189 research outputs found

    Airway Ultrasound as Predictor of Difficult Direct Laryngoscopy: A Systematic Review and Meta-analysis

    Get PDF
    Background: Despite several clinical index tests that are currently applied for airway assessment, unpredicted difficult laryngoscopy may still represent a serious problem in anesthesia practice. The aim of this systematic review and meta-analysis was to evaluate whether preoperative airway ultrasound can predict difficult direct laryngoscopy in adult patients undergoing elective surgery under general anesthesia. Methods: We searched the Medline, Scopus, and Web of Science databases from their inception to December 2020. The population of interest included adults who required tracheal intubation for elective surgery under general anesthesia without clear anatomical abnormalities suggesting difficult laryngoscopy. A bivariate model has been used to assess the accuracy of each ultrasound index test to predict difficult direct laryngoscopy. Results: Fifteen studies have been considered for quantitative analysis of summary receiver operating characteristic (SROC). The sensitivity for distance from skin to epiglottis (DSE), distance from skin to hyoid bone (DSHB), and distance from skin to vocal cords (DSVC) was 0.82 (0.74-0.87), 0.71 (0.58-0.82), and 0.75 (0.62-0.84), respectively. The specificity for DSE, DSHB, and DSVC was 0.79 (0.70-0.87), 0.71 (0.57-0.82), and 0.72 (0.45-0.89), respectively. The area under the curve (AUC) for DSE, DSHB, DSVC, and ratio between the depth of the pre-epiglottic space and the distance from the epiglottis to the vocal cords (Pre-E/E-VC) was 0.87 (0.84-0.90), 0.77 (0.73-0.81), 0.78 (0.74-0.81), and 0.71 (0.67-0.75), respectively. Patients with difficult direct laryngoscopy have higher DSE, DSVC, and DSHB values than patients with easy laryngoscopy, with a mean difference of 0.38 cm (95% confidence interval [CI], 0.17-0.58 cm; P = .0004), 0.18 cm (95% CI, 0.01-0.35 cm; P = .04), and 0.23 cm (95% CI, 0.08-0.39 cm; P = .004), respectively. Conclusions: Our study demonstrates that airway ultrasound index tests are significantly different between patients with easy versus difficult direct laryngoscopy, and the DSE is the most studied index test in literature to predict difficult direct laryngoscopy. However, it is not currently possible to reach a definitive conclusion. Further studies are needed with better standardization of ultrasound assessment to limit all possible sources of heterogeneity

    Trading-Off Machine Learning Algorithms towards Data-Driven Administrative-Socio-Economic Population Health Management

    Get PDF
    Together with population ageing, the number of people suffering from multimorbidity is increasing, up to more than half of the population by 2035. This part of the population is composed by the highest-risk patients, who are, at the same time, the major users of the healthcare systems. The early identification of this sub-population can really help to improve people’s quality of life and reduce healthcare costs. In this paper, we describe a population health management tool based on state-of-the-art intelligent algorithms, starting from administrative and socio-economic data, for the early identification of high-risk patients. The study refers to the population of the Local Health Unit of Central Tuscany in 2015, which amounts to 1,670,129 residents. After a trade-off on machine learning models and on input data, Random Forest applied to 1-year of historical data achieves the best results, outperforming state-of-the-art models. The most important variables for this model, in terms of mean minimal depth, accuracy decrease and Gini decrease, result to be age and some group of drugs, such as high-ceiling diuretics. Thanks to the low inference time and reduced memory usage, the resulting model allows for real-time risk prediction updates whenever new data become available, giving General Practitioners the possibility to early adopt personalised medicine

    Advanced multi-sensor platform for chronic disease home monitoring

    Get PDF
    Nowadays chronic diseases affect an ever-growing segment of population in developed countries; and the management of such kind of diseases requires a huge amount of resources. Chronic Heart Failure, Chronic Obstructive Pulmonary Disease, Diabetes, etc. are the main causes of hospitalization for elderly people, and considering the general aging of population this may lead sustainability problems in the near future. In the last years, clinicians and administrators have identified the telemedicine as strategy to improve the patient management, ensuring both a decreasing of hospital admissions and improving the patient's quality of life. This paper presents a complete system for the management of the healthcare information related to the chronic patient treatment, integrating three main points: a configurable multi-sensor platform for the acquisition and transmission of vital signs, a dedicated server for the provisioning of centralized telemedicine services and the possibility of synchronizing with the electronic health record

    Spectroscopic response of CZT detectors obtained by the boron encapsulated vertical Bridgman method

    Get PDF
    The purpose of this paper is to present the spectral response at different energies of some CZT crystals grown with the boron oxide encapsulated vertical Bridgman method by IMEM-CNR. The most important feature of the technique is that the crystal, during the growth, is fully encapsulated by a thin layer of liquid boron oxide, so that the crystal-crucible contact is prevented. Using this material, several detectors were realized of about 4x4x1 mm3 in size and with electrical gold contacts on both the surfaces obtained by two different techniques: vacuum vaporization deposition and electroless

    Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications

    Get PDF
    Alginate-based membranes containing hyaluronic acid (HA) were manufactured by freeze-drying calcium-reticulated hydrogels. The study of the distribution of the two macromolecules within the hydrogel enabled to highlight a polymer demixing mechanism that tends to segregate HA in the external parts of the constructs. Resistance and pliability of the membranes were tuned, while release and degradation studies enabled to quantify the diffusion of both polysaccharides in physiological solution and to measure the viable lifetime of the membranes. Biological studies in vitro proved that the liquid extracts from the HA-containing membranes stimulate wound healing and that fibroblasts are able to colonize the membranes. Overall, such novel alginate-HA membranes represent a promising solution for several medical needs, in particular for wound treatment, giving the possibility to provide an in situ administration of HA from a resorbable device

    Antibacterial-Nanocomposite Bone Filler Based on Silver Nanoparticles and Polysaccharides

    Get PDF
    Injectable bone fillers represent an attractive strategy for the treatment of bone defects. These injectable materials should be biocompatible, capable of supporting cell growth and possibly able to exert antibacterial effects. In this work, nanocomposite microbeads based on alginate, chitlac, hydroxyapatite and silver nanoparticles were prepared and characterized. The dried microbeads displayed a rapid swelling in contact with simulated body fluid and maintained their integrity for more than 30\ua0days. The evaluation of silver leakage from the microbeads showed that the antibacterial metal is slowly released in saline solution, with less than 6% of silver released after 1\ua0week. Antibacterial tests proved that the microbeads displayed bactericidal effects toward S. aureus, P. aeruginosa and S. epidermidis and were also able to damage pre-formed bacterial biofilms. On the other hand, the microbeads did not exert any cytotoxic effect towards osteoblast-like cells. After characterization of the bioactive microbeads, a possible means to embed them in a fluid medium was explored in order to obtain an injectable paste. Upon suspension of the particles in alginate solution or alginate/hyaluronic acid mixtures, a homogenous and time-stable paste was obtained. Mechanical tests enabled to quantify the extrusion forces from surgical syringes, pointing out the proper injectability of the material. This novel antibacterial bone-filler appears as a promising material for the treatment of bone defects, in particular when possible infections could compromise the bone-healing process

    Nucleation, reorganization and disassembly of an active network from lactose-modified chitosan mimicking biological matrices

    Get PDF
    Developing synthetic materials able to mimic micro- and macrorheological properties of natural networks opens up to novel applications and concepts in materials science. The present contribution describes an active network based on a semi-synthetic polymer, a lactitol-bearing chitosan derivative (Chitlac), and a transient inorganic cross-linker, boric acid. Due to the many and diverse anchoring points for boric acid on the flanking groups of Chitlac, the cross-links constantly break and reform in a highly dynamic fashion. The consequence is a network with unusual non-equilibrium and mechanical properties closely resembling the rheological behavior of natural three-dimensional arrangements and of cytoskeleton. Concepts like network nucleation, reorganization and disassembly are declined in terms of amount of the cross-linker, which acts as a putative motor for remodeling of the network upon application of energy. The out-of-equilibrium and non-linear behavior render the semi-synthetic system of great interest for tissue engineering and for developing in-vitro mimics of natural active matrices

    The Use of Iliac Stem Prosthesis for Acetabular Defects following Resections for Periacetabular Tumors

    Get PDF
    Introduction. The management of pelvic tumors is a challenge for orthopaedic oncologists due to the complex anatomy of the pelvis and the need to have extensive exposure. Various reconstructive techniques have been proposed with poor functional results and a high percentage of complications. Our purpose is to determine the functional results and the rate of complications of iliac stem prosthesis for acetabular defects following resections for periacetabular tumors. Materials and Methods. Between 1999 and 2012, 45 patients underwent pelvic resections for periacetabular bone tumors followed by reconstruction with stem cup prosthesis. The most common diagnosis was CS (chondrosarcoma, 29 cases), followed by OS (osteosarcoma, 9 cases) and metastasis (3 cases). In 33 cases, this implant was associated with massive bone allografts. Minimum follow-up required to evaluate functional outcome was 2 years. We classified pelvic resections according to Enneking and Dunham’s classification and we used MSTS (musculoskeletal tumor system) score to evaluate functional outcomes. Results and Discussion. Sixteen patients died of their disease, three were lost to follow-up, four are alive with disease, and twenty-two are alive with no evidence of disease. Fifteen patients had local recurrence. Sixteen patients had bone or lung metastasis. We have had 6 infections, 2 aseptic loosening, and 2 cases of hip dislocation. Iliac sovracetabular osteotomy was fused in all cases at 10 months from surgery. Functional results were good or excellent in 25 of 31 patients with long-term follow-up (77%), with a percentage similar to that reported in the literature. Conclusion. The use of iliac stem prosthesis is a simple reconstructive technique that reduces operative times and risk of infection. It allows having good results and low rate of complications, but it should be performed in selected cases and centres of reference

    Scouting for Climate Variable with Small Satellites

    Get PDF
    HydroGNSS is a small satellite mission under the new ESA Scout programme tapping into NewSpace, within ESA’s FutureEO programme. The mission will use an innovative GNSS-Reflectometry instrument to collect parameters related to the Essential Climate Variables (ECVs): soil moisture, inundation, freeze/thaw, biomass, ocean wind speed and sea ice extent. GNSS-Reflectometry is a type of bistatic radar utilizing abundant GNSS signals as signals of opportunity, empowering small satellites to provide measurement quality associated with larger satellites. The HydroGNSS instrument introduces novel measurements compared to its predecessors on UKSA TechDemoSat-1 and NASA CYGNSS missions. These include: the acquisition of Galileo(E1) reflections, and firsts such as dual- polarization, complex ‘coherent channel’ (amplitude/phase) and second frequency (L5/E5a) acquisitions. These measurements enable HydroGNSS to innovate the L2 products, e.g. improving the ground resolution and soil moisture measurement, as dual-polarized reflections allow the discrimination of vegetation effects from soil moisture. HydroGNSS will: ● Complement and potentially gap fill other missions sensing soil moisture e.g. ESA’s SMOS and NASA’s SMAP missions. ● Complement ESA’s Biomass mission addressing coverage restrictions over Europe, North and Central America. ● Expand GNSS-Reflectometry techniques. ● Lay the foundations for a future constellation capable of offering continuity in high spatial-temporal resolution observations of the Earth’s weather and climate
    corecore