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Abstract: Together with population ageing, the number of people suffering from multimorbidity is
increasing, up to more than half of the population by 2035. This part of the population is composed
by the highest-risk patients, who are, at the same time, the major users of the healthcare systems.
The early identification of this sub-population can really help to improve people’s quality of life and
reduce healthcare costs. In this paper, we describe a population health management tool based on
state-of-the-art intelligent algorithms, starting from administrative and socio-economic data, for the
early identification of high-risk patients. The study refers to the population of the Local Health Unit of
Central Tuscany in 2015, which amounts to 1,670,129 residents. After a trade-off on machine learning
models and on input data, Random Forest applied to 1-year of historical data achieves the best
results, outperforming state-of-the-art models. The most important variables for this model, in terms
of mean minimal depth, accuracy decrease and Gini decrease, result to be age and some group
of drugs, such as high-ceiling diuretics. Thanks to the low inference time and reduced memory usage,
the resulting model allows for real-time risk prediction updates whenever new data become available,
giving General Practitioners the possibility to early adopt personalised medicine.

Keywords: decision support system; population health management; explainable artificial intelli-
gence; machine learning; big data

1. Introduction

Thanks to advances in therapies and treatments, to declining of fertility and to immi-
gration, the population is getting older and older [1,2]. It is expected that one fourth of the
U.S. population will be over 65 years old by 2060 [3]. This situation will not be different
in the other countries. In addition, the population aged 85 years and over is expected to
almost double in the next 25 years [4].

Population ageing influences the cost of health [5]. In fact, nowadays more than
half of the elderly population is affected by more than 2 co-existing chronic diseases
(multimorbidity), with increasing prevalence in very old people. Over the next 15 years,
the number of old people affected by chronic diseases will increase by more than 50% [6].
These “complex” patients are the major users of the healthcare systems, because of their
higher risk of hospitalisation and death, leading to higher healthcare expenditures than
people with no chronic conditions or with a single chronic condition [7,8].

It is well known in the literature that the implementation of the Chronic Care Model
(CCM) have reduced the healthcare costs and have improved the outcomes, especially
in the management of single chronic conditions [9]. Although CCM has attempted to
lead to proactive care of patients [10], the current care model is still based on a reactive
approach, where the General Practitioners (GPs) usually react to patients’ symptoms.
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This poor tendency to prevent and to act before the symptoms often leads to higher risk
of hospitalisation, hospital readmission and mortality, adversely affecting quality of life
(QoL) and economic healthcare resources.

Identifying relevant sub-populations for proactive management, i.e., the highest-risk
(complex) patients, becomes the key for early diagnoses and therapies, preventing or
postponing some adverse events, delivering them the most appropriate care program
according to the individual needs and thus improving QoL and the allocation of the
available resources.

However, the correct identification of a cohort of high-risk patients to be monitored is
a hard work for the doctors [11]. In fact, the patient medical record is not enough to define
the health status, but also biology/genetics, socio-economic factors, culture, environment
and behaviour should be considered [12]. In addition, in the big data era, a huge amount
of data is available, coming from different sources (e.g., administrative flows, wearable
and IoT devices and telemedicine platforms) with frequent updates [13–15]. If treated and
analysed with proper methods, these data can give some useful information, decrease the
hospital readmission rate and reduce the healthcare costs of more than 25% [16].

Population Health Management (PHM) is the automated process of using big data
for the definition of patients cohorts and for the stratification of the groups by the risk
of hospitalisations. Its final aim is improving clinical outcomes while lowering costs [17].
Thanks to the advances in machine learning (ML) algorithms and to the digitalization of
the informative flows, PHM can really help in the identification of the target patients and
in the implementation of the proactive approach. However, it is important that the selected
ML model is explainable and understandable by the GPs in order that they can trust them
and they are fully committed to follow their outcomes.

This paper presents the trade-off of machine learning algorithms, taking as input
datasets composed by administrative and socio-economic data deriving from periods
of study of different lengths, to develop an explainable PHM first level screening tool.
Such a tool is for the early identification of high-risk patients (from the clinical point
of view, and so complex patients), who will be re-analysed by the GPs during the second
level screening phase, to obtain a final group of patients to monitor with specific plans
of care. Its final aim is multiple: supporting GPs in early identification of high-risk pa-
tients, improving patients’ QoL by decreasing hospitalisations, readmissions and mortality
and reducing healthcare costs.

A preliminary version of this work has been presented at the conference IEEE CBMS
2018 [18] by the same authors. This article provides an extended state-of-the-art analysis,
additional details regarding the extraction of the input features, new models trained
with different datasets and, consequently, new results and a more detailed discussion of
these results, including the explanation of the best model through the analysis of the most
important variables.

After this introduction, Section 2 reports the analysis of the state-of-the-art. Section 3
shows the phases of data pre-processing, considering the available data in Italy, the extrac-
tion of the input features and the final datasets and modelling (how to deal with imbalanced
data, implementation of the models, parameters tuning and feature selection). Section 4
presents the results, which are discussed in Section 5, together with a detailed explanation
of the best model. At last, conclusions are drawn in Section 6.

2. Related Works

With advances in artificial intelligence and new technologies for data collection and
storage, the healthcare industry can exploit big data analytics to improve the outcomes [19].

Multiple supervised ML algorithms have been implemented and validated for the
prediction of single chronic diseases, starting from different data sources. Swain [20] built
Logistic Regression (LR) and Decision Tree (DT) models to evaluate the risk of being obese
in the U.S. population, using a database constructed with interviews. Chen et al. [21] pro-
posed a Convolutional Neural Network (CNN) for the prediction of cerebral infarction, us-
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ing both structured and unstructured hospital data. Meng et al. [22] compared LR, DT and
Artificial Neural Network (ANN) performance in the prediction of diabetes, using data
extracted from questionnaires, while Worachartcheewan et al. [23] proposed Random
Forest (RF) for the same aim. Regarding the prediction of heart diseases, Latha et al. [24]
used ensemble methods (boosting, bagging and stacking), other than the classical Naive
Bayes (NB), RF, DT, ANN and Projective Adaptive Resonance Theory (PART), starting
from the Cleveland heart dataset. NB, RF, LR, Support Vector Machine (SVM) and en-
semble methods were also used by Dinesh et al. [25] for the prediction of cardiovascular
disease. In addition, Panicacci et al. [26] implemented and validated RF and Least Absolute
Shrinkage and Selection Operator (LASSO) for the identification of heart failure patients,
using Italian administrative data. Tengnah et al. [27] tried to diagnose hypertension with
DT and ANN. Yang et al. [28] started from a survey database (ELSA, English Longitudinal
Study of Ageing) to predict dementia, comparing Gradient Boosting Machine (GBM), CNN,
RF, Regularized Greedy Forest (RGF) and LR, while Cattelani et al. [29] developed a risk
prediction model for depression, using three different European databases.

In addition, Electronic Health Records (EHRs) [30] are largely employed as a data
source for chronic diseases prediction, even if they are not structured and collected for
research projects [31,32]. Some examples of their use are described in [33] for the prediction
of childhood obesity, in [34] for diabetes predictions, in [35] to predict heart failure, in [36]
for cardiovascular disease, in [37] for hypertension and in [38] for dementia.

However, predicting a single chronic disease does not completely overlap with the
identification of high-risk patients, since the highest-risk patients are the complex patients,
usually affected by multimorbidity, but the onset of multiple chronic conditions is not
taken into account in these studies.

Anyway, EHRs are also used, especially in the USA, for the identification of high-cost
patients, considering then the occurrence of multimorbidity, and for predicting hospitalisa-
tions [39–44]. These predictive models are usually exploited by the insurance companies to
adjust the insurance premium of the patients.

Unfortunately, EHRs are not available at the same level of maturity in all the regions in
Italy and they are not usable for prediction analysis. Here, only administrative data (hospi-
talisations, procedures, outpatient services, drugs, exemptions and emergency room visits)
are collected by public authorities to be used for healthcare predictive models. In three
Italian regions, Tuscany, Emilia-Romagna and Lazio, Bellini et al. [45], Louis et al. [46] and
Balzi et al. [47] tried to identify high-risk patients using the available administrative data,
but they employed statistical methods. Statistical methods are more explainable than ML
algorithms, but at the same time they have limitations in the amount of data to process.
For this reason, the authors made some critical a-priori decisions, regarding input variables
and involved patients. However, to the best of our knowledge, administrative data have
already been treated only with statistical methods in the literature.

The idea of this work is to implement and test state-of-the-art ML algorithms, already
employed in the prediction of a single chronic disease and healthcare costs, for the identifi-
cation of high-risk patients. These models were adapted to be used with administrative
and socio-economic data.

3. Materials and Methods

In this section, we describe the phases of data pre-processing and modelling. In [18],
multiple ML algorithms were implemented and validated using as input a dataset with
5-years of historical and socio-economic data to develop a PHM tool for the identification
of high-risk patients. Starting from those results, we decided to trade-off not only ML
models but also input datasets with different populations and periods of historical data,
to find the best matching model/dataset to identify the target population.

The models tried to solve a binary classification problem, since the output was high-
risk/low-risk for each patient. The algorithms were evaluated with three golden metrics:
Positive Predictive Ratio (PPR) [48], which represents the capability of discriminating



Computers 2021, 10, 4 4 of 21

the positive class from the negative one; F1-Score, the harmonic mean between Positive
Predictive Value (PPV) and Sensitivity (SE); F2-Score, which weighs SE higher than PPV by
placing more emphasis in false negatives [49]. They are defined as follows:

PPR =
PPV

1 − NPV
(1)

F1Score = 2 × PPV × SE
PPV + SE

(2)

F2Score = 5 × PPV × SE
4 × PPV + SE

(3)

where SE, PPV, Negative Predictive Ratio (NPV) and Specificity (SP) are defined as:

SE =
TruePositives

TruePositives + FalseNegatives
(4)

PPV =
TruePositives

TruePositives + FalsePositives
(5)

NPV =
TrueNegatives

TrueNegatives + FalseNegatives
(6)

SP =
TrueNegatives

TrueNegatives + FalsePositives
(7)

With respect to [18], in this work we included also the F2-Score on top of the PPR and
F1-score, in order to minimise the false negatives more than the false positives. This is very
important for any first level screening tool.

3.1. Data Pre-Processing

In Italy, every time each resident benefits from a health service, he/she produces
some digital traces. These data are first collected by the healthcare facilities where the
service is provided (i.e., hospitals, clinics, pharmacies and Local Health Units (LHUs))
and then they are transmitted to the regions. Regions send anonymized data (fiscal codes
are encrypted according to Italian Law, no. 675/1996 [50]) to the Agencies of Regional
Health Services (ARHSs), the only institutions in charge of comparative-effectiveness
analysis [51]. Before any processing, unstructured data are extracted, transformed and
loaded (ETL process) on a relational database (DB). In addition to these administrative
data, ARHSs store also socio-economic data collected by ISTAT [52] with the national
census. Socio-economic data are in the order of census sections. In the case of the Tuscany
Region, mARSupio is the DB where administrative and socio-economic data are stored [53].
Figure 1 shows the architecture of the system for the collection of data.

More in detail, we could rebuild the medical history of each patient using administra-
tive data. The interesting information for this work were diagnoses and procedures done
during hospital admissions, assistive, diagnostic and rehabilitation outpatient services,
prescribed drugs and exemptions for any reason. These administrative flows are usually
mainly complete, because a specific reimbursement is provided for each record.

The problem addressing this paper is a binary classification one (high-risk/non-high-
risk). Moreover, the analysis was shifted in the past to implement supervised algorithms
with the possibility of evaluating relevant performance (retrospective study): the goal was
to identify clinically high-risk patients in 2015. With the support of a group of medical
experts, we defined high-risk patients as the ones who will have an avoidable hospitalisa-
tion or will die the following year with respect to the period of study (2015 in this case).
According to the Agency for Healthcare Research and Quality (AHRQ), avoidable hospital-
isations are inpatients that could be prevented with early intervention and good outpatient
care [54]. They can be identified in hospital admissions for angina without procedure,
congestive heart failure, hypertension, chronic obstructive pulmonary disease, diabetes
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short-term complication, diabetes chronic complication (renal, ocular, neurological, circu-
latory, etc.), uncontrolled diabetes and lower-extremity amputation among patients with
diabetes. People of the initial population who had avoidable hospitalisations or died in
2015 were then identified using data in mARSupio. They represented the positive class
‘B’ of this supervised binary classification problem. All the others in the initial population
were part of the negative class ‘G’.

Figure 1. Architecture of the system for the collection of data.

We considered multiple initial populations, according to the reference period of
study: people were observed for 5-, 4-, 3-, 2-years and 1-year periods. Therefore, since the
output was calculated for 2015, the periods of study were 2010–2014, 2011–2014, 2012–2014,
2013–2014 and only 2014, respectively, as shown in Figure 2. The five populations involved
in the study were composed by all the residents in the LHU of Central Tuscany, alive on
1st January 2015, who have lived in Tuscany at least the 80% of the days of the entire period
of study. This restriction was due to the fact that mARSupio contains medical information
only for the residents in Tuscany and so some crucial events could be lost for people who
have left Tuscany for a significant period of time. As a result of this limitation, the initial
population grew when considering a shorter period of study: 1,529,714, 1,580,899, 1,605,627,
1,629,651 and 1,648,897 for 5-, 4-, 3-, 2-years and 1-year periods of study, respectively.

Figure 2. Building input datasets.

All the interactions with the healthcare system occurred in the period of data collection
were considered with the same weight for every population. Of course, it was infeasible
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considering each diagnosis, each procedure, each outpatient service, each drug and each
exemption separately as input for the models, since they are identified by tens of thousands
of different codes. Therefore, for each class, the codes were grouped according to the type of
data and the input variables for every dataset were generated as described in the following:

• Diagnoses were grouped by single-level Clinical Classification Software (CCS) [55].
They are 283 clinically homogeneous mutually exclusive categories, which cluster
all the 14,000 diagnosis codes, according to International Classification of Diseases,
9th Revision, Clinical Modification (ICD-9-CM, Fifth Edition) [56]. We counted the
number of hospital admissions and summed the number of days of hospitalisation
for each CCS for each patient for different dates. For example, if patient A has been
hospitalised on 1st January 2014 for 3 days with ICD-9-CM codes 250.60 (diabetes with
neurological manifestations, type II or unspecified type, not stated as uncontrolled),
250.70 (diabetes with peripheral circulatory disorders, type II or unspecified type, not
stated as uncontrolled) and 278.00 (obesity), since the two codes 250.60 and 250.70
belong to CCS 50 (diabetes mellitus with complications) and the code 278.00 belongs
to CCS 58 (other nutritional endocrine and metabolic disorders), this event counts as
1 hospital admission with 3 days of hospitalisation for CSS 50 and 1 hospital admission
with 3 days of hospitalisation for CCS 58. Another admission of 5 days with code
250.60 on 30th March 2014 for the same patient will be summed to the previous one
for CCS 50, for a total of 2 hospital admissions and 8 days of hospitalisation for CCS
50 for patient A. Considering admissions and days as two different variables for each
CCS, the total number of input attributes for diagnoses was 566.

• Procedures were grouped by single-level CCS. For procedure classification, the scheme
contains 231 mutually exclusive categories, grouping 3900 ICD-9-CM procedure
codes [57]. The ICD-9-CM codes of each category usually refer to the same sys-
tem/organ. The number of procedures done for each CCS for each patient on different
dates was counted. The total number of input features for procedures was then 231.

• Outpatient services were divided into 76 ad-hoc groups. The outpatient services codes
are about 2000, but a unique regrouping method is not defined yet. Therefore, they
were divided first in visits, diagnostics, laboratory, therapeutics and rehabilitation
and then we went into more detail, considering criteria like methods and purpose,
defining 76 mutually exclusive and homogeneous ad-hoc groups. The services made
on different dates for every group and every patient were counted. Each group
represented an input variable, for a total of 76 variables.

• For drugs, Anatomical Therapeutic Chemical classification system (ATC) [58] was
chosen. The third level (ATC3) was selected for classification. It is the therapeu-
tic/pharmacological subgroup of the drug itself and it is usually used to identify
265 therapeutic subgroups of about 3350 chemical substances. The number of drugs
taken in the period for different ATC3 classes and on different dates was counted, for
a total of 265 attributes for drugs.

• Exemptions were partitioned into 28 ad-hoc mutually exclusive groups. Starting
from almost 800 codes, the classification was done considering the motivation of the
exemption, according to chronic diseases, specific services (e.g., emergency room or
sports medicine) and income. Every class was a categorical variable (for a total of
28 input features) with three values: “0” for no exemptions for the group, “1” meaning
at least an active exemption for the group at 1st January 2015, and “2” if the exemption
has expired during the period of study.

The process of defining and generating the input variables for each dataset from the
medical codes is shown in Table 1.



Computers 2021, 10, 4 7 of 21

Table 1. Process of defining input variables from diagnoses, procedures, outpatient services, drugs
and exemptions codes.

Class Codes Grouping
Method Groups Input

Variables

Diagnoses ∼14,000 CCS 283 566

Procedures ∼3900 CCS 231 231

Outpatient Services ∼2000 Ad-hoc 76 76

Drugs ∼3350 ATC3 265 265

Exemptions ∼800 Ad-hoc 28 28

Since 80% of what affects the health outcomes and the clinical phenotype is asso-
ciated to health behaviours, social and economic factors and physical environment [59],
we included in the input datasets also socio-economic data. Unfortunately, this kind of infor-
mation is not available for the single person, but derives from the last ISTAT census (2011),
where data are aggregated for census section. For each census section, we calculated the
dependency index (the ratio between the number of people in non-working age and the
number of people in working age [60]), the median level of education (a categorical variable
with values 4, 3, 2, 1 for degree, high school, secondary school, primary school and nothing,
respectively), the median marital status (from 0 to 3, meaning single, married, divorced
and widowed), the percentage of the working population, the percentage of strangers, the
median number of family members and the percentage of rented houses. In addition, three
variables related to the environment of living were considered: the density of the munic-
ipality of residence, the characteristic of inner area (with possible values centre, middle,
belt, outlying and outermost) and the classification as fragile area (fragile/non-fragile).
Socio-economic variables were then 10.

Finally, age on 1st January 2015 and gender were included.
Therefore, the complete set of input features was composed by 1178 variables, includ-

ing both administrative and socio-economic data (Table 2).

Table 2. Summary of the input variables of each final dataset.

Class Input Variables

Medical Variables

Diagnoses 566

Procedures 231

Outpatient Services 76

Drugs 265

Exemptions 28

Socio-Economic
Variables

Personal 2

Municipality of residence 3

Census Section of residence 7

Total 1178

The final datasets had every person in a row and 1179 columns (1178 input attributes
plus the binary output variable). Their dimensions were then 1,529,714 × 1179, 1,580,899 ×
1179, 1,605,627 × 1179, 1,629,651 × 1179 and 1,648,897 × 1179 for the five periods of study,
from the longer to the shorter.

Since in the DB not all the people were associated to a census section, all the datasets
presented some missing values, about the 10% of the values of the seven columns related
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to the census section of residence. They were replaced with the mean value in continuous
variables and with the median value in categorical variables.

All the datasets were very unbalanced towards the negative output class. The preva-
lence of the positive class, in fact, varied from 1.42% to 1.34%, from the 5-years population
to the 1-year population.

3.2. Modelling and Feature Selection

The entire modelling phase for each dataset is described in Figure 3. It was executed
on a Linux server with 64 GB of RAM and 64 CPU cores, using a program written in
R language.

Figure 3. Modelling phase for each input dataset.

Every dataset was split into two partitions, training and test sets, the 70% and the
30% of the original dataset, respectively. During the split, the proportion of the output
classes was maintained: all training and test sets had the same prevalence of the original
datasets. In order to achieve better performance, handling the problem of imbalanced data,
the five training sets were under-sampled [61], taking one random sample every 20 samples
belonging to the negative class. The positive samples, on the contrary, were all kept. Since
the original prevalence was slightly different among the initial training sets, the obtained
prevalence of the balanced training sets varied from 22.36% to 21.38%, as shown in Table 3.
This ratio was considered a good trade-off between the total balancing (50% of positives
and 50% of negatives) and the deletion of too many samples. On the contrary, the test sets
were not balanced, because performance must be evaluated on a real sample of the Tuscan
population, with the original prevalence.

The balanced training sets were then used to train six ML algorithms, the ones used
in [18], except NB.

In fact, NB assumes that input features are independent, but in this problem depen-
dency exists among attributes: this explains its poor performance. Therefore, the algorithms
implemented in this study were Classification and Regression Tree (CART), C5.0, Con-
ditional Inference Tree (CTree) (three types of DTs differing for the splitting criterion),
RF, ANN and LASSO. The output of every algorithm was the probability to belong to
the positive class ‘B’. The threshold for discriminating the two classes was set to 0.5 in
this phase.
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We applied 10-fold cross validation with grid search to tune the parameters of each
algorithm for each balanced training set in order to find the best combination of parameters
to maximise PPR.

Table 3. Positive ‘B’ and negative ‘G’ classes distribution for complete datasets, initial and balanced training sets and tests sets.

Class Complete Dataset Initial Training Set Balanced Training Set Test Set

Samples % Samples % Samples % Samples %

5-years

B 21,711 1.42 15,198 1.42 15,198 22.36 6513 1.42

G 1,508,003 98.58 1,055,603 98.58 52,780 77.64 452,400 98.58

4-years

B 21,963 1.39 15,375 1.39 15,375 21.98 6588 1.39

G 1,558,936 98.61 1,091,256 98.61 54,562 78.02 467,680 98.61

3-years

B 22,033 1.37 15,424 1.37 15,424 21.77 6609 1.37

G 1,583,594 98.63 1,108,516 98.63 55,425 78.23 475,078 98.63

2-years

B 22,083 1.36 15,459 1.36 15,459 21.55 6624 1.36

G 1,607,568 98.64 1,125,298 98.64 56,264 78.45 482,270 98.64

1-year

B 22,119 1.34 15,484 1.34 15,484 21.38 6635 1.34

G 1,626,778 98.66 1,138,745 98.66 56,937 78.62 488,033 98.66

For CART [62,63], the DT that uses Gini index as splitting criterion, the parameters to
tune were those used for pruning: the complexity parameter (cp) (the minimum improve-
ment to do to attempt a split) and the minimum number of observations that must exist in
a node to perform a split (minSplit). On the contrary, the maximum depth of a tree was
not tuned. While minSplit was different for the various datasets, the best cp was always
the same (0.0001).

Additionally for C5.0 [64,65], a DT with Information Gain used as splitting criterion,
the parameter chosen for tuning was linked to the pruning phase: the minimum number
of samples that must be put in at least two of the splits (minCases), meaning the degree
of fitting the initial tree (higher values cause a more approximate fit, making a sort of
pre-pruning). The confidence factor (CF), which regards the severity of pruning, was set to
the default value 0.25. However, also optimum minCases resulted to be the same for the
five training sets (50).

CTree [66,67] uses statistical tests to evaluate the association of the input features and
the target variable and to perform splits. In this study, the maximum p-value in order to
implement a split was set to 0.05, while minSplit (with the same meaning as in CART) was
tuned. Of course, the optimal values were different from CART.

For RF [68,69], an ensemble of trees, we tuned ntree (the number of trees in the forest)
and mtry (the number of randomly selected variables chosen at each node). The best value
of this last parameter was always 34, which corresponds to the default value in classification
problems (the square root of the number of input features). We used the Gini index as
splitting criterion for each tree.

ANNs [70,71] were built with one hidden layer for interpretability motivations.
The number of hidden neurons (HN) was tuned. Each ANN run for at most 1000 iterations.
The resulting HNs were different for all the datasets.
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At last, for LASSO [72,73], the λ parameter (i.e., the shrinkage penalty) was tuned.
The optimal values were all in the order of 10−3.

The summary of the tuning phase with parameters and results for each algorithm and
each training set is shown in Table 4.

The created models were really big and difficult to be interpreted because of the great
number of input features. Moreover, variables’ redundancy can lead to overfitting and
can add noise, decreasing performance, and some of the 1178 input attributes could be
irrelevant, increasing only computational time and memory required to store the model it-
self. Therefore, a feature selection (FS) process was executed on the five complete balanced
training sets separately. We chose the Boruta algorithm to select the most important vari-
ables to predict the outcome [74], since it is both computationally efficient and simple
and it does not require user defined parameters to tune. Boruta is a wrapper method
built around RF. More in detail, it performs a top-down search for the most predictive
attributes and iteratively deletes the less relevant variables: (1) at each run, an RF is built
with an extended dataset, composed by the original dataset w/o unimportant attributes
plus shuffled confirmed and tentative input features; (2) for every variable a statistical test
is executed; (3) each attribute is confirmed or eliminated if the importance of the feature
is significantly higher or significantly lower than the maximum importance among the
shuffled attributes; (4) otherwise, if statistical significance is not found, the attribute is left
tentative and the algorithm restarts from step 1. In this work, Boruta was run on the five
complete balanced datasets separately, with p-value set to 0.01. After 100 runs for each
dataset, it produced five reduced training sets (Figure 3) with different input features.

The reduced training sets were composed as follows:

• for the 5-years dataset, 280 variables were confirmed as important (99 diagnoses,
58 procedures, 35 outpatient services, 80 drugs, 6 exemptions, age and gender);

• for the 4-years dataset, 225 features were selected as important (65 diagnoses, 38 pro-
cedures, 38 outpatient services, 76 drugs, 6 exemptions, age and gender);

• for the 3-years dataset, 244 variables were chosen (58 diagnoses, 62 procedures, 39 out-
patient services, 74 drugs, 9 exemptions, age and gender);

• for the 2-years dataset, 199 attributes were confirmed as important (47 diagnoses,
39 procedures, 29 outpatient services, 71 drugs, 11 exemptions, age and gender);

• for the 1-year dataset, 153 features were selected as important (44 diagnoses, 23 proce-
dures, 24 outpatient services, 54 drugs, 6 exemptions, age and gender).

The six ML models were then re-built and re-tuned in the same way as before, but with
the reduced balanced training sets. The best combinations of parameters before and after
the feature selection process are shown in Table 4.

For CART, if cp was always 0.0001 (for all the datasets, both before and after FS),
minSplit became smaller or remained equal after the FS process. C5.0’s best minCases was
50 in all the cases, while minSplit for CTree was usually different w.r.t. its value before FS
(except for 5- and 3-years datasets). In the case of RF, ntree did not vary with the reduction
of input features, while mtry usually decreased. As regards ANN, the number of hidden
neurons always increased after FS. At last, for LASSO, λ went from order of 10−3 to order
of 10−4.
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Table 4. Tuning of the parameters for each algorithm vs. complete and reduced balanced training sets.

Algorithm Parameters and Ranges Training Set Best Values before FS Best Values after FS

CART

cp in
[10−1, 10−2, 10−3,
10−4, 10−5]

minSplit in
[50, 70, 100,
150, 200]

5-years (10−4, 200) (10−4, 100)

4-years (10−4, 200) (10−4, 150)

3-years (10−4, 100) (10−4, 100)

2-years (10−4, 100) (10−4, 100)

1-year (10−4, 70) (10−4, 70)

C5.0

minCases in
[50, 70, 100,
150, 200]

5-years 50 50

4-years 50 50

3-years 50 50

2-years 50 50

1-year 50 50

CTree

minSplit in
[50, 70, 100,
150, 200]

5-years 200 200

4-years 50 70

3-years 50 50

2-years 70 50

1-year 70 50

RF

ntree in
[300, 500, 700,
1000, 1500,
2000]

mtry in
[10, 16, 24, 34]

5-years (1000, 34) (1000, 34)

4-years (500, 34) (500, 24)

3-years (500, 34) (500, 24)

2-years (800, 34) (800, 34)

1-year (2000, 34) (2000, 16)

ANN

HN in
[2, 3, 4, ...,
13, 14, 15]

5-years 10 13

4-years 11 14

3-years 8 12

2-years 5 6

1-year 9 13

LASSO

λ in
[4.6×10−3, 2.6×10−3,
1.5×10−3, 1.4×10−3,
1.2×10−3, 7.8×10−4,
5.3×10−4, 4.9×10−4,
3.3×10−4]

5-years 1.5×10−3 4.9×10−4

4-years 4.6×10−3 3.3×10−4

3-years 1.2×10−3 7.8×10−4

2-years 1.4×10−3 3.3×10−4

1-year 2.6×10−3 5.3×10−4

4. Results

The results were evaluated on the test set, to find the best model in terms of PPR,
F1-Score and F2-Score. Figure 4 shows the results of all the models for these golden metrics.

Considering each model trained with the five complete datasets, PPR, F1-Score and
F2-Score usually increase reducing the length of the period of study. There are only two
exceptions: C5.0, where PPR with 3-years dataset is slightly worse than PPR with 4-years
dataset, and CTree, where F1- and F2-Score obtained with 3-years dataset are almost the
same of the results reached with 4-years dataset. However, for all the models, the best
length of the period of historical data is 1 year. In addition, comparing the performance
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achieved by the different models with the same input dataset, for every length of the period
of study, the best model is RF, while the worst model is CTree. As a result, in the first phase
where complete datasets were used, RF with 1-year of historical data is the best model.

These considerations are valid also for the second phase (after FS), considering the
models obtained from the reduced training sets: better results are achieved when decreasing
the length of the period of study and, with the same input dataset, RF behaves better than
the other models.

From Table 5, which summarises the performance achieved by the models using 1-year
datasets (the best length of period of study) before and after FS, we can note that results
are usually slightly better after FS. This is valid also for the other datasets, as highlighted
in Figure 4, where dotted lines (results obtained with reduced datasets) overlap or exceed
continuous lines (performance achieved with complete datasets). There are only some
exceptions: in terms of F1- and F2-Score, CTree 1-year, LASSO 1-year, RF 5-years and ANN
3-years behave better with the complete datasets; considering PPR, ANN 1-year achieves
higher outcomes with the complete dataset; ANN 5-years reduces its performance for all
three golden metrics after FS.

Therefore, among the 60 models (=6 algorithms × 10 datasets, where the 10 datasets
are given by 5 periods × 2 phases, i.e., before and after FS), RF taking as input the reduced
1-year dataset results in the best one.

Figure 4. Comparison of the performance in terms of golden metrics of all the models trained with both complete balanced
datasets and reduced balanced datasets, using the best parameters.
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Table 5. Performance achieved by all the models using complete and reduced 1-year datasets.

Model Dataset PPR F1Score
(%)

F2Score
(%)

SE
(%)

SP
(%)

PPV
(%)

NPV
(%)

CART
Complete 50.6 28.72 45.69 75.34 95.25 17.75 99.65

Reduced 51.92 29.22 46.21 75.43 95.37 18.12 99.65

C5.0
Complete 56.31 30.31 47.48 76.32 95.55 18.91 99.66

Reduced 58.12 30.84 48.05 76.55 95.65 19.31 99.67

CTree
Complete 43.68 28.12 44.28 71.8 95.39 17.48 99.6

Reduced 46.33 27.45 44.2 74.54 94.99 16.82 99.64

RF
Complete 79.99 36.48 53.85 78.87 96.55 23.73 99.7

Reduced 91 37.52 55.31 80.87 96.6 24.43 99.73

ANN
Complete 60.09 34.7 50.63 72.98 96.63 22.76 99.62

Reduced 58.72 36.21 51.05 70.22 97.04 24.4 99.58

LASSO
Complete 51.96 29.5 46.4 75.12 95.46 18.35 99.65

Reduced 52.18 29.26 46.26 75.52 95.37 18.14 99.65

5. Discussion

The Boruta algorithm was used to select the most predictive variables for the iden-
tification of high-risk patients in each dataset. The confirmed features were different in
the five cases and their number decreased considering the datasets in decreasing order of
length of periods of study. The only exception was the 3-years dataset, where the number
of selected features (244) was higher than the number of selected features in the 4-years
dataset (225).

In all the cases, the most predictive variables are consistent with the identification of
the target population. They are mostly related to malignant tumours, to cardiovascular and
respiratory system, to kidney and bowel and to other chronic diseases, such as diabetes.

We can observe that decreasing the length of the period of study, the importance
of diagnoses in the dataset usually decreases (99 of 280 for the 5-years dataset vs. 44 of
153 for the 1-year dataset), while the impact of drugs and outpatient services increases
(80 groups of drugs and 35 groups of outpatients of 280 for the 5-years dataset vs. 54 groups
of drugs and 24 groups of outpatients of 153 for the 1-year dataset). This is probably due to
the fact that drugs and outpatient services have more incidence in a near future. On the
contrary, some specific diagnoses, for example some chronic diseases, can become fatal
over the years. Finally, the weight of procedures and exemptions is almost stable over the
datasets and it is also comparable with the weight of these classes on the complete datasets.

In all the reduced sets, both the number of hospital admissions and the number of days
of hospitalisation are usually confirmed together for the same CCS. This means that these
variables carry different information. When only one attribute of the couple is selected,
the number of days of hospitalisation is confirmed, underlying its more relevance w.r.t. the
number of admissions.

Another characteristic valid for all reduced datasets is that age and gender are always
included in the reduced set of input features, while all the other socio-economic attributes
are always rejected. In fact, these features refer to a non-homogeneous group of people,
i.e., the residents in the same municipality or in the same census section. Unfortunately,
they do not approximate well the individual. However, the exemptions for socio-economic
conditions are always included in the reduced datasets, highlighting the importance of the
socio-economic status in this problem.
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Obviously, reducing the number of input features, the models have become faster
(both for training and inference) and lighter in terms of memory usage. Furthermore,
the performance achieved with the reduced datasets is usually slightly better than that
obtained with the complete datasets, as shown in Figure 4. Therefore, features deleted with
the Boruta algorithm were probably useless and added just noise. Since all the selected
algorithms perform a sort of feature selection while building, with pruning or shrinking
coefficient and weights, the results for the various metrics are not significantly better
after FS. However, the models built with the reduced training sets are the best candidates
for the first level screening tool, to extract in advance patients requiring specific programs
of care, for several reasons. Firstly, they lower complexity during the collection of data,
thanks to the reduction of the number of input features. Secondly, they can be compliant for
the integration with mobile devices, such as tablets and smartphones, and, consequently,
with telemedicine platforms [75], since they reduce both computational time and required
memory. The inference time, lower than 1 ms per patient (about 108 s for RF for the entire
1-year reduced test set, composed by 494,668 rows), in fact, could allow to re-classify the
patients every time a significant event occurs. At last, the results of the models built with
the reduced training sets are comparable or even better than the ones achieved by the
models built with the complete training sets.

Considering each model built with datasets with different historical data, it figures
out that there is an improvement in performance decreasing the length of the period
of study. The highest risk of hospitalisation or death is then defined by recent medical
events. Moreover, considering old events with the same weight of newer ones can cause
the misclassification of some samples, as demonstrated by worse performance with longer
periods of study. Thus, from the trade-off on datasets deriving from periods of study
of different lengths, it turns out that the best method is to consider only one year of
medical history to identify high-risk patients next year. This result simplifies even more the
collection of data, because it requires to go back just one year. Moreover, the input features
are only 153 in this case.

Random Forest with reduced 1-year dataset results to be the best model among all.
In particular, it achieves very high PPR (91), as shown in Table 5: people identified as
high-risk have the risk of avoidable hospitalisation or death about 91 times greater than
the others. Moreover, as highlighted in Table 5, it reaches both high sensitivity and high
specificity (almost 81% and almost 97%, respectively), classifying the most part of the
samples correctly. If featuring high specificity is quite a simple task, because of the great
imbalance of the classes, high sensitivity is a very appreciable result for the same reason.
Thus, most high-risk patients will be recognised in advance and monitored more carefully
by their GPs; instead, for the majority part of lower-risk people, the healthcare approach
will not be modified, because of their small needs. Conversely, RF features a high number
of false positives (people identified as high-risk by the model, but really low-risk). In
addition, this result is due to the very low outcome prevalence [76]. However, reducing
the length of the period of study and passing from 5-years to 1-year of historical data, PPV
increases of about 10%, from 14.64% [18] to 24.43% (Table 5), because higher-risk patients
are identified considering only newer events. In addition, since the model will be used for
the first level of screening, at this step it is acceptable to include more people than necessary
in the positive class. Some of them will be excluded during the second level of screening
made by the GPs, who can consider also behavioural, social and environmental factors.
In this first phase, it is much more important to reduce the number of false negatives
(people classified as negatives, but really belonging to the positive class), to exclude very
few patients having really need of specific treatments. This aim is achieved and confirmed
by high SE and high NPV (Table 5).

During the testing phase, the probability threshold was set to 0.5. The problem of false
positives can be handled changing this probability threshold. Increasing the threshold,
in fact, the model becomes more and more selective, predicting very high-risk patients.
In this way, false positives decrease, but also true positives decrease, causing the increase
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of false negatives. This scenario can be taken into consideration and really implemented,
since in this case a limited list of high-risk patients is produced for the GPs. On the
other hand, decreasing the probability threshold, more patients are identified as high-risk,
increasing true positives and reducing false negatives, but in this case the single GP could
have problems in enrolling such a large number of patients in a specific healthcare model.
The Receiver Operating Characteristic (ROC) curve of RF with reduced 1-year dataset
(Figure 5) shows sensitivity and false positive rate (1 − SP) at different thresholds. Figure 5
highlights the threshold used during the testing phase (0.5) and the threshold that best
trades-off minimisation of false positives and false negatives (0.28), i.e., the closest point
to (0, 1). It is not obvious that the best threshold in terms of metrics is also the best one
in the practical scenario according to the current healthcare system. The Area Under the
Curve (AUC) reaches a very high value (0.967) and points out the excellent performance of
the selected model.

Figure 5. Receiver Operating Characteristic (ROC) curve of Random Forest (RF) which takes in input
the reduced 1-year dataset.

RF can also be explained to the GPs, giving them some information regarding the
importance and the weight that each input feature has in the final predictions. In math-
ematical terms, the importance of an input variable Ak in the forest is the average of the
importance of Ak in every tree. For each tree, the importance of Ak is given by the difference
between the error rate of predictions obtained with the original dataset and the error rate
of predictions obtained with a dataset which coincides with the original one, except for Ak,
which is randomly permuted. Moreover, the importance of each variable can be expressed
using other metrics, such as mean minimal depth, times_a_root, accuracy decrease and
Gini decrease [77]:

• The mean minimal depth of Ak is the average of the minimal depth of Ak in each tree,
where the minimal depth of Ak in each tree represents the length of the path from
the root to the node where the variable Ak is used for splitting. The more important
the feature is, the smaller mean minimal depth is, since it means that the variable
discriminates well the two classes, maximising the reduction of impurity in the set.

• Times_a_root of Ak is the number of trees where the variable Ak is at the root. Obvi-
ously, it is strongly related inversely to the mean minimal depth: with the growth of
times_a_root, mean minimal depth decreases.
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• Accuracy decrease for variable Ak is the mean decrease of accuracy in predictions if
Ak is randomly permuted. If it is larger, the variable is more important and affects
more the final predictions.

• Gini decrease of Ak is the mean decrease of Gini index when splitting on Ak itself.
As for accuracy decrease, the larger it is, the greater is the weight of the attribute in
the predictions.

From the two plots of Figure 6, it is easy to note that age is the variable which most
affects the output, since it has the maximum decrease both in accuracy (∼7%) and in Gini
index (∼3761). This is the reason why it is usually at the root (in 209 trees) and it has the
minimum mean minimal depth (2.61). This is not surprising, as residents of all ages are
included in the study. Even if the variable DRUGS_ATC3_C03C (number of high-ceiling
diuretics) has similar mean minimal depth (2.72), it has very lower accuracy decrease
(∼1.5%) and Gini decrease (∼2058). The other top variables are mostly drugs, and there
are only one group of outpatient services and one group of exemptions in this set. They are
mostly linked to chronic diseases.

Their meaning is explained in Table 6. No hospital admissions nor days of hospitalisa-
tion for specific diagnoses nor procedures are included in the set of the most important
features for the model.

The inclusion of almost all the residents in an area (the LHU of Central Tuscany)
and the consideration of features that are usually excluded can be a motivation of the
good performance achieved by our best model, if compared with state-of-the-art studies.
For example, the algorithm currently used in Tuscany for the identification of high-risk pa-
tients [45] excludes a-priori the patients without a hospitalisation in the previous three years.
They achieve almost 6 for PPR and almost 72.8% as SE. With RF, PPR reaches 91 and SE
increases to 80.87%.

Table 6. Description of the most important input features for RF trained with reduced 1-year dataset.

Input Features Description

AGE Age on 1st January

DRUGS_ATC3_A02B Number of drugs for peptic ulcer and gastro-oesophageal reflux disease

DRUGS_ATC3_B01A Number of antithrombotic agents

DRUGS_ATC3_B05B Number of intravenous solutions

DRUGS_ATC3_C01D Number of vasodilators used in cardiac diseases

DRUGS_ATC3_C03C Number of high-ceiling diuretics

DRUGS_ATC3_C03D Number of potassium-sparing agents

DRUGS_ATC3_C07A Number of beta-blocking agents

DRUGS_ATC3_N06A Number of antidepressant

DRUGS_ATC3_V03A Number of other therapeutic products

EX_GROUP_08 Exemption for disability

PERF_GROUP_51 Number of immunohematology laboratory exams
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(a)

(b)

Figure 6. Most important input features for RF trained with the reduced 1-year dataset: (a) distribu-
tion of minimal depth and its mean (marked by a vertical bar); (b) multi-way importance plot vs.
accuracy_decrease, gini_decrease and times_a_root.

In Tuscany region, statistical methods are currently used to stratify the population by
risk and for the identification of high-risk patients, to produce lists for the GPs to implement
a proactive healthcare approach. These lists are extracted once per year. The proposed
method fits into this context, replacing statistical methods. In fact, in this way, the selection
of high-risk patients could be refined, thanks to better performance. Moreover, because
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of the very low inference time and memory footprint, the risk of hospitalisation or death
could be recalculated every month, when mARSupio is updated with new medical records,
in a synchronous way for all the residents. The granularity of this process could also be
increased. In fact, GPs could interact directly with the system by means of an easy graphical
user interface. More in detail, patients could be registered in the platform at the beginning
(when their GP approves the use of this system). At this time, historical data of the last
year are uploaded and the initial risk index is computed. Then, the GP could access to
a web platform, a mobile application or a computer program and, every time a medical or
economic event occurs for each patient, update their level of risk. In this way, the risk index
will be computed in real-time, asynchronously for each patient, and GPs could rapidly
react to a patient predicted risk by adjusting relevant therapies or any other required
action. This system could also be adopted in other Italian regions, where a structured
administrative database is present and available and data are detailed as in mARSupio.

6. Conclusions

Population affected by multiple chronic conditions is increasing with population
ageing and soaks up the most part of the healthcare resources. The early identification of
complex patients becomes then crucial, but state-of-the-art approaches are used for the iden-
tification of sub-populations with a single chronic condition or use clinical data, which are
not available in Italy. The idea of this work is to develop a data-driven administrative-
socio-economic population health management tool based on machine learning algorithms
for the selection of high-risk (complex) patients.

This paper presents a trade-off of several machine learning algorithms and multiple
input datasets with the aim of identifying high-risk patients in the Tuscan population,
to select the best model with the best data for a population health management tool.
Datasets differ among themselves in the length of the period of study and are composed by
administrative and socio-economic data. The best model in terms of three golden metrics,
i.e., PPR, F1-Score and F2-Score, results to be Random Forest with historical data collected
in 1-year period. The final input attributes of the dataset are only 153 of the initial 1178.
Among them, age and some groups of drugs are the ones that most affect the output.
This novel approach for feature selection leads to better performance of selected Random
Forest model w.r.t. state-of-the-art algorithms. This is demonstrated by the fact that Tuscany
region is considering the adoption of the proposed method for the identification of high-risk
patients in the coming years.

Moreover, this approach allows for real-time risk prediction for any given patient as
soon as new medical or economic data are gathered by the system. In this way, the General
Practitioner can rapidly react defining a proper personalised medicine for the patient
in order to reduce the predicted risk. The predictive model could be even improved by
exploiting patient vital parameters in case the patient is enrolled in a telemedicine program.
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