87 research outputs found

    Cross-modal subspace learning with scheduled adaptive margin constraints

    Get PDF
    This work has been partially funded by the CMU Portugal research project GoLocal Ref. CMUP-ERI/TIC/0046/2014, by the H2020 ICT project COGNITUS with the grant agreement no 687605 and by the FCT project NOVA LINCS Ref. UID/CEC/04516/2019. We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research.Cross-modal embeddings, between textual and visual modalities, aim to organise multimodal instances by their semantic correlations. State-of-the-art approaches use maximum-margin methods, based on the hinge-loss, to enforce a constant margin m, to separate projections of multimodal instances from different categories. In this paper, we propose a novel scheduled adaptive maximum-margin (SAM) formulation that infers triplet-specific constraints during training, therefore organising instances by adaptively enforcing inter-category and inter-modality correlations. This is supported by a scheduled adaptive margin function, that is smoothly activated, replacing a static margin by an adaptively inferred one reflecting triplet-specific semantic correlations while accounting for the incremental learning behaviour of neural networks to enforce category cluster formation and enforcement. Experiments on widely used datasets show that our model improved upon state-of-the-art approaches, by achieving a relative improvement of up to approximate to 12.5% over the second best method, thus confirming the effectiveness of our scheduled adaptive margin formulation.publishersversionpublishe

    A versatile hybrid polyphenylsilane host for highly efficient solution-processed blue and deep blue electrophosphorescence

    Get PDF
    A universal hybrid polymeric host (PCzSiPh) for blue and deep blue phosphors has been designed and synthesized by incorporating electron-donating carbazole as pendants on a polytetraphenylsilane main chain. The polymer PCzSiPh (4) has a wide bandgap and high triplet energy (ET) because of the tetrahedral geometry of the silicon atom in the tetraphenylsilane backbone. The distinct physical properties of good solubility, combined with high thermal and morphological stability give amorphous and homogenous PCzSiPh films by solution processing. As a result, using PCzSiPh as host with the guest iridium complex TMP-FIrpic gives blue phosphorescent organic light-emitting diodes (PhOLEDs) with overall performance which far exceeds that of a control device with poly(vinylcarbazole) (PVK) host. Notably, FIrpic-based devices exhibit a maximum external quantum efficiency (EQE) of 14.3% (29.3 cd A−1, 10.4 lm W−1) which are comparable to state-of-the-art literature data using polymer hosts for a blue dopant emitter. Moreover, the versatility of PCzSiPh extends to deep blue PhOLEDs using FIr6 and FCNIrpic as dopants, with high efficiencies of 11.3 cd A−1 and 8.6 cd A−1, respectively

    Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction

    Get PDF
    Despite the accepted notion that granulocytes play a universally destructive role in organ and tissue grafts, it has been recently described that eosinophils can facilitate immunosuppression-mediated acceptance of murine lung allografts. The mechanism of eosinophil-mediated tolerance, or their role in regulating alloimmune responses in the absence of immunosuppression, remains unknown. Using lung transplants in a fully MHC-mismatched BALB/c (H2d) to C57BL/6 (H2b) strain combination, we demonstrate that eosinophils downregulate T cell-mediated immune responses and play a tolerogenic role even in the absence of immunosuppression. We further show that such downregulation depends on PD-L1/PD-1-mediated synapse formation between eosinophils and T cells. We also demonstrate that eosinophils suppress T lymphocyte responses through the inhibition of T cell receptor/CD3 (TCR/CD3) subunit association and signal transduction in an inducible NOS-dependent manner. Increasing local eosinophil concentration, through administration of intratracheal eotaxin and IL-5, can ameliorate alloimmune responses in the lung allograft. Thus, our data indicate that eosinophil mobilization may be utilized as a novel means of lung allograft-specific immunosuppression

    The 2021 flexible and printed electronics roadmap

    Get PDF
    This roadmap includes the perspectives and visions of leading researchers in the key areas of flexible and printable electronics. The covered topics are broadly organized by the device technologies (sections 1–9), fabrication techniques (sections 10–12), and design and modeling approaches (sections 13 and 14) essential to the future development of new applications leveraging flexible electronics (FE). The interdisciplinary nature of this field involves everything from fundamental scientific discoveries to engineering challenges; from design and synthesis of new materials via novel device design to modelling and digital manufacturing of integrated systems. As such, this roadmap aims to serve as a resource on the current status and future challenges in the areas covered by the roadmap and to highlight the breadth and wide-ranging opportunities made available by FE technologies

    Solution-processed blue/deep blue and white phosphorescent organic light emitting diodes (PhOLEDs) hosted by a polysiloxane derivative with pendant mCP (1, 3-bis(9-carbazolyl)benzene)

    Get PDF
    The synthesis and characterization is reported of an efficient polysiloxane derivative containing the 1,3-bis(9-carbazolyl)benzene (mCP) moiety as a pendant unit on the polysiloxane backbone. In comparison with mCP, the mCP-polysiloxane hybrid (PmCPSi) has significantly improved thermal and morphological stabilities with a high decomposition temperature (Td = 523 °C) and glass transition temperature (Tg = 194 °C). The silicon–oxygen linkage of PmCPSi prevents intermolecular π-stacking and ensures a high triplet energy level (ET = 3.0 eV). Using PmCPSi as a host, blue phosphorescent organic light emitting devices (PhOLEDs) effectively confine triplet excitons, with efficient energy transfer to the guest emitter and a relatively low turn-on voltage of 5.8 V. A maximum external quantum efficiency of 9.24% and maximum current efficiency of 18.93 cd/A are obtained. These values are higher than for directly analogous poly(vinylcarbazole) (PVK) based devices (6.76%, 12.29 cd/A). Good color stability over a range of operating voltages is observed. A two-component “warm-white” device with a maximum current efficiency of 10.4 cd/A is obtained using a blend of blue and orange phosphorescent emitters as dopants in PmCPSi host. These results demonstrate that well-designed polysiloxane derivatives are highly efficient hosts suitable for low-cost solution-processed PhOLEDs

    Multimedia content processing through cross-modal association

    No full text
    Multimodal information processing has received considerable attention in recent years. The focus of existing research in this area has been predominantly on the use of fusion technology. In this paper, we suggest that cross-modal association can provide a new set of powerful solutions in this area. We investigate different crossmodal association methods using the linear correlation model. We also introduce a novel method for cross-modal association called Cross-modal Factor Analysis (CFA). Our earlier work on Latent Semantic Indexing (LSI) is extended for applications that use offline supervised training. As a promising research direction and practical application of cross-modal association, cross-modal information retrieval where queries from one modality are used to search for content in another modality using low-level features is then discussed in detail. Different association methods are tested and compared using the proposed cross-modal retrieval system. All these methods achieve significant dimensionality reduction. Among them CFA gives the best retrieval performance. Finally, this paper addresses the use of cross-modal association to detect talking heads. The CFA method achieves 91.1 % detection accuracy, while LSI and Canonical Correlation Analysis (CCA) achieve 66.1 % and 73.9 % accuracy, respectively. As shown by experiments, crossmodal association provides many useful benefits, such as robust noise resistance and effective feature selection. Compared to CCA and LSI, the proposed CFA shows several advantages in analysis performance and feature usage. Its capability in feature selection and noise resistance also makes CFA a promising tool for many multimedia analysis applications

    Urbanization and Grain Production Efficiency

    No full text
    Based on DEA-Malmquist method, this paper calculated the integrated technology efficiency of grain production and total factor productivity and analyzed factors influencing the grain production technology efficiency using working documents of panel structure. Research results indicate that grain production integrated technology efficiency of China is relatively low, technology utilization level is low, and it remains at the stage of decreasing returns to scale, and the pure technology efficiency still has space to increase. Total factor productivity is declining and the total factor productivity of many provinces is relatively low. Since the total factor productivity of eastern areas is higher than central and western areas, it is required to strengthen technological support for grain production. The implementation of urbanization is helpful for promoting increase of grain production technology efficiency in central and eastern areas, but it will exert negative influence on western areas
    corecore