326 research outputs found
Traveling Granular Segregation Patterns in a Long Drum Mixer
Mixtures of granular media often exhibit size segregation along the axis of a
partially-filled, horizontal, rotating cylinder. Previous experiments have
observed axial bands of segregation that grow from concentration fluctuations
and merge in a manner analogous to spinodal decomposition. We have observed
that a new dynamical state precedes this effect in certain mixtures:
bi-directional traveling waves. By preparing initial conditions, we found that
the wave speed decreased with wavelength. Such waves appear to be inconsistent
with simple PDE models which are first order in time.Comment: 11 page
Size Segregation and Convection of Granular Mixtures Almost Completely Packed in the Rotating Thin Box
Size segregation of granular mixtures which are almost completely packed in a
rotating drum is discussed with an effective simulation and a brief analysis.
Instead of a 3D drum, we simulate 2D rotating thin box which is almost
completely packed with granular mixtures. The phase inversion of radially
segregated pattern which was found in a 3D experiment are qualitatively
reproduced with this simulation, and a brief analysis is followed. Moreover in
our simulation, a global convection appears after radial segregation pattern is
formed, and this convection induces axially segregated pattern.Comment: 9 pages, 5 figures, PACS number(s): 45.70.-n, 45.70.M
Increased UV transmission by improving the manufacturing process for FS
ABSTRACT Optical designers have been designing ultraviolet (UV) systems at wavelengths in the UV region for many years. With increasing demand for deep UV applications, special considerations that are not applicable to traditional visible optics must be taken to produce the optics. Specifically as the wavelength of incident light decreases, the importance of very smooth surfaces increases. The intent of this project is to increase the performance of UV optics in a four-phase project. The first phase consists of characterizing sub-surface damage using destructive methods to enable process control, the second phase (presented here) focuses on polishing methods, the third phase will include cleaning and possible etching protocols and the fourth phase will be improving thin film coating performance. Keywords: Ultraviolet, fused silica, polishing, coating INTRODUCTION As trends in UV optical system design shift to shorter UV wavelengths, optical manufacturing has to be more conscious of the effect that subsurface damage, surface features, residual contamination from polishing and cleaning and coating have on the residual performance of the optics in their systems. For many years, researchers have tackled partial aspects of these problems. For example, Bloembergen 1 stated that cracks and pores on an optical surface will lead to laser damage (LD) when incident with a laser beam. Neauport et al. 2 spoke to two of the main damage initiators of LD, sub-surface damage (SSD) and nano-absorbing centers, focusing mainly on the latter. They used fused silica optics in high power laser applications at 351nm. Higher cerium concentration on the surfaces strongly correlated with increased damage density. Aluminum, copper and iron did not have similar correlations. Neauport et al. also tried to correlate the presence of cerium with damage morphology but the results were inconclusive. Yoshiyama et al. 3 studied the effects of polishing, etching, cleaving and water leaching on the UV damage of fused silica. The surfaces were all exposed to a Nd:YAG laser at 355nm. Micropits were found on the polished surface. Their analysis found high concentrations of Al, B, Ce and Zr. The concentrations of the Al, B and Zr all decreased rapidly to less than 10% of the maximum value at a depth of 50nm, but the Ce required ~100nm before decreasing to less than 10% of its maximum value. A second sample etched with a buffered HF solution had a lower pit density than the polished surface. The pit density decreased exponentially with the etched layer thickness indicating that the cerium is a precursor to laser damage. Micropits found on the cleaved surface indicated that cerium contamination is not the only cause of damage. It is hypothesized that damage initiated because of residual stresses and permanent mechanical damage from the cleaving process. Hydrolyzed cleaved surfaces were found to decrease the laser damage threshold. Camp et al. 4 determined that the zirconia conventionally polished surfaces have a higher laser damage threshold at 355nm compared to ceria polished surfaces. They also observed that damage typically centered around scratches or digs on the surface of the parts. NĂ©auport et al
New abundance determinations in z < 1.5 QSO absorbers: seven sub-DLAs and one DLA
We present chemical abundance measurements from high resolution observations
of 7 sub-damped Lyman-alpha absorbers and 1 damped Lyman-alpha system at z<1.5.
Three of these objects have high metallicity, with near or super-solar Zn
abundance. Grids of Cloudy models for each system were constructed to look for
possible ionization effects in these systems. For the systems in which we could
constrain the ionization parameter, we find that the ionization corrections as
predicted by the Cloudy models are generally small and within the typical error
bars (~0.15 dex), in general agreement with previous studies. The Al III to Al
II ratio for these and other absorbers from the literature are compared, and we
find that while the sub-DLAs have a larger scatter in the Al III to Al II
ratios than the DLAs, there appears to be little correlation between the ratio
and N(H I). The relationship between the metallicity and the velocity width of
the profile for these systems is investigated. We show that the sub-DLAs that
have been observed to date follow a similar trend as DLA absorbers, with the
more metal rich systems exhibiting large velocity widths. We also find that the
systems at the upper edge of this relationship with high metallicities and
large velocity widths are more likely to be sub-DLAs than DLA absorbers,
perhaps implying that the sub-DLA absorbers are more representative of massive
galaxies.Comment: 15 pages, 15 Figures, Accepted by MNRAS, updated references and
author
The Far Ultraviolet Spectroscopic Explorer Survey of OVI Absorption in the Disk of the Milky Way
To probe the distribution and physical characteristics of interstellar gas at
temperatures T ~ 3e5 K in the disk of the Milky Way, we have used the Far
Ultraviolet Spectroscopic Explorer (FUSE) to observe absorption lines of OVI
toward 148 early-type stars situated at distances 1 kpc. After subtracting off
a mild excess of OVI arising from the Local Bubble, combining our new results
with earlier surveys of OVI, and eliminating stars that show conspicuous
localized X-ray emission, we find an average OVI mid-plane density n_0 = 1.3e-8
cm^-3. The density decreases away from the plane of the Galaxy in a way that is
consistent with an exponential scale height of 3.2 kpc at negative latitudes or
4.6 kpc at positive latitudes. Average volume densities of OVI along different
sight lines exhibit a dispersion of about 0.26 dex, irrespective of the
distances to the target stars. This indicates that OVI does not arise in
randomly situated clouds of a fixed size and density, but instead is
distributed in regions that have a very broad range of column densities, with
the more strongly absorbing clouds having a lower space density. Line widths
and centroid velocities are much larger than those expected from differential
Galactic rotation, but they are nevertheless correlated with distance and
N(OVI), which reinforces our picture of a diverse population of hot plasma
regions that are ubiquitous over the entire Galactic disk. The velocity
extremes of the OVI profiles show a loose correlation with those of very strong
lines of less ionized species, supporting a picture of a turbulent, multiphase
medium churned by shock-heated gas from multiple supernova explosions.Comment: Accepted for publication in ApJS. Preprint with full resolution
images and all 148 spectra available at
http://www.astro.princeton.edu/~dvb/o
Resolving Troubled Systemically Important Cross-Border Financial Institutions: Is a New Corporate Organizational Form Required?
This paper explores the advantages of a new financial charter for large, complex, internationally active financial institutions that would address the corporate governance challenges of such organizations, including incentive problems in risk decisions and the complicated corporate and regulatory structures that impede cross-border resolutions. The charter envisions a single entity with broad powers in which the extent and timing of compensation are tied to financial results, senior managers and risk takers form a new risk-bearing stakeholder class, and a home-country-based resolution regime operates for the benefit of all creditors. The proposal is offered 1) to highlight the point that even in the face of a more efficient and effective resolution process, incentives for excessive risk taking will continue unless the costs of risk decisions are internalized by institutions, 2) to suggest another avenue for moving toward a streamlined organizational structure and single global resolution process, and 3) to complement other proposals aimed at preserving a large role for market discipline and firm incentives in a post-reform financial system
Recommended from our members
Genome-wide Association Study Identifies Two Susceptibility Loci for Osteosarcoma
Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. In order to better understand the genetic etiology of osteosarcoma, we performed a multi-stage genome-wide association study (GWAS) consisting of 941 cases and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: rs1906953 at 6p21.3, in the glutamate receptor metabotropic 4 [GRM4] gene (P = 8.1 Ă10-9), and rs7591996 and rs10208273 in a gene desert on 2p25.2 (P = 1.0 Ă10-8 and 2.9 Ă10-7). These two susceptibility loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma
The evolution of language: a comparative review
For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ââdescended larynxâ â of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.
RESULTS:
A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization.
CONCLUSIONS:
The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
- âŠ