810 research outputs found

    Transforming growth factor beta (TGF beta) mediates schwann cell death in vitro and in vivo: Examination of c-jun activation, interactions with survival signals, and the relationship of TGF beta-mediated death to schwann cell differentiation

    Get PDF
    In some situations, cell death in the nervous system is controlled by an interplay between survival factors and negative survival signals that actively induce apoptosis. The present work indicates that the survival of Schwann cells is regulated by such a dual mechanism involving the negative survival signal transforming growth factor beta (TGF beta), a family of growth factors that is present in the Schwann cells themselves. We analyze the interactions between this putative autocrine death signal and previously defined paracrine and autocrine survival signals and show that expression of a dominant negative c-Jun inhibits TGF beta -induced apoptosis. This and other findings pinpoint activation of c-Jun as a key downstream event in TGF beta -induced Schwann cell death. The ability of TGF beta to kill Schwann cells, like normal Schwann cell death in vivo, is under a strong developmental regulation, and we show that the decreasing ability of TGF beta to kill older cells is attributable to a decreasing ability of TGF beta to phosphorylate c-Jun in more differentiated cells

    Growth effects on mixed culture of Dunaliella salina and Phaeodactylum tricornutum under different inoculation densities and nitrogen concentrations

    Get PDF
    Dunaliella salina and Phaeodactylum tricornutum are two important marine microalgae rich in bioactive substances and other high-value constituents. In this study, growth effects on mixed culture of these two microalgae were studied under different inoculation proportions (10:0, 7:3, 5:5, 3:7, 0:10) and low, medium and high nitrogen concentrations of 1.4, 14 and 140 mg/l, respectively. By evaluating cell density, OD680, biomass, chlorophyll a and protein content in the culture, it was found that colony cell growth of D. salina and P. tricornutum was increased with the increasing of nitrogen concentrations. Additionally, mixed culture of D. salina and P. tricornutum under high and medium nitrogen concentrations increased the growth of cell colonies (especially when the inoculation proportion was 7:3) and chlorophyll a content by as much as 96.7 and 132.8%. Protein content was also increased by 1.3 and 2.8 folds when compared with that obtained with monoculture of D. salina and P. tricornutum. In contrast, when the mixed culture was done under low concentration of nitrogen, cell colonies growth was restricted due to limitation of nitrogen.Key words: Dunaliella salina, Phaeodactylum tricornutum, inoculation density, mixed-culture, nitrogen concentration

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Proximity of Iron Pnictide Superconductors to a Quantum Tricritical Point

    Get PDF
    We determine the nature of the magnetic quantum critical point in the doped LaFeAsO using a set of constrained density functional calculations that provide ab initio coefficients for a Landau order parameter analysis. The system turns out to be remarkably close to a quantum tricritical point, where the nature of the phase transition changes from first to second order. We compare with the effective field theory and discuss the experimental consequences.Comment: 4 pages, 4 figure

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Frequent Heterogeneous Missense Mutations of GGAP2 in Prostate Cancer: Implications for Tumor Biology, Clonality and Mutation Analysis

    Get PDF
    Prostate cancer is the most common visceral malignancy in Western men and a major cause of cancer deaths. Increased activation of the AKT and NFkB pathways have been identified as critical steps in prostate cancer initiation and progression. GGAP2 (GTP-binding and GTPase activating protein 2) is a multidomain protein that contains an N-terminal Ras homology domain (GTPase), followed by a PH domain, a C-terminal GAP domain and an ankyrin repeat domain. GGAP2 can directly activate signaling via both the AKT and NFkB pathways and acts as a node of crosstalk between these pathways. Increased GGAP2 expression is present in three quarters of prostate cancers. Mutations of GGAP2 have been reported in cell lines from other malignancies. We therefore analyzed 84 prostate cancer tissues and 43 benign prostate tissues for somatic mutations in GGAP2 by direct sequencing of individual clones derived from the GAP and GTPase domains of normal and tumor tissue. Overall, half of cancers contained mutant GAP domain clones and in 20% of cancers, 30% or more of clones were mutant in the GAP domain. Surprisingly, the mutations were heterogeneous and nonclonal, with multiple different mutations being present in many tumors. Similar findings were observed in the analysis of the GTPase domain. Mutant GGAP2 proteins had significantly higher transcriptional activity using AP-1 responsive reporter constructs when compared to wild-type protein. Furthermore, the presence of these mutations was associated with aggressive clinical behavior. The presence of high frequency nonclonal mutations of a single gene is novel and represents a new mode of genetic alteration that can promote tumor progression. Analysis of mutations in cancer has been used to predict outcome and guide therapeutic target identification but such analysis has focused on clonal mutations. Our studies indicate that in some cases high frequency nonclonal mutations may need to be assessed as well

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and Neˊ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic
    corecore