1,176 research outputs found

    Monte Carlo convex hull model for classification of traditional Chinese paintings

    Get PDF
    While artists demonstrate their individual styles through paintings and drawings, how to describe such artistic styles well selected visual features towards computerized analysis of the arts remains to be a challenging research problem. In this paper, we propose an integrated feature-based artistic descriptor with Monte Carlo Convex Hull (MCCH) feature selection model and support vector machine (SVM) for characterizing the traditional Chinese paintings and validate its effectiveness via automated classification of Chinese paintings authored by well-known Chinese artists. The integrated artistic style descriptor essentially contains a number of visual features including a novel feature of painting composition and object feature, each of which describes one element of the artistic style. In order to ensure an integrated discriminating power and certain level of adaptability to the variety of artistic styles among different artists, we introduce a novel feature selection method to process the correlations and the synergy across all elements inside the integrated feature and hence complete the proposed style-based descriptor design. Experiments on classification of Chinese paintings via a parallel MCCH model illustrate that the proposed descriptor outperforms the existing representative technique in terms of precision and recall rates

    Optical Sorter-Based Selection Effectively Identifies Soft Red Winter Wheat Breeding Lines with \u3cem\u3eFhb1\u3c/em\u3e and Enhances FHB Resistance in Lines with and without \u3cem\u3eFhb1\u3c/em\u3e

    Get PDF
    Previous results from our lab have shown that using an optical sorter to identify Fusarium head blight (FHB) resistant breeding lines was effective at reducing the toxin deoxynivalenol (DON) and FHB-associated kernel damage. In this paper we quantified the proportion of desirable genotypes at FHB resistance QTL in lines from three selection cycles of optical sorting. Breeding lines were genotyped at loci on chromosomes 3BS, 2DL, and 5A using the following DNA markers: TaHRC, CFD233, and GWM304. TaHRC is a KASP marker for Fhb1, a major FHB resistance QTL on chromosome 3BS. CFD233 is an SSR marker for Qfhs.nau-2DL on chromosome 2DL. GWM304 is an SSR marker for Qfhs.ifa-5A on chromosome 5A. Sorter selection was effective at identifying lines that had the resistant genotype at TaHRC; in other words, the sorter was able to identify lines with resistance alleles at Fhb1. The sorter was less effective at selecting for the resistant genotype at CFD233 and GWM304. However, the proportion of lines with resistant genotypes at GWM304 did increase with additional sorter selection, just not to the degree that was observed for the Fhb1-associated marker. The proportion of lines with resistant alleles at CFD233 did not show a consistent trend. In addition to increasing the proportion of lines with Fhb1 and Qfhs.ifa-5A each selection cycle, optical sorter-based mass selection enhanced FHB resistance in different marker genotype combinations evaluated in this study. For example, there were net reductions in DON and kernel damage after two cycles of sorter selection in 15X110601S07002, a line with Fhb1, with Qfhs.nau-2DL, and with Qfhs.ifa-5A; final C3 DON levels were 63% of the resistant check (KY02C-3005-25). Kernel damage was also reduced in 15X110601A08221 a line without Fhb1, without Qfhs.nau-2DL, and without Qfhs.ifa-5A. Our findings suggest the increased resistance observed in different marker genotype combinations was conferred by QTL other than Fhb1, QFhs.nau-2DL, and Qfhs.ifa-5, and validate our previous results that the optical sorter is effective at selecting FHB-resistant breeding material

    Coupled fiber taper extraction of 1.53 um photoluminescence from erbium doped silicon nitride photonic crystal cavities

    Get PDF
    Optical fiber tapers are used to collect photoluminescence emission at ~1.5 um from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. Photoluminescence collection via fiber taper is enhanced 2.5 times relative to free space, with a total taper collection efficiency of 53%. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.Comment: 10 pages, 7 figure

    Forecasting ward-level bed requirements to aid pandemic resource planning: Lessons learned and future directions

    Get PDF
    During the COVID-19 pandemic, there has been considerable research on how regional and country-level forecasting can be used to anticipate required hospital resources. We add to and build on this work by focusing on ward-level forecasting and planning tools for hospital staff during the pandemic. We present an assessment, validation, and deployment of a working prototype forecasting tool used within a modified Traffic Control Bundling (TCB) protocol for resource planning during the pandemic. We compare statistical and machine learning forecasting methods and their accuracy at one of the largest hospitals (Vancouver General Hospital) in Canada against a medium-sized hospital (St. Paul's Hospital) in Vancouver, Canada through the first three waves of the COVID-19 pandemic in the province of British Columbia. Our results confirm that traditional statistical and machine learning (ML) forecasting methods can provide valuable ward-level forecasting to aid in decision-making for pandemic resource planning. Using point forecasts with upper 95% prediction intervals, such forecasting methods would have provided better accuracy in anticipating required beds on COVID-19 hospital units than ward-level capacity decisions made by hospital staff. We have integrated our methodology into a publicly available online tool that operationalizes ward-level forecasting to aid with capacity planning decisions. Importantly, hospital staff can use this tool to translate forecasts into better patient care, less burnout, and improved planning for all hospital resources during pandemics

    Host-Guest Complexation of Amphiphilic Molecules at the Air-Water Interface Prevents Oxidation by Hydroxyl Radicals and Singlet Oxygen

    Get PDF
    The oxidation of antioxidants by oxidizers imposes great challenges to both living organisms and the food industry. Here we show that the host–guest complexation of the carefully designed, positively charged, amphiphilic guanidinocalix[5]arene pentadodecyl ether (GC5A‐12C) and negatively charged oleic acid (OA), a well‐known cell membrane antioxidant, prevents the oxidation of the complex monolayers at the air–water interface from two potent oxidizers hydroxyl radicals (OH) and singlet delta oxygen (SDO). OH is generated from the gas phase and attacks from the top of the monolayer, while SDO is generated inside the monolayer and attacks amphiphiles from a lateral direction. Field‐induced droplet ionization mass spectrometry results have demonstrated that the host–guest complexation achieves steric shielding and prevents both types of oxidation as a result of the tight and “sleeved in” physical arrangement, rather than the chemical reactivity, of the complexes

    Host-Guest Complexation of Amphiphilic Molecules at the Air-Water Interface Prevents Oxidation by Hydroxyl Radicals and Singlet Oxygen

    Get PDF
    The oxidation of antioxidants by oxidizers imposes great challenges to both living organisms and the food industry. Here we show that the host–guest complexation of the carefully designed, positively charged, amphiphilic guanidinocalix[5]arene pentadodecyl ether (GC5A‐12C) and negatively charged oleic acid (OA), a well‐known cell membrane antioxidant, prevents the oxidation of the complex monolayers at the air–water interface from two potent oxidizers hydroxyl radicals (OH) and singlet delta oxygen (SDO). OH is generated from the gas phase and attacks from the top of the monolayer, while SDO is generated inside the monolayer and attacks amphiphiles from a lateral direction. Field‐induced droplet ionization mass spectrometry results have demonstrated that the host–guest complexation achieves steric shielding and prevents both types of oxidation as a result of the tight and “sleeved in” physical arrangement, rather than the chemical reactivity, of the complexes

    Interaction imaging with amplitude-dependence force spectroscopy

    Full text link
    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here, we present a new approach that combines high accuracy force measurements and high resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS) is based on the amplitude-dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its wide-spread use in taking AFM toward quantitative microscopy

    Probing the role of PrP repeats in conformational conversion and amyloid assembly of chimeric yeast prions

    Get PDF
    Oligopeptide repeats appear in many proteins that undergo conformational conversions to form amyloid, including the mammalian prion protein PrP and the yeast prion protein Sup35. While the repeats in PrP have been studied more exhaustively, interpretation of these studies is confounded by the fact that many details of the PrP prion conformational conversion are not well understood. On the other hand, there is now a relatively good understanding of the factors that guide the conformational conversion of the Sup35 prion protein. In order to provide a general model for studying the role of oligopeptide repeats in prion conformational conversion and amyloid formation, we have substituted various numbers of the PrP octarepeats for the endogenous Sup35 repeats. The resulting chimeric proteins can adopt the [PSI+] prion state in yeast, and the stability of the prion state depends on the number of repeats. In vitro, these chimeric proteins form amyloid fibers, with more repeats leading to shorter lag phases and faster assembly rates. Both pH and the presence of metal ions modulate assembly kinetics of the chimeric proteins, and the extent of modulation is highly sensitive to the number of PrP repeats. This work offers new insight into the properties of the PrP octarepeats in amyloid assembly and prion formation. It also reveals new features of the yeast prion protein, and provides a level of control over yeast prion assembly that will be useful for future structural studies and for creating amyloid-based biomaterials

    Bsx, a novel hypothalamic factor linking feeding with locomotor activity, is regulated by energy availability

    Get PDF
    Es un estudio en modelos de rata acerca del papel de BSX, la actividad y la alimentación.We recently reported that the hypothalamic homeobox domain transcription factor Bsx plays an essential role in the central nervous system control of spontaneous physical activity and the generation of hyperphagic responses. Moreover, we found Bsx to be a master regulator for the hypothalamic expression of key orexigenic neuropeptide Y and agouti gene-related protein. We now hypothesized that Bsx, which is expressed in the dorsomedial and arcuate nucleus (ARC) of the hypothalamus, is regulated by afferent signals in response to peripheral energy balance. Bsx expression was analyzed using in situ hybridization in fed vs. fasted (24 h) and ghrelin vs. leptin-treated rats, as well as in mice deficient for leptin or the ghrelin signaling. Ghrelin administration increased, whereas ghrelin receptor antagonist decreased ARC Bsx expression. Leptin injection attenuated the fasting-induced increase in ARC Bsx levels but had no effect in fed rats. Dorsomedial hypothalamic nucleus Bsx expression was unaffected by pharmacological modifications of leptin or ghrelin signaling. Obese leptin-deficient (ob/ob) mice, but not obese melanocortin 4 receptor-knockout mice, showed higher expression of Bsx, consistent with dependency from afferent leptin rather than increased adiposity per se. Interestingly, exposure to a high-fat diet triggered Bsx expression, consistent with the concept that decreased leptin signaling due to a highfat diet induced leptin resistance. Our data indicate that ARC Bsx expression is specifically regulated by afferent energy balance signals, including input from leptin and ghrelin. Future studies will be necessary to test if Bsx may be involved in the pathogenesis of leptin resistance
    corecore