We present a filtering technique that can be applied to individual baselines
of wide-bandwidth, wide-field interferometric data to geometrically select
regions on the celestial sphere that contain primary calibration sources. The
technique relies on the Fourier transformation of wide-band frequency spectra
from a given baseline to obtain one-dimensional "delay images", and then the
transformation of a time-series of delay images to obtain two-dimensional
"delay/delay-rate images." Source selection is possible in these images given
appropriate combinations of baseline, bandwidth, integration time and source
location. Strong and persistent radio frequency interference (RFI) limits the
effectiveness of this source selection owing to the removal of data by RFI
excision algorithms. A one-dimensional, complex CLEAN algorithm has been
developed to compensate for RFI-excision effects. This approach allows CLEANed,
source-isolated data to be used to isolate bandpass and primary beam gain
functions. These techniques are applied to data from the Precision Array for
Probing the Epoch of Reionization (PAPER) as a demonstration of their value in
calibrating a new generation of low-frequency radio interferometers with wide
relative bandwidths and large fields-of-view.Comment: 17 pages, 6 figures, 2009AJ....138..219