70 research outputs found
Optimal Discrete Beamforming of RIS-Aided Wireless Communications: an Inner Product Maximization Approach
This paper addresses non-convex optimization problems in communication
services using reconfigurable intelligent surfaces (RISs). Specifically, we
focus on optimal beamforming in RIS-aided communications, and formulate it as a
discrete inner product maximization problem. To solve this problem, we propose
a highly efficient divide-and-sort (DaS) search framework that guarantees
global optima with linear search complexity, both in the number of discrete
levels and reflecting cells. This approach is particularly effective for
large-scale problems. Our numerical studies and prototype experiments
demonstrate the speed and effectiveness of the proposed DaS. We also show that
for moderate resolution quantization (4-bits and above), there is no noticeable
difference between continuous and discrete phase configurations
Wireless Communications in Cavity: A Reconfigurable Boundary Modulation based Approach
This paper explores the potential wireless communication applications of
Reconfigurable Intelligent Surfaces (RIS) in reverberant wave propagation
environments. Unlike in free space, we utilize the sensitivity to boundaries of
the enclosed electromagnetic (EM) field and the equivalent perturbation of
RISs. For the first time, we introduce the framework of reconfigurable boundary
modulation in the cavities . We have proposed a robust boundary modulation
scheme that exploits the continuity of object motion and the mutation of the
codebook switch, which achieves pulse position modulation (PPM) by
RIS-generated equivalent pulses for wireless communication in cavities. This
approach achieves around 2 Mbps bit rate in the prototype and demonstrates
strong resistance to channel's frequency selectivity resulting in an extremely
low bit error rate (BER)
Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines
Mapping chromosome regions responsible for quantitative phenotypic variation in recombinant populations provides an effective means to characterize the genetic basis of complex traits. We conducted a quantitative trait loci (QTL) analysis of 150 rice recombinant inbred lines (RILs) derived from a cross between two cultivars, Oryza sativa ssp. indica cv. 93-11 and Oryza sativa ssp. japonica cv. Nipponbare. The RILs were genotyped through next-generation sequencing, which accurately determined the recombination breakpoints and provided a new type of genetic markers, recombination bins, for QTL analysis. We detected 49 QTL with phenotypic effect ranging from 3.2 to 46.0% for 14 agronomics traits. Five QTL of relatively large effect (14.6–46.0%) were located on small genomic regions, where strong candidate genes were found. The analysis using sequencing-based genotyping thus offers a powerful solution to map QTL with high resolution. Moreover, the RILs developed in this study serve as an excellent system for mapping and studying genetic basis of agricultural and biological traits of rice. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-010-1449-8) contains supplementary material, which is available to authorized users
Analysis Efficiency Marketing System of Fresh Layang Fish (Decapterus Russeli) on Pelabuhan Fish Auction Place in Tegal City
Marketing is an important aspect in running fishing business because it is an economic activity that influences the fluctuation of fishermen\u27s income. The production can be useless if the price is low, thus, marketing has to be good and efficient. This research is about the efficiency of the marketing system of fresh fish layang (Decapterus russeli) in the fish auction place. Specifically, this research is to know : 1) the marketing system of fresh fish layang in Tegal City. 2) the marketing margin of fresh fish layang in Tegal City. 3) the distribution flow of fresh fish layang in Tegal City. 4) the reason fishermen sell their products in the Fish Auction Place. The method use in this research is descriptive analysis method, The registration data and literature study. Based on the analysis, it is known that the marketing system of fresh in the Fish Auction Place, seen from the marketing cost calculation, purchasing price, selling price and profit is < 1, which means efficient. And if seen from the marketing margin, the most efficient flow is channel 4 (the 4th channel). Meanwhile, the reason why fishermen sell their Fish Auction Place is because of the guarantee that their product will be sold. Fish is a product that is easily broken and rotten. Therefore, the guarantee that the product will be sold, can minimize loss risk for fisherman
A Combined Modeling and Experimental Study of Tensile Properties of Additively Manufactured Polymeric Composite Materials
In this study, the mechanical properties, in terms of stress–strain curves, of additively manufactured polymeric composite materials, Tango black plus (TB+), vero white plus (VW ), and their intermediate materials with different mixing ratios, are reported. The ultimate tensile strength and elongation at break are experimentally measured using ASTM standard tensile test. As the content of VM+ increases, the strength of the polymeric materials increases and elongation decreases. Additionally, the Shore A hardness of the materials increases with reduced TB+ concentration. In parallel to the experiment, hyperelastic models are employed to fit the experimental stress–strain curves. The shear modulus of the materials is obtained from the Arruda–Boyce model, and it increases with reduced concentration of TB+. Due to the good quality of the fitted data, it is suggested that the Arruda–Boyce model is the best model for modeling the additively manufactured polymeric materials. With the well characterized and modeled mechanical properties of these hyperelastic materials, designers can conduct computational study for application in flexible electronics field
CD180 Ligation Inhibits TLR7- and TLR9-Mediated Activation of Macrophages and Dendritic Cells Through the Lyn-SHP-1/2 Axis in Murine Lupus
Activation of TLR7 and TLR9 by endogenous RNA- or DNA-containing ligands, respectively, can lead to hyper-activation of immune cells, including macrophages and DCs, subsequently contributes to the pathogenesis of SLE. CD180, a TLR-like protein, is specifically involved in the development and activation of immune cells. Our previous study and others have reported that CD180-negative B cells are dramatically increased in SLE patients and responsible for the production of auto-antibodies. However, the mode of CD180 expression on macrophages and DCs in SLE remains unclear and the role of CD180 on regulating TLR7- and TLR9-mediated activation of macrophages and DCs are largely unknown. In the present study, we found that the percentages of CD180-negative macrophages and DCs were both increased in SLE patients and lupus-prone MRL/lpr mice compared with healthy donors and wild-type mice, respectively. Notably, ligation of CD180 significantly inhibited the activation of TLR7 and TLR9 signaling pathways in macrophages and DCs through the Lyn-SHP-1/2 axis. What's more, injection of anti-CD180 Ab could markedly ameliorate the lupus-symptoms of imiquimod-treated mice and lupus-prone MRL/lpr mice through inhibiting the activation of macrophages and DCs. Collectively, our results highlight a critical role of CD180 in regulating TLR7- and TLR9-mediated activation of macrophages and DCs, hinting that CD180 can be regarded as a potential therapeutic target for SLE treatment
Streptococcus suis contributes to inguinal lymph node lesions in piglets after highly pathogenic porcine reproductive and respiratory syndrome virus infection
The swine pathogens porcine reproductive and respiratory syndrome virus (PRRSV) and Streptococcus suis have both been reported to cause damage to the immune organs. Inguinal lymph node (ILN) injury has been reported in PRRSV-infected pigs with secondary S. suis infection, but not much is known about the mechanism. In this study, secondary S. suis infection after highly pathogenic (HP)-PRRSV infection caused more severe clinical symptoms, mortality, and ILN lesions. Histopathological lesions were seen in ILNs with a marked decrease in lymphocyte numbers. Terminal deoxynucleotidyl transferase (TdT)-mediated de-oxyuridine triphosphate (dUTP)-biotin nick end-labeling (TUNEL) assays revealed that HP-PRRSV strain HuN4 alone induced ILN apoptosis, but dual-infection with S. suis strain BM0806 induced greater levels of apoptosis. Besides, we found that some HP-PRRSV-infected cells underwent apoptosis. Furthermore, anti-caspase-3 antibody staining confirmed that ILN apoptosis was mainly induced by a caspase-dependent pathway. Pyroptosis was also observed in HP-PRRSV-infected cells, and there was more pyroptosis in piglets infected with HP-PRRSV alone compared with those with secondary S. suis infection, and HP-PRRSV-infected cells underwent pyroptosis. Altogether, this is the first report to identify pyroptosis in ILNs and which signaling pathway is related to ILN apoptosis in single or dual-infected piglets. These results contribute to a better understanding of the pathogenic mechanisms during secondary S. suis infection
Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction
Dysregulation of macrophage has been demonstrated to contribute to aberrant immune responses and inflammatory diseases. CD11b, expressed on macrophages, plays a critical role in regulating pathogen recognition, phagocytosis, and cell survival. In the present study, we explored the effect of leukadherin-1 (LA1), an agonist of CD11b, on regulating LPS-induced pro-inflammatory response in macrophages and endotoxic shock. Intriguingly, we found that LA1 could significantly reduce mortalities of mice and alleviated pathological injury of liver and lung in endotoxic shock. In vivo studies showed that LA1-induced activation of CD11b significantly inhibited the LPS-induced pro-inflammatory response in macrophages of mice. Moreover, LA1-induced activation of CD11b significantly inhibited LPS/IFN-γ-induced pro-inflammatory response in macrophages by inhibiting MAPKs and NF-κB signaling pathways in vitro. Furthermore, the mice injected with LA1-treated BMDMs showed fewer pathological lesions than those injected with vehicle-treated BMDMs in endotoxic shock. In addition, we found that activation of TLR4 by LPS could endocytose CD11b and activation of CD11b by LA1 could endocytose TLR4 in vitro and in vivo, subsequently blocking the binding of LPS with TLR4. Based on these findings, we concluded that LA1-induced activation of CD11b negatively regulates LPS-induced pro-inflammatory response in macrophages and subsequently protects mice from endotoxin shock by partially blocking LPS-TLR4 interaction. Our study provides a new insight into the role of CD11b in the pathogenesis of inflammatory diseases
Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling
Contains fulltext :
108719.pdf (publisher's version ) (Open Access)BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. RESULTS: Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNgamma, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCtheta are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCtheta in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCtheta dependent IFNgamma production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. CONCLUSIONS: This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell activation. PMA/CD3 stimulation enhances a Th1-like response in an Lck and PKCtheta dependent fashion, whereas PMA/CD28 stimulation results in a Th2-like phenotype independent of the proximal TCR-tyrosine kinase Lck. This approach offers a robust and fast translational in vitro system for skewed T helper cell responses in Jurkat T cells, primary human CD4+ Tcells and in a more complex matrix such as human whole blood
- …