88 research outputs found

    NASA's Optical Communications Program for 2015 and Beyond

    Get PDF
    NASA's Space Communications and Navigation (SCaN) program at NASA headquarters is pursuing a vibrant and wide-ranging optical communications program for further planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon in 2013. This invited paper will discuss NASA's new laser communication missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks

    Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    Get PDF
    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry

    Calibration of Low-Frequency, Wide-Field Radio Interferometers Using Delay/Delay-Rate Filtering

    Full text link
    We present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delay-rate images." Source selection is possible in these images given appropriate combinations of baseline, bandwidth, integration time and source location. Strong and persistent radio frequency interference (RFI) limits the effectiveness of this source selection owing to the removal of data by RFI excision algorithms. A one-dimensional, complex CLEAN algorithm has been developed to compensate for RFI-excision effects. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to data from the Precision Array for Probing the Epoch of Reionization (PAPER) as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view.Comment: 17 pages, 6 figures, 2009AJ....138..219

    Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    Get PDF
    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown

    NASA's Next Generation 100 Gbps Optical Communications Relay

    Get PDF
    NASAs Space Communications and Navigation (SCaN) program is creating an operational optical communications network to complement its current radio frequency (RF) networks. NASA is currently planning for a new optical communications relay node in geostationary (GEO) orbit to be commissioned in 2025, developed by NASAs Goddard Space Flight Center (GSFC), as evolved from Goddards Laser Communications Relay Demonstration (LCRD) GEO relay payload that will launch in 2019. The Next Generation optical relay node will serve as an initial element in a larger optical networking constellation that will consist of Government and commercial, and international relays. NASAs nodes will aggregate traffic at data rates of up to 10 Gigabits per second (Gbps) from users on the Earths surface and up through suborbital, LEO, MEO, GEO, cislunar and even out to Earth-Sun Lagrange (1.25 Mkm) distances. Users that require low-latency will be serviced with an onboard complementary Ka-band downlink service. The next generation network will deploy 100 Gbps space-to-ground links and also optical crosslinks between nodes to allow for user traffic backhaul to minimize ground station location constraints

    Early Operations Flight Correlation of the Lunar Laser Communications Demonstration (LLCD) on the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission launched on September 7, 2013 with a one month cruise before lunar insertion. The LADEE spacecraft is a power limited, octagonal, composite bus structure with solar panels on all eight sides with four vertical segments per side and 2 panels dedicated to instruments. One of these panels has the Lunar Laser Communications Demonstration (LLCD), which represents a furthering of the laser communications technology demonstration proved out by the Lunar Reconnaissance Orbiter (LRO). LLCD increases the bandwidth of communication to and from the moon with less mass and power than LROs technology demonstrator. The LLCD Modem and Controller boxes are mounted to an internal cruciform composite panel and have no dedicated radiator. The thermal design relies on power cycling of the boxes and radiation of waste heat to the inside of the panels, which then reject the heat when facing cold space. The LADEE mission includes a slow roll and numerous attitudes to accommodate the challenging thermal requirements for all the instruments on board. During the cruise phase, the internal Modem and Controller avionics for LLCD were warmer than predicted by more than modeling uncertainty would suggest. This caused concern that if the boxes were considerably warmer than expected while off, they would also be warmer when operating and could limit the operational time when in lunar orbit. The thermal group at Goddard Space Flight Center evaluated the models and design for these critical avionics for LLCD. Upon receipt of the spacecraft models and audit was performed and data was collected from the flight telemetry to perform a sanity check of the models and to correlate to flight where possible. This paper describes the efforts to correlate the model to flight data and to predict the thermal performance when in lunar orbit and presents some lessons learned

    Landmine Neutralization: Air Excavation Unit

    Get PDF
    The Landmine Neutralization team’s poster will present our team’s progress towards designing and prototyping an air excavation unit. To accomplish this, the project team is working with the HALO Trust, the world’s largest demining NGO. The HALO Trust works in many countries to remove the remnants of war, including improvised explosive devices (IEDs) and unexploded ordnance (UXOs). This project seeks to help deminers by providing a device that blows air at high velocity to clear dust and other debris away from potential IEDs and UXOs in war-torn areas to help in their effort of demining. We have focused on designing our prototype to operate reliably in harsh environments while fulfilling our client’s specifications. Our client requested that we design our excavation unit to be easily installed onto their Volvo 220 backhoes and their custom-made backhoe attachments. The current design is modular and consists of a hydraulic motor powering a fan from a backpack leaf blower, all of which is assembled within a steel frame that attaches to the rake of the HALO excavators. Due to circumstances beyond our control, our project will be wrapping up at the end of this semester, which is sooner than anticipated. This means the goals of our project have been narrowed to having a functional prototype and relevant documentation that we can present to our client.https://mosaic.messiah.edu/engr2021/1008/thumbnail.jp

    Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Get PDF
    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described

    The Precision Array for Probing the Epoch of Reionization: 8 Station Results

    Full text link
    We are developing the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21cm emission from the early Universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a 4-antenna array in the low-RFI environment of Western Australia and an 8-antenna array at our prototyping site in Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (Câ„“C_\ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the cosmic variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at â„“=100\ell=100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the level of the fluctuations in 21cm emission associated with reionization.Comment: 13 pages, 14 figures, submitted to AJ. Revision 2 corrects a scaling error in the x axis of Fig. 12 that lowers the calculated power spectrum temperatur
    • …
    corecore