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We recently reported that the hypothalamic homeobox do-
main transcription factor Bsx plays an essential role in the
central nervous system control of spontaneous physical ac-
tivity and the generation of hyperphagic responses. More-
over, we found Bsx to be a master regulator for the hypotha-
lamic expression of key orexigenic neuropeptide Y and agouti
gene-related protein. We now hypothesized that Bsx, which is
expressed in the dorsomedial and arcuate nucleus (ARC) of
the hypothalamus, is regulated by afferent signals in response
to peripheral energy balance. Bsx expression was analyzed
using in situ hybridization in fed vs. fasted (24 h) and ghrelin
vs. leptin-treated rats, as well as in mice deficient for leptin or
the ghrelin signaling. Ghrelin administration increased,
whereas ghrelin receptor antagonist decreased ARC Bsx ex-
pression. Leptin injection attenuated the fasting-induced in-

crease in ARC Bsx levels but had no effect in fed rats. Dorso-
medial hypothalamic nucleus Bsx expression was unaffected
by pharmacological modifications of leptin or ghrelin signal-
ing. Obese leptin-deficient (ob/ob) mice, but not obese mela-
nocortin 4 receptor-knockout mice, showed higher expression
of Bsx, consistent with dependency from afferent leptin
rather than increased adiposity per se. Interestingly, expo-
sure to a high-fat diet triggered Bsx expression, consistent
with the concept that decreased leptin signaling due to a high-
fat diet induced leptin resistance. Our data indicate that ARC
Bsx expression is specifically regulated by afferent energy
balance signals, including input from leptin and ghrelin. Fu-
ture studies will be necessary to test if Bsx may be involved in
the pathogenesis of leptin resistance. (Endocrinology 149:
3009–3015, 2008)

ENERGY BALANCE IS regulated by close interaction
among subpopulations of neurons located in several

distinct areas of the brain. The currently accepted model
suggests that the hypothalamus, and more specifically the
arcuate nucleus (ARC), is playing a major role by connecting
afferent signals with central circuitries orchestrating efferent
commands to govern food intake, motor activity, and pe-
ripheral cell metabolism. Neurons in the hypothalamic ARC
are expressing specific neuropeptides with orexigenic or an-
orexigenic effects. One particularly important neuronal pop-
ulation contains neurons coexpressing neuropeptide Y
(NPY) and agouti gene-related protein (AgRP), potent stim-

ulators of food intake. An adjacent set of ARC neurons co-
expresses proopiomelanocortin (POMC) and cocaine- and
amphetamine-regulated transcript, which suppress food in-
take (1, 2). These cells sense and respond to circulating hor-
mones providing important information related to periph-
eral energy homeostasis. Leptin, a hormone secreted by
white adipose tissue in levels proportional to fat mass, sig-
nals the status of energy stores by activating POMC/cocaine-
and amphetamine-regulated transcript neurons and inhib-
iting NPY/AgRP neurons (1, 2), therefore, reducing feeding
and increasing energy expenditure. A lack of leptin signaling
results in the development of morbid obesity in rodents and
humans (3, 4). Ghrelin, an endogenous leptin opponent se-
creted mainly by the stomach, directly activates NPY/AgRP
neurons (5) and indirectly inhibits POMC neurons (6),
thereby stimulating feeding and decreasing energy expen-
diture (7). Mice lacking ghrelin signaling are partially pro-
tected from high-fat diet (HFD) induced obesity (8, 9). The
integrated character of these ARC neuron populations is
illustrated by the fact that NPY/AgRP neurons inhibit
POMC neurons, and AgRP competes with the POMC prod-
uct �-MSH at melanocortin 4 receptors (MC4Rs) (6). The
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crucial role of NPY/AgRP neurons in the regulation of feeding
behavior and body weight was recently highlighted when the
selective ablation of AgRP expressing neurons in adult mice led
to reduced food intake and body weight (10–12).

The novel evolutionary conserved and brain-specific ho-
meobox transcription factor Bsx was identified in vertebrates
and is widely expressed throughout species (13). We have

recently demonstrated that Bsx is in hypothalamic NPY/
AgRP neurons of the ARC, as well as in the dorsomedial
hypothalamic nucleus (DMH) (14). Based on the genetic loss
of function studies in wild-type and leptin-deficient (ob/ob)
mice, Bsx is required for the physiological expression of
NPY/AgRP, normal locomotor behavior patterns, and the
appropriate generation of hyperphagic responses.

Here, we have tested the hypothesis that hypothalamic Bsx
mRNA expression may be regulated by nutritional status,
exposure to dietary lipids, or input from afferent endocrine
signals reflecting acute or chronic changes in energy balance.
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FIG. 1. A, Representative pictures of Bsx mRNA levels in the ARC of
fasted rats measured by in situ hybridization. Effect of 24-h fasting
and refeeding on Bsx mRNA expression in the ARC. B, Effect of 24-h
fasting and refeeding on Bsx mRNA expression in the DMH. n � 6–7
animals per group. *, P � 0.05.
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FIG. 2. A, Representative pictures of Bsx mRNA expression in the
ARC of ad libitum-fed and fasted rats after ghrelin injection. Effect
of ghrelin and ghrelin antagonist on Bsx expression in the ARC. B,
Effect of ghrelin and ghrelin antagonist on Bsx expression in the
DMH. n � 6–7 animals per group. *, P � 0.05.
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Materials and Methods
Animal models

Male Sprague Dawley rats (200–250 g) were housed in air-condi-
tioned rooms (22–24 C) under a 12-h light, 12-h dark cycle and fed a
standard chow, low-fat diet (LFD) (D12450B, 10 kcal percent fat, 70 kcal
percent carbohydrates, and 20 kcal percent protein; 3.85 kcal/g) or a
HFD (D12451, 45 kcal percent fat, 35 kcal percent carbohydrates, and 20
kcal percent protein; 4.73 kcal/g; Research Diets, Inc., New Brunswick,
NJ) during 12 wk. All mice were fed a standard chow diet. Adult ghrelin
gene disrupted (knockout) mice, GH secretagogue receptor (GHS-R)
disrupted mice, which were originally kindly provided from Regeneron
Pharm. Inc., originated from an in-house breeding colony of our labo-
ratory at the University of Cincinnati. ob/ob mice were obtained from
our breeding colony at the University of Cambridge. MC4R knockout
(KO) mice were kindly provided by N. Balthasar, J. Elmquist, and B.
Lowell (all from the University of Texas Southwestern Medical Center,
Dallas, TX). Mice were killed when they were 12–14 wk old. Animal
experiments were conducted in accordance with the standards ap-
proved by the University of Cincinnati Institutional Animal Care and
Use Committee and the Faculty Animal Committee at the University of
Santiago de Compostela.

Implantation of intracerebroventricular (icv) cannulas

Rats were anesthetized by an ip injection of ketamine/xylazine (ket-
amine 100 mg/kg plus xylazine 15 mg/kg). Chronic icv cannulas were
implanted stereotaxically as described previously (15).

Ghrelin and leptin challenge

Rats received two icv injections of saline, ghrelin, or ghrelin antag-
onist: one before the beginning of the dark phase and a second one in
the beginning of the light phase. To prevent increased nutrient supply
due to overfeeding, the ghrelin-treated group was pair fed with the fed
ad libitum group. Ghrelin (Bachem, Bubendorf, Switzerland) and ghrelin
antagonist (16), BIM-28163, were injected in the third ventricle and
administered at equimolar doses (10 nmol/injection dissolved in 3 �l
saline), and rats were killed 8 h after the second injection. The effect of
leptin on fasting-induced increase of BSX levels was measured in rats fed
ad libitum or fasted for 24 h. Two ip injections of recombinant human
leptin (Sigma-Aldrich, St. Louis, MO; 20 �g/rat) or vehicle were given
(12-h difference).

In situ hybridization

Coronal hypothalamic sections (16 �m) were cut on a cryostat and
immediately stored at �80 C until hybridization. For Bsx mRNA de-
tection, we used a specific antisense oligodeoxynucleotide: 5�-CCT CAA
CGG CTT GGG CTT GTG TAG CAG AAT GTC C-3� (GenBank accession

no.: XM_001064837; 5� position: 147). In situ hybridizations were per-
formed as previously reported (17). The frozen sections were fixed with
4% paraformaldehyde in 0.1 m phosphate buffer (pH 7.4) at room tem-
perature for 30 min. They were then dehydrated using 70, 80, 90, and
95%, and absolute ethanol (5 min each). The hybridization was per-
formed overnight at 37 C in a moist chamber. Hybridization solution
contained 5 � 105 cpm per slide of the labeled probe, 4� standard saline
citrate (SSC), 50% deionized formamide, 1� Denhardt’s solution, 10%
dextran sulfate, and 10 �g/ml sheared, single-stranded salmon sperm
DNA. Afterward, the hybridization sections were sequentially washed
in 1� SSC at room temperature, four times in 1� SSC at 42 C (30
min/wash), and once in 1� SSC at room temperature (1 h), and then
rinsed in water and ethanol. Finally, the sections were air-dried and
exposed to Hyperfilm �-Max (Amersham Intl., Little Chalfont, UK) at
room temperature for 3 wk. The slides were then developed in Kodak
D-19 developer (Eastman Kodak Co., Rochester, NY) and fixed (Kodak
fixer).

To compare anatomically similar regions, the slides were matched
according to the rat or mouse brain atlas of Paxinos and Watson (29). The
slides from control and treated animals at each treatment time were
always exposed to the same autoradiographic film. All sections were
scanned, and the specific hybridization signal was quantified by den-
sitometry using a digital imaging system (ImageJ; Institutes of Health,
Bethesda, MD). The OD of the hybridization signal was determined and
subsequently corrected by the OD of its adjacent background value. For
this reason a rectangle, with the same dimensions in each case, was
drawn enclosing the hybridization signal over each nucleus and over
adjacent brain areas of each section (background). We used 16–20 sec-
tions for each animal (four to five slides, four sections per slide). The
mean of these 16–20 values was used as the densitometry value for each
animal.

Levels of plasma hormones

Plasma leptin, insulin, and ghrelin levels were measured by RIA as
described previously (15, 17) using reagents provided in commercial kits
(rat leptin RIA, rat ghrelin RIA, and rat insulin RIA; LINCO Research,
Inc., St. Charles, MO).

Statistical analysis and data presentation

Data are expressed as having a mean of � sem and analyzed using
a computerized package for statistical analysis. A statistically significant
difference was determined by the Student’s t test when only two groups
were compared or ANOVA, followed by a post hoc multiple comparison
test (Tukey’s test). A P value less than 0.05 was considered significant.
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FIG. 3. A, Bsx mRNA expression in the
ARC of ghrelin KO mice. B, Bsx mRNA
expression in the ARC of ad libitum-fed
and 24-h fasted GHS-R KO. n � 5–7
animals per group. *, P � 0.05.
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Results
Fasting increases and refeeding decreases Bsx mRNA levels
specifically in the ARC

Bsx mRNA content in the ARC of 24-h fasted rats was
significantly higher (P � 0.05) than in ad libitum-fed rats.
When fasted rats were refed for 12 h, Bsx mRNA expression
in the ARC was reduced to a level similar to fed animals.
However, in the DMH, Bsx expression did not differ between
fasted and fed rats (Fig. 1). Because Bsx expression was
triggered during fasting, we next tested if ghrelin, as the
predominant hunger hormone and as the only circulating
hormone known to stimulate the activity of AgRP neurons,
would affect hypothalamic Bsx levels.

Ghrelin promotes but is not essential for ARC Bsx expression

We observed a significant increase in Bsx mRNA in the ARC
of fed rats after treatment with ghrelin (Fig. 2A). Bsx mRNA
expression was increased to an extent comparable with that in
the ARC of fasted rats (in which endogenous ghrelin is high)
compared with rats fed ad libitum. The fasting induced increase
in Bsx gene expression was reversed by administration of a
ghrelin receptor antagonist (Fig. 2A). No change in Bsx gene
expression was seen in the DMH (Fig. 2B). To test if endogenous
ghrelin signaling was essential for Bsx regulation, we next an-
alyzed ARC Bsx mRNA expression in ghrelin KO and GHS-R
KO mice. Consistent with their normal ARC NPY/AgRP levels
(10, 11), we did not observe any differences between these
animal models with deficient ghrelin signaling and their re-
spective wild-type controls (Fig. 3). Interestingly, the lack of
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FIG. 4. A, Representative pictures of Bsx mRNA expression in the
ARC of ad libitum-fed and fasted rats after leptin injection. Effect of
leptin on rats fed ad libitum and fasted rats in the ARC. B, Effect of
leptin on rats fed ad libitum and fasted rats in the DMH. n � 6–7
animals per group. *, P � 0.05.
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ghrelin signaling did not affect the Bsx response to fasting
because GHS-R deficient mice showed an up-regulation of Bsx
in the ARC after 24-h fasting. We conclude that ghrelin mod-
ulates Bsx expression, but endogenous ghrelin signaling is not
essential to regulate ARC Bsx.

Leptin administration reverses fasting-induced Bsx levels

Leptin administration did not affect ARC Bsx levels in fed
rats, but it did partially reverse the fasting-induced Bsx in-
crease in Bsx (Fig. 4A). Again, neither fasting nor leptin
administration had any effect on Bsx expression in the DMH
(Fig. 4B). We had shown before that Bsx expression is in-
creased in ob/ob mice (14). Here, we confirmed those find-
ings (Fig. 5A) but also show that this phenomenon appears
to be limited to the ARC because no differences were ob-
served in DMH Bsx expression (Fig. 5B). To test whether
increased Bsx expression in ob/ob mice is a specific conse-
quence of leptin deficiency or a general phenomenon in
morbid genetic obesity, we quantified hypothalamic Bsx ex-
pression in mice with a deletion of the gene for MC4R.
However, ARC and DMH Bsx expression levels of MC4R KO
mice did not differ from lean littermate controls (Fig. 5C).

A HFD increases Bsx mRNA expression in the ARC

Rats fed a HFD gained more weight than rats fed a LFD
(Table 1). Increased hypothalamic levels of AgRP and NPY
mRNA are known to occur in rodents upon exposure to a
HFD and are often interpreted as a consequence of HFD-
induced leptin resistance (18). To test the hypothesis that Bsx
could be an important upstream player in hypothalamic
leptin resistance, we fed adult male Sprague Dawley rats a
HFD or LFD for 12 wk. Intriguingly, ARC Bsx levels were
increased in rats on a HFD compared with low-fat fed rats
(Fig. 6), and no differences were observed in DMH Bsx ex-
pression (data not shown).

Discussion

The hypothalamic ARC is believed to contain the most
important neuronal circuits for sensing metabolic energy
availability. Afferent information informing the central ner-
vous system (CNS) about peripheral energy status is com-
municated through hormones such as ghrelin and leptin,
neuronal input from afferent vagus via hindbrain areas, and
direct signaling by circulating nutrients, just to name a few
major examples. Functional components of this CNS “sen-
sor” region appear to be rendered at least partially dysfunc-
tional upon exposure to a HFD, an observation that has been
closely linked with the phenomenon of leptin resistance, as
well as with the difficulties to successfully prevent or cure
obesity and the metabolic syndrome.

Bsx is a novel transcription factor that is located precisely
at the interface between the incoming afferent signals re-
flecting nutritional status and the hypothalamic neuroendo-
crine circuits governing energy homeostasis. Therefore, Bsx
represents a prime candidate for a potentially important
mechanistic player in the pathogenesis of leptin resistance.
We have recently shown that Bsx is an essential regulator of
NPY and AgRP expression in the ARC. Moreover, Bsx is
required for normal locomotor activity patterns, as well as for
the generation of physiological hyperphagia in response to
prefasting, decreased leptin, or increased ghrelin signaling.

Here, we show that Bsx is not only regulating other im-
portant integral CNS factors controlling energy balance and
metabolism but is also regulated by changes in energy avail-
ability. Consistent with that observation, we report that af-
ferent endocrine factors that communicate nutrient avail-
ability in the gastrointestinal tract (ghrelin) or the size of
accumulated fat stores (leptin) to the CNS are up- and down-
regulating ARC Bsx expression, respectively. Our findings
also support the notion that Bsx function is closely connected
with NPY/AgRP expression. Bsx is regulated by conditions
that are associated with NPY/AgRP changes, such as fasting
and refeeding, leptin or ghrelin administration, or leptin
deficiency (19–23), whereas Bsx was unchanged in the ab-
sence of endogenous ghrelin signaling, in which NPY/AgRP
expression levels are normal (Table 2) (8, 9). The interaction
of AgRP- and NPY-expressing neurons with POMC-express-
ing neurons is currently believed to be crucial in the regu-

TABLE 1. Effect of a HFD on body weight, and plasma leptin,
insulin, and ghrelin levels

LFD HFD

Body weight (g) 440.3 � 5.4 502.3 � 7.6a

Leptin (ng/ml) 8.37 � 0.81 8.31 � 0.68
Insulin (ng/ml) 1.66 � 0.21 1.96 � 0.53
Ghrelin (pg/ml) 32.0 � 4.1 14.9 � 3.69a

a P � 0.01.
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lation of energy homeostasis (1, 6). However, mice lacking
NPY and AgRP genes either alone or in combination do not
exhibit relevant changes in energy homeostasis (24, 25). Re-
sults from a different approach recently indicated that ab-
lation of entire neurons coexpressing Agrp/Npy results in
anorexia and substantial weight loss (10–12). We also found
earlier that similarly to NPY and AgRP KOs, the lack of Bsx
does not alter basal body weight or food intake significantly
(14), although those mice showed a decreased locomotor
activity. Interestingly, deficiency for Bsx rescues the hy-
perphagia of leptin-deficient mice (14) similar to what has
been observed in ob/ob mice without NPY (26). A difference
between these potentially relevant models may be that Bsx
mutant mice (but not NPY KO mice) showed a reduction in
AgRP expression. Therefore, there are substantial similarities
among NPY, AgRP, and Bsx KO models, but there are also
differences with the Bsx KO mouse.

Although acute changes in energy balance, such as fasting
and refeeding, are clearly regulating Bsx expression, chronic
changes such as obesity per se do not seem to have any major
impact on Bsx as we conclude from unchanged hypothalamic
Bsx levels in morbidly obese MC4R KO mice. On the other
hand, ob/ob mice show increased Bsx expression, however,
in combination with our findings from MC4R KO mice and
leptin administration studies, we conclude that this differ-
ence is likely a consequence of leptin deficiency, rather than
of increased fat mass. However, Bsx also appears to represent
a target of dietary lipids because chronic exposure to a HFD
triggered an increase in Bsx expression. This finding is par-
ticularly intriguing because it would be consistent with a role
for Bsx in the development of leptin resistance, a condition
that is signified by the failure of the energy balance regula-
tory system to down-regulate orexigenic neuropeptide cir-
cuits in a hypercaloric environment.

A very consistent finding in our studies is represented by
the fact that Bsx is specifically regulated in the ARC, but not
in the DMH. The current model of central energy balance
regulation suggests that parts of the medio-basal hypothal-
amus are less protected from blood-borne factors and, there-
fore, are more likely to sense changes in peripheral metab-
olism. Other hypothalamic nuclei, such as the DMH, are
better protected by the blood-brain barrier and less accessible
from the periphery. Therefore, DMH Bsx might be involved
in other important functions, such as the control of circadian
rhythms (27).

Initial reports had demonstrated that the orexigenic prop-
erties of ghrelin require the presence of Bsx (14). Here, we

further corroborate the importance of Bsx for ghrelin action
by showing that ghrelin administration increases, whereas
GHS-R blockade decreases, ARC Bsx expression.

Overall, our results show that Bsx is regulated by leptin
and ghrelin, but the exact signal transduction mechanisms
regulating Bsx are unknown. It seems reasonable to speculate
that leptin might exert its actions on Bsx through the known
intracellular pathways activated by the leptin receptor such
as the Janus kinase-signal transducer and activator of tran-
scription 3 pathway and/or the phosphatidylinositol 3-ki-
nase pathway (28). It is well known that ghrelin plays an
opposite role to leptin in the regulation of energy balance (1).
However, the ghrelin signal-dependent transcriptional reg-
ulation is still poorly understood, and so far there are no solid
data connecting the ghrelin receptor to Janus kinase-signal
transducer and activator of transcription 3 or phosphatidyl-
inositol 3-kinase pathways. Our and other laboratories are
currently working on a better understanding of the exact
signal transduction mechanisms regulating Bsx.

In summary, we conclude that Bsx likely represents a
physiologically relevant part of energy balance control sys-
tems. Its expression is regulated by changes in energy bal-
ance, by nutrient signals such as ghrelin and leptin, and by
exposure to dietary lipids. Because Bsx function includes
governing hyperphagic responses and controlling sponta-
neous physical activity patterns (14), we propose that Bsx is
a crucial molecular link at the interface between peripheral
energy metabolism and the hypothalamic control of feeding
and motor activity. Further studies will be necessary to dis-
sect if Bsx is a relevant pathogenetic component in the de-
velopment of HFD-induced leptin resistance.
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