80 research outputs found

    Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters

    Get PDF
    The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1-2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Endoscopic Evacuation of Basal Ganglia Hemorrhage via Keyhole Approach Using an Adjustable Cannula in Comparison with Craniotomy

    No full text
    Neuroendoscopic (NE) surgery as a minimal invasive treatment for basal ganglia hemorrhage is a promising approach. The present study aims to evaluate the efficacy and safety of NE approach using an adjustable cannula to treat basal ganglia hemorrhage. In this study, we analysed the clinical and radiographic outcomes between NE group (21 cases) and craniotomy group (30 cases). The results indicated that NE surgery might be an effective and safe approach for basal ganglia haemorrhage, and it is also suggested that NE approach may improve good functional recovery. However, NE approach only suits the selected patient, and the usefulness of NE approach needs further randomized controlled trials (RCTs) to evaluate

    Coordinated Development Based Grid-Source-load Collaborative Planning Method of Uncertainty and Multi-agent Game

    No full text
    When planning the power grid, it is necessary to obtain the optimal decision scheme according to the market behavior of different stakeholders. In this paper, the virtual game player "nature" is introduced to realize the deep integration of game theory and robust optimization, and a source network load collaborative planning method considering uncertainty and multi-agent game is proposed. Firstly, the planning decision-making models of different stakeholders of DG investment operators, power grid investment operators and power users are constructed respectively; then, the static game behavior between distributed generation (DG) investment operators and power grid investment operators is analyzed according to the transmission relationship of the three; at the same time, robust optimization is used to deal with DG. In this paper, we introduce the virtual game player "nature" to study the dynamic game behavior between the virtual game player and the power grid investment operator. On this basis, the dynamic static joint game planning model is proposed

    Silencing of APE1 Enhances Sensitivity of Human Hepatocellular Carcinoma Cells to Radiotherapy <em>In Vitro</em> and in a Xenograft Model

    Get PDF
    <div><p>Resistance to radiotherapy is a key limitation for the treatment of human hepatocellular carcinoma (HCC). To overcome this problem, we investigated the correlation between radioresistance and the human apurinic/apyrimidinic endonuclease (APE1), a bifunctional protein, which plays an important role in DNA repair and redox regulation activity of transcription factors. In the present study, we examined the radiosensitivity profiles of three human HCC cell lines, HepG2, Hep3B, and MHCC97L, using the adenoviral vector Ad5/F35-mediated APE1 siRNA (Ad5/F35-siAPE1). The p53 mutant cell lines MHCC97L showed radioresistance, compared with HepG2 and Hep3B cells. APE1 was strongly expressed in MHCC97L cells and was induced by irradiation in a dose-dependent manner, and Ad5/F35-siAPE1 effectively inhibited irradiation-induced APE1 and p53 expression. Moreover, silencing of APE1 significantly potentiated the growth inhibition and apoptosis induction by irradiation in all tested human HCC cell lines. In addition, Ad5/F35-siAPE1 significantly enhanced inhibition of tumor growth and potentiated cell apoptosis by irradiation both in HepG2 and MHCC97L xenografts. In conclusion, down regulation of APE1 could enhance sensitivity of human HCC cells to radiotherapy <em>in vitro</em> and <em>in vivo</em>.</p> </div

    Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza

    No full text
    © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. The genetic predisposition to severe A(H1N1)2009 (A[H1N1]pdm09) influenza was evaluated in 409 patients, including 162 cases with severe infection and 247 controls with mild infection. We prioritized candidate variants based on the result of a pilot genome-wide association study and a lung expression quantitative trait locus data set. The GG genotype of rs2070788, a higher-expression variant of TMPRSS2, was a risk variant (odds ratio, 2.11; 95% confidence interval, 1.18-3.77; P =. 01) to severe A(H1N1)pdm09 influenza. A potentially functional single-nucleotide polymorphism, rs383510, accommodated in a putative regulatory region was identified to tag rs2070788. Luciferase assay results showed the putative regulatory region was a functional element, in which rs383510 regulated TMPRSS2 expression in a genotype-specific manner. Notably, rs2070788 and rs383510 were significantly associated with the susceptibility to A(H7N9) influenza in 102 patients with A(H7N9) influenza and 106 healthy controls. Therefore, we demonstrate that genetic variants with higher TMPRSS2 expression confer higher risk to severe A(H1N1)pdm09 influenza. The same variants also increase susceptibility to human A(H7N9) influenza.Link_to_subscribed_fulltex
    corecore