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Neuromorphic Decoding of Spinal Motor Neuron
Behaviour during Natural Hand Movements for a
New Generation of Wearable Neural Interfaces

Simone Tanzarella, Massimiliano Iacono, Elisa Donati, Dario Farina+, and Chiara Bartolozzi+

Abstract— We propose a neuromorphic framework to
process the activity of human spinal motor neurons for
movement intention recognition. This framework is inte-
grated into a non-invasive interface that decodes the ac-
tivity of motor neurons innervating intrinsic and extrin-
sic hand muscles. One of the main limitations of current
neural interfaces is that machine learning models cannot
exploit the efficiency of the spike encoding operated by the
nervous system. Spiking-based pattern recognition would
detect the spatio-temporal sparse activity of a neuronal
pool and lead to adaptive and compact implementations,
eventually running locally in embedded systems. Emergent
Spiking Neural Networks (SNN) have not yet been used
for processing the activity of in-vivo human neurons. Here
we developed a convolutional SNN to process a total of
467 spinal motor neurons whose activity was identified in
5 participants while executing 10 hand movements. The
classification accuracy approached 0.95 ± 0.14 for both
isometric and non-isometric contractions. These results
show for the first time the potential of highly accurate
motion intent detection by combining non-invasive neural
interfaces and SNN.

Index Terms— Neural interfaces, Neuromorphic, Spiking
Neural Networks, Spinal Motor Neurons, Wearable

I. INTRODUCTION

NEXT generation of Human Machine Interfaces (HMIs)

aims at fast, safe, touchless, and intuitive control of

digital devices, based on the prediction of human intention
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obtained by decoding neural activity, through neural interfaces.

Applications range from the control of smart devices (smart-

phones, home, virtual and augmented reality) to the control of

assistive devices and robots.

Neural interfaces extract information from different regions

of the nervous system and differ in the degree of their inva-

siveness. Implanted electrodes directly measure the activity of

neurons (e.g., electroneuronography (ENG), electrocorticog-

raphy (ECoG), Microelectrode arrays (MEAs)), while non-

invasive measures (Electroencephalography (EEG), surface

electromyography (sEMG), etc.) provide global information on

neural activity [39, 20]. The source of these neural recordings,

i.e. the activity of many neurons, has a natural spiking nature,

since information in neural systems is encoded at the popu-

lation level (spatial) in the precise temporal pattern of spikes,

as demonstrated in somatosensory [29, 42] and visual and

audio [4] cortex for sensory stimuli and decision making [46].

When establishing a neural interface by decoding spiking

biopotentials, the extracted spiking activity of neurons is

usually transformed into non-spiking features, moving from a

binary discrete domain to a continuous one. In particular, the

use of a set of kernels enables to extract richer information

from spike trains in terms of neural recruitment strategies, such

as identification of neurons encoding for a specific function,

spike train similarity, and probability distribution of spiking

neuronal behaviour [43]. However, during all these types

of transformations, some original information of the spiking

neural activity could be lost, and in general we would always

need to interpose this feature extraction from a discrete to a

continuous domain, to then process these features with state-

of-the-art machine learning [44, 9]. Also, some works focus

on the waveforms of the action potentials in the neural signals

instead of on their firing pattern [33].

Therefore, only a Spiking Neural Network (SNN)-based

machine learning can unleash the full information potential of

the intrinsic spiking nature of a pool of neurons, exploiting the

complexity of their spatio-temporal sparse activity. Moreover,

the study of neuromorphic algorithms, implemented in this

work with traditional computing, would lead to adaptive,

extremely efficient, and compact implementations on neuro-

morphic hardware. Thus, we here hypothesize that SNN-based

architectures have the potential to efficiently decode the sparse

activity of a large number of spinal motor neurons involved

in the generation of complex hand motion patterns across

different tasks.
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Despite their intrinsic spiking nature, only a few attempts

have been proposed to process natural spiking information

from biological neurons, either from in-vitro neuronal cultures

obtained by animal cortical tissues [30, 6, 7] or in-vivo from

anesthetized animals [5]. We emphasize here the terminology

natural spiking information since several works performed an

artificial spike-encoding of neural biopotentials from human

in-vivo recordings, like in [31, 16, 8] and used SNNs to

extract movement intentions. This artificial spike-encoding is

performed by thresholding the signal with an asynchronous

delta modulator approach [13, 35]. However, in those cases,

the original biological spiking information of each recorded

neuron was not preserved, because there was no previous iden-

tification of the activity of single neurons in the recordings.

Thus, this is why we address here the direct processing of

natural neural spiking information received by motor neurons

from the Central Nervous Systems (CNSs) with SNNs.

In this study, we present the case of a non-invasive neural

interface based on spinal motor neuron activity. We show for

the first time the processing of human in-vivo natural spiking

activity of individual spinal motor neurons with a SNN during

the execution of daily-life gestures. With this approach, we

show the detection of natural finger movements from pools

of motor neurons innervating 14 hand muscles. We identify

the activity of single motor neurons from Electromyography

(EMG) by decomposition [34, 24, 40, 41], by using muscles

as a peripheral gate to extract central neural information,

generated at the spinal cord level. In this way, we decouple

the information sent by the CNS to muscles from the muscle

fibers action potentials, de-facto accessing information about

the CNS through the muscular system [19, 10, 47, 21, 53,

38]. This type of wearable neural interfaces have been already

implemented and extensively evaluated [52, 25, 3, 15]. This

proposed SNN-based architecture provides the basis for the

development of non-invasive, wearable neural interfaces for

the next generation of intuitive HMIs for a broad range of

daily-life conditions, such as touchless control of devices,

gaming and controlling virtual reality, as well as for control

of prostheses and rehabilitation.

II. METHODS

A. Subjects

Five healthy male individuals (age: 27.2 ± 3.3 yrs; weight:

74.6 ± 7.1 kg; height: 179 ± 6.7 cm) participated in the

experiments after having signed an informed consent form

approved by the Imperial College London Research Ethics

Committee (approval no. 18IC4685), in conformity with the

Declaration of Helsinki.

B. Targeted muscles and experimental protocol

The electrode configuration of the HD-sEMG represented

in Fig. 1.b maps the activity of 14 of the most important

muscles actuating the finger and the wrist [50]. The recorded

muscles were first dorsal interosseous (FDI), the three other

dorsal interossei (II-IV DI), abductor digiti minimi (ADM),

flexor pollicis brevis (FPB), abductor pollicis brevis (APB),

opponens pollicis (OPP), extensor carpi ulnaris (ECU), exten-

sor digitorum communis (EDC), extensor carpi radialis (ECR),

flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS)

and flexor carpi radialis (FCR).

To record the HD-sEMG dataset, we asked the subjects to

perform different types of gestures by flexing each individual

finger in three different wrist postures – neutral, flexed, and

extended – and also thumb abduction and opposition, since

these degrees of freedom of the thumb are involved in grips

and object manipulation. For the same reason, we asked

to simulate three different grips, i.e. two-finger, three-finger,

and five-finger grips. Grips were asked without contact with

objects to maintain consistency in terms of interaction with

the environment, i.e. action of external forces, with respect

to the other 7 gestures. Among these 10 natural gestures,

represented in Fig. 1.a, the ones involving a single finger

were considered across different wrist postures, respectively in

neutral, extended, and flexed positions (15 recordings overall).

Each gesture lasted 6 seconds, for 4 repetitions. A pause of 1

minute between each recording of the 4 repetitions per gesture

was interposed, to avoid the presence of fatigue effects. These

6 s were divided in 2 s for reaching the required finger posture

(with an excursion of the interested joint angle resulting in

an increase in the contraction), 2 s to block the finger posture

(isometric part, with a plateau in the contraction), and 2 s to

come back to the neutral position. We indicate later in the text

the first 2 of these 3 phases, used in the analysis, as increasing

(I), plateau (P), by indicating their concurrent selection with

I+P.

To indicate to the participants the movements to be executed

and the timing of the phases, visual feedback in terms of the

type of gesture and an animated cue were provided during the

execution of the tasks.

C. Experimental Setup

Six 64-channel grids with equidistant electrodes covered the

forearm and the hand: two grids (8 mm inter-electrode distance

(IED)) over the extrinsic (into the forearm) extensor and flexor

muscles, four grids (4 mm IED) over the intrinsic muscles (into

the hand). The grids were made of plastic with electrodes

printed in gold. HD-sEMG signals were recorded with a

monopolar recording configuration by a 400-channels ampli-

fier (Quattrocento, OT Bioelettronica, Torino, Italy). Signals

were amplified with a gain of 150, band-pass filtered between

10 and 900 Hz, sampled at 2048 Hz, and A/D converted to

16 bits. A laptop received the digitized data to store and

visualise it in real-time. A monitor was placed in front of

each participant to represent a picture indicating the gesture to

execute and the timings of the execution. This visual feedback

was represented with a custom-made application developed in

Matlab (The Mathworks, Natick, US), which also visualized

and saved the HD-sEMG signals. In Discussions, we speculate

about the adaptation of this instrumentation to the wearable

case.

D. Signal Processing

The spiking activity of individual spinal motor neurons

innervating muscles in the hand (intrinsic) and in the forearm
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Fig. 1. Experimental protocol and High-Density-sEMG (HD-sEMG) electrode placement. a) The protocol included single-finger flexion (5 gestures),
3 different grips with 5, 3 and 2 fingers, and thumb abduction and opposition (10 gestures in total). b) 6 HD-sEMG grids each with 64-channels
recorded the activity of 14 muscles. Two large grids (8mm Intra-Electrode Distance (IED)) were placed over the forearm and four small grids were
placed over intrinsic muscles (4mm IED).

(extrinsic) actuating fingers and wrist was directly interfaced

with a convolutional SNN composed by two layers of Leaky

Integrate-and-Fire (LIF) neurons (Fig. 2) to identify the per-

formed hand gesture. Decomposition extracts spiking informa-

tion of single motor neurons non-invasively from HD-sEMG

signals. It consists in separating the firing occurrences from the

motor unit action potential waveforms (Fig. 2.b). These wave-

forms do not correspond to neural information and depend

only on the volume conduction, i.e. properties of the recording

system, interposed tissues, and the relative distance between

active motor units and electrodes [18]. The output of the

decomposition is a collection of time-varying inter-pulse trains

(IPTs), the sequence of firing occurrences for each identified

motor unit (Fig. 2.b). Each identified waveform for a motor

unit corresponds to a spike in the IPTs and the relative firing

occurrences are extracted by thresholding [26]. It is worth

remembering that the spiking information of single motor

neurons is the net product of the integration at the spinal level

between the central supraspinal commands and the peripheral

afferent commands performed by modules of interneurons.

Thus, the input of the SNN is the natural neural binary

information of a pool of spinal motor neurons, decoupled from

their action potential waveforms, and it provides information

about the exertion commands from spine modules to each

recorded muscle.

To identify the motor neurons firing patterns of the in-

vestigated muscles and track the same motor neurons across

multiple tasks, we concatenated the HD-sEMG signals of

the recordings relative to each gesture and then decomposed

the concatenated HD-sEMG as in [51]. Each group of 64

concatenated HD-sEMG signals corresponding to a record-

ing grid of 64 electrodes was decomposed separately with

the Convolution Kernel Compensation (CKC) algorithm [27]

(Fig. 3.a). Since the amount of HD-sEMG data to decompose

for all the gestures exceeded the computational capacity of

the decomposition algorithm (approximately 100MB of data

for the 100 decomposition runs executed), HD-sEMG data

were divided in 4 different concatenations. The order of

concatenation of the HD-sEMG recordings was:

• Grips: Five-finger grips, Three-finger grip, Two-finger

grip

• Neutral wrist: Index, Little, Middle, Ring, Thumb flex-

ion, Thumb Abduction, Thumb Opposition

• Extended wrist: Index, Little, Middle, Ring, Thumb

flexion

• Flexed wrist: Index, Little, Middle, Ring, Thumb flexion

The concatenated HD-sEMG signals were digitally filtered

between 20 and 500 Hz with a 4th-order Butterworth filter and

then decomposed by the CKC algorithm [27]. The accuracy

of this motor unit identification from HD-sEMG was assessed

by pulse-to-noise ratio (PNR) [23]. The final output of the

decomposition was manually inspected by expert operators

according to the consensus study published in [14, 36]. We

discarded a spike train when it presented an average firing rate

lower than 2 Hz, or when the corresponding spike-triggered

averaged MUAP waveform did not presented a physiological

shape but only noise. The latter condition was assessed by

identifying shapes with several phases which are not typical
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Fig. 2. Non-invasive neural interfaces for neuromorphic implementation. a) Human spinal motor neurons spike trains, are interfaced with an artificial
Spiking Neural Network (SNN) of Leaky Integrate-and-Fire (LIF) neurons with local learning rules. The input to motor neurons is the net output of
the integration performed by spinal interneurons of supraspinal and afferent neurons, encoded in the spiking activity of the motor neuron. The SNN
main hyperparameters are α and β, the neuron’s membrane and synaptic time constants, respectively. b) Spinal motor neuron spiking activity
can be non-invasively identified with HD-sEMG decomposition. Decomposition uses blind source separation to distinguish similar motor unit action
potential waveforms (2 motor units in the example) from HD-sEMG signals. These waveforms, maximally different among different motor units, are
then separated from the interpulse spike trains IPT. The thresholding of the IPT provides the binary spiking information which is the input of the
Spiking Neural Network (SNN).

of physiological MUAPs.

To complete the motor neuron tracking across all the

observed recordings, after having decomposed separately the

four HD-sEMG concatenations, the spiking activity of the

identified spinal motor neurons for each concatenation was

matched across all the other concatenations. To do so, we

paired similar action potential waveforms of the respective

motor units across the four concatenations, by ordering similar

motor unit pairings from the most similar to the least similar

until the termination of the pairings. Waveform similarity was

assessed with a 2D-cross-correlation between the matched mo-

tor unit action potential templates. The average action potential

waveforms for each electrode were obtained by spike-triggered

average (STA) [37]. In the case of unpaired motor units in this

last process based on action potential waveforms, also these

unpaired motor units were included in the analysis, since they

were already assessed to be accurate when decomposed in

their EMG concatenated signals, as described above.

As shown in [51], for electrode grids covering more than

one muscle, motor unit location was assessed by computing

the root mean square (RMS) of spike-triggered averaged motor

unit action potentials per each channel, having a 64-electrode

matrix per grid. Then, the grids were divided arbitrarily into

three bands as shown in [51] and motor units were assigned

according to the most active band and the expected position

of each muscle with respect to the band. The methodological

aspects of this method are discussed in the cited paper.

The spike trains of all the considered motor neurons of all

muscles for each subject, segmented with windows of 200 ms

[45] (Fig. 3.b), were sent to the 1-D input array of the network.

This segmentation did not imply any smoothing operations,

as our SNN works directly with spikes without any imposed

continuous transformation. In this way, the minimum firing

rate detectable with such a window is 5 Hz, and lower firing

rates are de-facto clipped to 0.

E. Structure of the network, hyperparameter

optimization and network calibration

The proposed convolutional SNN is based on the Deep

Continuous Local Learning (DECOLLE) framework [28]

(Fig. 4.b). The hyperparameters which have the greatest impact
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Fig. 3. Signal processing and motor neuron identification. a) High-Density-sEMG (HD-sEMG) recordings, concatenated across tasks, are
decomposed in the corresponding trains of motor unit action potentials, to obtain the relative motor neuron spike trains tracked across different
tasks. b) The identified spike trains for one task are segmented in 200 ms-width windows and used as inputs to the convolutional Spiking Neural
Network (SNN).

Fig. 4. Structure of the convolutional Spiking Neural Network (SNN) adopted in the study and its application. a) The overall structure of the network
comprises two convolutional spiking layers (Conv), and two pool layers (Pool). Two fully connected (FC) layers are appended each at the end of
each Conv-Pool structure, to implement the local learning. The dimension of their output is the number of classes. The number of neurons (N) in the
input layer corresponds to the number of motor neurons identified for each subject, varying for each subject, as reported in Table I. b) This network
is designed to be used online by calibrating the decomposition and the network in a calibration phase on a remote server and then using the mixing
matrix for online decomposition and the trained optimized network for online classification. This remains a future perspective for this paper since we
would need online decomposition, and the part implemented here is the one for the calibration part.
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on the performance are the dimension of the input window,

the number and size of the layers and the time constants of

neurons and synapses.

We chose the minimum number of layers (two) in the

convolutional architecture (Fig. 4.a), to optimize the trade-off

between accuracy and power consumption. The first convo-

lutional layer has an input size equal to the number of the

processed motor neurons, which is different for each subject

(Table I), and an output of 64 (set empirically after preliminary

tests); the second has an input of 64 and an output of 128. Each

layer is trained locally, using the classification of the gestures

in a fully connected readout layer as the objective function.

Each of these readout layers produced a number of outputs

equal to the number of classes to discriminate.

The spiking activity of individual spinal motor neurons

innervating the targeted muscles was directly interfaced with

a convolutional SNN composed of two layers of LIF neurons

(Fig. 2). Each of the two convolutional layers was trained

autonomously, by surrogate gradient and local learning. The

network is mainly ruled by the time constant of the neurons’

membrane, and of the synapses, represented by the α and β

hyperparameters, respectively. α and β were tuned specifically

for each subject during network training.

The time constants of the synapses τsyn and membrane

potential τmem of the LIF neurons are encoded in the α =

e
−δt

τmem and β = e
−δt
τsyn hyperparameters.

The two convolutional layers were tuned for each subject

separately by testing the network on all the 10 classes, by

considering the contraction phase I+P and a window width

of 200 ms with no overlap. This hyperparameter tuning was

run on 40% of the available dataset. The remaining 60%

was used for network training and testing. To divide these

two parts of the dataset, 200-ms windows were randomly

reshuffled after segmentation making sure that the windows

used in the first and second parts were distinct, ensuring

the independence of the two subsets. This division simulates

two different sessions in a subject-centered network training

scenario, first for hyperparameter optimization and then for

training the optimal network, as represented in Fig. 4.b. For

both parameters, the tested values were 0.75, 0.8, 0.85, 0.9,

0.95, and 0.97, corresponding to time constants of 8.0, 10.3,

14.2, 21.9, 44.9, 75.6 ms.

F. Intra-user hand gesture classification

Fixed the optimal hyperparameters, the optimized network

was trained and tested for each subject by selecting different

dataset portions of the remaining 60% of the dataset not used

for the hyperparameter optimization. Two different sets of

classes were discriminated: 5 classes (with only the single-

finger flexion), and 10 classes, adding the 3 grips and the

2 thumb opposition gestures. Different parts of the dataset

were separately used for classification: increasing (I), plateau

contractions (P), and both together (I+P), obtained by segment-

ing each repetition for each task in the corresponding 2 s-long

phases. Also, different recording conditions were simulated by

considering different selections of muscles (only intrinsic, only

extrinsic or both groups), classes (only single finger flexion or

also thumb abduction, opposition and 3 different grips) and

phases of contractions. The SNN training was run for 100

epochs, by grouping different classes, muscles and contraction

phases.

G. Inter-user classification

In different recording sessions and for different subjects, the

number of identified neurons by HD-sEMG decomposition is

highly variable. This is because motor neuron identification

is based on identifying the action potential waveforms of the

most superficial motor units discriminable in the measured

HD-sEMG signals. These waveforms depend on the con-

duction volume, which varies due to electrode displacement

across different subjects and sessions. A further explanation is

formulated in Discussions. To have the same number of motor

neurons per muscle for all the subjects, we selected a subset

of the most active motor neurons (ordered by the number of

spikes in each muscle) in a number equal to the minimum

number of motor neurons identified for each muscle across

the 5 subjects, reported in Table I (10, 3, 5, 4, 7, 0, 0, 3, 4,

5, 0, 6, 10, 0).

The firing rate for each MU was averaged across all the tasks

for each subject, to then sort the motor neurons per overall

firing rate and then select the first ones, having the same

number of motor neurons per muscle across subjects. This

procedure of inter-subject concatenation was implemented for

4 subjects for the training phase, to then test the trained

network on the remaining subject. We repeated this procedure

for each subject, so testing the network on the data of each

subject after having trained the network on the data of the

other 4.

From the dataset different portions were considered, i.e. the

conditions of 5 classes and 10 classes, and all phases I+P,

I, and P, with a window width of 200 ms with no overlap.

We chose a value of α and β as those corresponding to

the best average across all subjects of the results obtained

for each subject in the phase of hyperparameter optimization,

corresponding to 0.97 for α and 0.75 for β.

H. Support vector machines (SVM) as classification

benchmark

In the perspective of comparing our network with a tradi-

tional widely used machine learning model, SVM was evalu-

ated to classify the data for each subject described above. The

spike train firing timings of all motor neurons were segmented

into 200-ms-width windows, and the spikes in each window

were summed for each motor neuron. So each data point was

constituted by the number of spikes in the window for each

motor neuron. The same subdivision between the training and

test set used for the SNN was adopted. SVM classification was

cross-validated 5 times, by reshuffling the windows selected

for the training and test dataset.

I. Optimisation of the network structure for minimizing

computational resources

The network architecture and hyperparameters used in the

analysis above were selected empirically after testing a dif-

ferent number of layers and number of neurons per layer.
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To test the trade-off between network size and accuracy,

we implemented a single-layer convolutional network and a

single-layer fully connected network. In both cases, the input

size was equal to the number of motor neurons and the output

size, respectively equal to 128, 64, 32, 16. The readout layer

had an output equal to the number of classes to discriminate.

We trained and tested these networks for all the subjects

separately (intra-user), for all the 10 classes, only for the

plateau phase, and for all muscles.

J. Power Consumption

To compute the energy consumption and inference time

of the convolutional SNN, we deployed the network onto

the NVIDIA Jetson Nano, an embedded system with a

128-Core Maxwell GPU with 4GB 64-bit LPDDR4 mem-

ory 25.6 GB/s (https://developer.nvidia.com/

embedded/jetson-nano-developer-kit). The en-

ergy consumption performance is presented as Energy-Delay

Product (EDP), a metric suitable for most modern processor

platforms, defined as the average energy consumption mul-

tiplied by the average inference time. The inference time is

defined as the time elapsed between the end of the presented

sample and the classification. The EDP was calculated using

the dynamic power consumption, measured as the difference

of total power consumed by the network and the static power,

when the GPU is idle, which corresponds to 50 mW.

III. RESULTS

A. Human neural spiking activity processed with spiking

neural networks

The number of identified motor neurons analyzed in this

study is reported in Table I. Their activity was tracked across

all the 10 tasks (as shown in Fig. 3.a) for each of the 5 subjects.

On average, 93.4 ± 13.8 motor neurons per subject were

identified (467 in total) and the accuracy of this identification

was quantified by a PNR [23] equal to 32.2 ± 5.0dB across

all motor neurons. As explained in [23], this value of the

PNR corresponded to an average decomposition accuracy of

> 90% (see Section II). The identified motor neurons for all

subjects, across all their activities, presented a mean firing rate

of 13.2± 7.9Hz. In the table, motor neurons are grouped by

the 14 targeted muscles represented in Fig. 1.b and covered by

64-channels HD-sEMG electrode grids placed as explained in

detail in [50]. More than ten of the most important muscles

actuating the finger and the wrist were targeted, both to map

more completely the biomechanics of hand movements and to

simulate the usage of a high-density myoelectric glove for in-

trinsic muscles or a more traditional high-density myoelectric

band around the forearm, over extrinsic muscles.

B. Optimal hyperparameters

The results for the user-specific hyperparameter optimiza-

tion, to find the combination of α and β that maximizes the

classification accuracy in the test phase, are shown in Fig. 5.

The results are provided for one representative subject, for

the two layers of the network. Based on this grid search, we

TABLE I

NUMBER OF IDENTIFIED MOTOR NEURONS FOR EACH MUSCLE FOR THE

5 SUBJECTS.

Subjects
Muscle S1 S2 S3 S4 S5

FDI 10 17 20 11 19
IIDI 5 6 9 3 8
IIIDI 7 7 7 5 7
IVDI 7 3 4 6 6
ADM 7 12 9 14 8
FPB 0 2 0 0 3
APB 0 4 11 6 3
OPP 3 9 6 7 14
ECU 9 6 4 4 7
EDC 8 6 9 5 9
ECR 6 4 5 0 4
FCU 6 8 8 6 6
FDS 10 11 11 11 12
FCR 3 0 0 0 4

Tot Intr 39 60 66 52 68
Tot Extr 42 35 37 26 42

Total 81 95 103 78 110

TABLE II

CHOSEN VALUES OF α AND β FOR THE 5 SUBJECTS.

Subjects
S1 S2 S3 S4 S5

α 0.80 0.97 0.80 0.75 0.97
β 0.75 0.95 0.90 0.95 0.90

chose for each subject the best hyperparameter values, reported

in Table II. On average, across all layers, subjects, and α-β

combinations, the accuracy was 0.95± 0.07.

C. Intra-user hand gesture classification

Fig. 6 shows the median (yellow line) and interquartile

range (box) of test accuracy across subjects for each layer

for three muscle groupings: all muscles (dark violet), intrinsic

muscles (magenta), and extrinsic muscles (cyan), and for the

three contraction phases. These values are reported both in the

case of classifying 5 and 10 classes. We obtained an overall

test accuracy of 0.92 ± 0.10 for all muscles, 0.83 ± 0.23 for

only intrinsic and 0.86 ± 0.19 for only extrinsic, across all

subjects, the two class selections (5 and 10), and the two layers

respectively. The accuracy was 0.86±0.20 for plateau (steady

and isometric) contractions, while for increasing contractions

(non-isometric) was 0.81±0.20, and for both the contractions

considered together was 0.95± 0.14.

The test accuracy performance of the second layer – across

all subjects and the two class selections – was overall higher

than for the first: 0.94±0.1 (versus 0.91±0.11) for all muscles,

0.91± 0.13 (versus 0.75± 0.28) for intrinsic, and 0.91± 0.14

(versus 0.81± 0.22) for extrinsic, with overall lower standard

deviation in all cases. This applies also when analyzing the

different phases (I, P, I+P) of the movement: respectively the

second versus the first layer presented an accuracy of 1.0± 0

versus 0.9 ± 0.18 for I+P, 0.86 ± 0.15 vs 0.75 ± 0.22 for I,

and 0.9± 0.12 vs 0.82± 0.25 for P. Adding further layers did

not improve these figures of merit, we therefore optimized the

accuracy/resources trade-off using only two layers, in order

to apply this structure for on-chip implementation. Sec. II-

I presents the optimization of computational resources, by
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Fig. 5. Grid search for the optimisation of the hyperparameters α and β, respectively related to the membrane and synaptic constants. Mean
and standard deviation across subjects and network layers of the maximal test accuracy across 100 epochs of training are reported, normalized
between 0 and 1.

analyzing the test accuracy when progressively reducing the

number of neurons.

D. Inter-subject hand gesture classification

In the case of a multi-subject dataset (4 subjects), to then

classify data of a new subject, we found a test accuracy aver-

agely smaller than in the case of the intra-subject classification.

Fig. 7 the median and interquartile range of test accuracy

across subjects for each layer for three muscle groupings,

represented as in Fig. 6. We obtained an overall test accuracy

of 0.54± 0.21 for all muscles, 0.50± 0.18 for only intrinsic

and 0.42± 0.16 for only extrinsic, across all subjects, type of

contractions, the two class selections (5 and 10), and the two

layers respectively. However, by considering only 5 classes,

we obtained slightly higher average values of test accuracy

equal to 0.63 ± 0.20 for all muscles, 0.61 ± 0.16 for only

intrinsic and 0.49±0.16. Remarkably, across 3 out 5 subjects,

they could be classified averagely 0.78 ± 0.05, 0.73 ± 0.04,

0.61 ± 0.05 respectively for each muscle grouping, for 5

classes. Averagely, higher values of test accuracy were found

in this analysis for intrinsic than for extrinsic muscles.

E. Classification of motor neurons with SVM

In the case of applying SVM on the same motor neuron data

by training the model for each individual subject, values for

different muscle grouping, different selections of contraction

phase, and different selections of the classes look on average

smaller than the ones of the network. Fig. 8 the median and

interquartile range of test accuracy across subjects for each

layer for three muscle groupings, represented as in Fig. 6. With

SVM we obtained an overall test accuracy, across all subjects,

all contraction phases and classes, respectively of 0.83± 0.10

for all muscles, 0.72± 0.14 for only intrinsic and 0.61± 0.19

for only extrinsic. Across all muscle grouping and number of

classes, for P contractions the accuracy was 0.70±0.19, while

for I contractions and for I+P contractions was respectively

0.70± 0.17 and 0.75± 0.13. By comparing these values with

the ones obtained with SNN, we can observe that mean values

for the SNN were greater than the respective ones for SVM.

F. Power Consumption

The dynamic power of the network was 100 mW for a total

consumed energy of 0.97 mJ and inference time of 9.7 ms,

resulting in EDP at 9.4 uJ*s.

G. Optimisation of the network structure for minimizing

computational resources

Fig. 9 shows the mean and standard deviation of the test

accuracy across subjects, for varying the size of the single-

layer networks. While for the fully connected network we

found a progressive decrease in accuracy by decreasing the

size, for the convolutional network we found the same test

accuracy for a size greater than or equal to 32 neurons, on

average over 0.8 and similar to the value obtained with the

fully connected layer with 64 neurons.

IV. DISCUSSIONS

We propose a neuromorphic framework for processing the

spiking activity of human motor neurons, toward the design of

wearable neural interfaces. Motor neuron activity was recorded

in-vivo, during the execution of natural hand gestures. Move-

ment intention was inferred from the spike trains of almost

one hundred motor neurons for each subject (thus almost

500 motor neuron spike trains were processed in total). This

framework unleashes the full potential of interfacing biological

neurons with artificial spiking neurons, solely using spike-

based encoding. The use of LIF neurons and local spike-driven
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Fig. 6. Intra-user hand gesture classification. Median (yellow line) and
interquartile range (box) for the test accuracy of the Spiking Neural
Network (SNN), for layer 1 (L1) and layer 2 (L2), by grouping muscles in
three different ways: all (dark violet), intrinsic (magenta), extrinsic (cyan),
and by selecting three different periods of contraction: increasing plus
plateau (I+P), increasing (I) and plateau (P). Each network is trained
individually for each subject, test accuracy values are averaged across
subjects.

plasticity rules opens up the possibility of implementing such

architecture on neuromorphic chips, leading to an even more

efficient online and wearable implementation. We considered

muscles in the forearm (extrinsic), to target the use of myoelec-

tric armbands and bracelets for monitoring users’ activity [22,

48], and in the hand (intrinsic), so far considered mainly in

neurophysiology [54, 50, 51].

We here processed an unprecedentedly complex dataset,

with around 500 hundred motor neurons innervating 14 hand

muscles, and including gestures like single-finger flexion (5

classes), thumb movements, and three different grip types (for

a total of 10 classes), to include more natural gestures. To

identify this great number of motor neurons, we used the

largest HD-sEMG montage currently attempted, presented in

[50, 51] and involving 384 channels, to decompose spinal

motor neuron spike trains from motor unit action potential

waveforms. The dataset presented in this paper also contains

non-isometric contractions, implying an increase of the con-

traction to perform one of the 10 gestures, followed by a

plateau isometric phase for each gesture. We processed these

contraction phases both separately and together, to understand

during which phase of the motion the network can extract

more information about the hand gesture. We studied the

network performance when trained separately for each subject

and when trained for all subjects, to validate its use in a

user-centered approach whereby a pre-trained network can be

adapted to a single user for best performance.

When using optimized hyperparameters to train the network

with data of each individual user, we got a high accuracy of

0.95 ± 0.14 (across subjects and layers) considering all the

muscles and both isometric and non-isometric contractions in

the same training. This is an important result, enabling high

classification accuracy of daily-life gestures, which can be

non-isometric or pseudo-isometric in a variable way. At the

Fig. 7. Inter-user hand gesture classification. Median and interquartile
range for the test accuracy of the Spiking Neural Network (SNN) are
represented like in Fig. 6. Each network is trained on four subject and
tested for the remaining subject, repeating this process for each subject.
Then, test accuracy values are averaged across subjects.

Fig. 8. Intra-user hand gesture classification with SVM. Median and
interquartile range for the test accuracy of the Spiking Neural Network
(SNN) are represented like in Fig. 6, except for the fact that there are
not different layers to represent here. Test accuracy values are averaged
across subjects.

second layer of the network, we found less difference in clas-

sification accuracy among the three muscle groupings and an

average higher classification performance (Fig.6). This means

that adding a second layer can increase and stabilize the pattern

recognition of neural spiking information encoding different

gestures. Finally, we showed how to optimize the network with

a different combination of hyperparameters representing the

neuron and the synapse time constants (respectively α and β).

After an initial tuning, which could be performed by the user

as a calibration phase to update periodically, the network can

be fine-tuned with data from the user through local learning at

each layer. The results obtained for the best hyperparameters

is empirical and must be repeated per each subject, eventually

leading every time to a different result, since the data to train

the model will change and different stability point could be

found for the hyperparameters.

We also investigated the case of recognizing neural spiking

patterns from a dataset containing information collected from
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many users, to create a general model of human neural patterns

associated with gestures. This raises the problem of variability

in the number of identified motor neurons across different sub-

jects, as shown in Table I. In fact, the identification of motor

unit action potentials associated with a single motor unit (thus

a motor neuron) depends on the specific volume conduction

of a certain session (position of the electrodes with respect to

the muscles) and even more from the anatomic aspects of one

subject (interposed tissues between electrodes and muscles, the

shape of the muscles and body metric). This could hinder the

successful deployment of the system in myoelectric control

whether the network would need to be trained on multiple

subjects. Although it is reasonable for many applications to

train the network specifically for one subject, leading to high

accuracy as shown, developing universal models of human

neural patterns could be useful for instance to avoid training

the model for each specific user, saving time during the usage.

The solution that we proposed consists in extracting subsets of

an equal number of motor neurons for each muscle for all the

subjects and for all sessions, by selecting the most active motor

neurons from each subject. As shown in [51], by selecting a

representative subset of MUs, we still preserve the majority of

neural commands sent from the spinal cord to the muscles. It

is clear that concatenating motor neurons of different subjects

generates a dataset that does not correspond to a physiological

grouping of motor units since it groups together motor units

of different subjects. However, this is an example of a first

attempt to reach a universal multi-subject motor neuron dataset

by finding a way to keep consistency in the number of

channels, i.e. motor neurons, across subjects. Nevertheless, we

observe lower classification accuracy in this case, than when

classifying patterns separately for each user. Further options

in this direction could be the implementation of a customized

input layer that adapts to the number of identified motor

neurons with an arbitrary number of outputs, concatenated

with the following layers trained on many subjects. Also,

training on a larger population of users and mapping more

conditions and gestures would be necessary for an inter-user

classification model of human motor intentions from motor

neuron spiking activity.

Few examples of SNN processing biological neural in-

formation can be found in the literature. A first common

approach is an artificial spike encoding of in-vivo neural

biopotentials, like EEG and EMG. This spike encoding of the

recorded signal is performed by thresholding the signal values

exceeding a baseline, with an asynchronous delta modulator

approach [13, 16, 35]. Differently, in this study, we did not

use an artificial spike encoding to extract spiking information

from biopotentials, i.e. EMG, but we identified the natural

spike encoding received by each single motor neuron from

spinal neuronal circuitries or super-spinal structures [32]. This

spiking neural information is inherent in the recorded EMG

signals and coupled with volume conduction information [17].

Through decomposition, we decoupled this neural spiking

information from the conduction volume information (motor

unit action potential waveforms). Thus, we did not feed a

SNN with an artificial spike encoding from biopotentials, but

with the true natural neural activity of human in-vivo neu-

Fig. 9. Minimisation of computational resources. Mean and standard
deviation across subjects of the test accuracy for the different network
layers (convolutional or fully connected) by testing 4 different sizes, 128,
64, 32, and 16 neurons in the hidden layer (the input size was equal to
the number of motor neurons to classify and the output equal to the 10
classes).

rons, e.g. spinal motor neurons. A second approach for SNN

processing of biological neural information is processing in-

vitro spiking information from a population of neurons plated

onto a substrate-integrated multi-electrode array [30, 6, 7] by

recording from in-vitro neurons obtained from rat neocortex.

Finally, a third approach is to record neuronal spikes from

anesthetized animals while stimulating the nervous tissues to

be processed with neuromorphic devices [5]. However, so far

nobody attempted to process the activity of in-vivo human

individual neurons receiving their spiking information from

the CNS, i.e spinal and supraspinal structures, during daily-

life gesture execution [55].

We are aware of the small pool of subjects involved in this

experiment. However, we were focused in showing the novel

application of a SNN on in-vivo motor neuron spike trains and

such a dataset was sufficient to train and test the networks.

As stated above, this dataset is already unprecedentedly rich,

with around 500 hundred motor neurons innervating 14 hand

muscles processed concurrently. After this first proof of con-

cept, we aim to extend this framework in the next studies by

validating more complex SNN structures with more subjects,

both males and females.

This framework has been developed with the goal of

implementation for wearable neural interfaces. A wearable

adaptation of the instrumentation used in this work would

require a) a more flexible and compliant material for the

electrode grids, b) a miniaturized chip implementing the signal

conditioning for each 64-channel grid, and c) a wireless

solution, as discussed in [49]. Sensing and decoding the

neural drive using a sleeve array was already demonstrated

successful for a person with tetraplegia targeting paralyzed

muscles during attempted movements [52]. Regarding the high

number of EMG electrodes required, in the order of tens for
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covering one muscle and hundreds to cover muscular groups,

this is at the moment a fundamental requisite for motor neuron

identification from myoelectric activiy. In fact, the state-of-the-

art blind source separation methods for EMG decomposition

still rely on montages guaranteeing high spatial resolution

and redundant information shared across the channels [27,

23, 12]. Devices like 8-channel armbands like the one used

in [16] would not be suitable to extract spinal motor neuron

information.

Also, this framework is designed to be used in daily-life

contexts to control external devices, like gaming, control VR

or mechatronic devices. The required online adaptation of the

framework has been mentioned in Methods II and described

in Fig. 4.b. An online implementation of the decomposition

would provide a very convenient way to access non-invasively

to spinal neural drive [3] and the hyperparameter optimization

and the training of the network would be added in this

calibration phase.

In the particular case of rehabilitation, we recommend our

framework to control hybrid orthoses based on FES and

mechatronic exoskeletons, which are usually triggered by the

residual myoelectric activity [2, 1]. In fact, hemiplegic stroke

survivors can still generate residual myoelectric activity even

if they are severely impaired in coordinating movements and

controlling muscle exertion with proficiency [11]. In the case

of amputees, we in our work specifically record the activity

from motor neurons innervating the proximal part of the

forearm, like in the case of trans-radial amputees, to then

compare this information with the one from motor neuron

innervating intrinsic muscles (inside the hand).

Finally, we aim to implement this framework on neuromor-

phic chips in the next future. This is a fundamental step for

wearable implementation and online control. In fact, the power

consumption of the overall system is very high, due to the in-

herent limits of the current state-of-the-art technologies used in

this framework. Besides the necessity of online decomposition,

the translation of our networks on in-silico chips will speed

up significantly the processing and enable great efficiency in

power consumption. To minimize the time of computation

and the energy consumption needed for edge computing on

neuromorphic chips, the first requirement is minimizing the

network size and number of operations (number of con-

nections, neurons, layers, etc.), while maintaining reasonable

levels of accuracy. For the shown results, we used 64 neurons

and 128 neurons for the two convolutional layers, respectively,

which leads to tens of thousands of synaptic connections (for

a convolutional kernel size of 3). We observed that both for

a convolutional and a fully connected layer with at least 32

neurons the test accuracy can be kept averagely over 0.8,

although the convolutional layer shows slightly more stable

performance by decreasing the number of neurons between

128 and 32. To this aim, technological aspects to map this

architecture on neuromorphic chips need to be solved.

Although we here accessed motor neuron spiking informa-

tion via a non-invasive neural interface using blind source

separation, motor neuron activity could be as well extracted

using implantable devices targeting nerves or the cortex. This

would open the scenario of extending biological neuronal

circuitry with artificial silicon neurons.

V. CONCLUSION

We propose a neuromorphic framework for processing the

spiking activity of human motor neurons to be used in the

next generation of neural interfaces. This framework could be

used for a broad range of purposes and adapted to the case of

implanted neural devices.
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