retention times for (�)-11 and (+)-11
were 14.01 min and 13.02 min, respectively. The synthesis,
outlined in Scheme 2, produced both enantiomers in >99%
enantiomeric purity.

31. Shah, P. P.; Myers, M. C.; Beavers, M. P.; Purvis, J. E.;
Huryn, D. M.; Smith, A. B., III.; Diamond, S. L., in
preparation. Q2
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