2,193 research outputs found

    The O(3P) and N(4S) density measurement at 225 km by ultraviolet absorption and fluorescence in the Apollo-Soyuz test project

    Get PDF
    The densities of O(3P) and N(4S) at 225 km were determined during the Apollo Soyuz Test Project by a resonance absorption/fluorescence technique in which OI and NI line radiation produced and collimated on board the Apollo was reflected from the Soyuz back to the Apollo for spectral analysis. The two spacecraft maneuvered so that a range of observation angles of plus or minus 15 deg with respect to the normal to the orbital velocity vector was scanned. The measurements were made at night on two consecutive orbits at spacecraft separations of 150 and 500 m. The resulting relative counting rates as function of observation angle were compared to calculated values to determine the oxygen value. This value agrees with mass spectrometric measurements made under similar conditions. The nitrogen value is in good agreement with other measurements and suggests a smaller diurnal variation than is predicted by present models

    Ultraviolet absorption: Experiment MA-059

    Get PDF
    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed

    Nucleotide sequence of the SUF2 frameshift suppressor gene of Saccharomyces cerevisiae.

    Full text link

    Comment on: “The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN Field Campaign” by Hofzumahaus et al. and “Intercomparison of tropospheric OH radical measurements by multiple folded long-path laser absorption and laser induced fluorescence” by Brauers et al.

    Get PDF
    Calibration of laser induced fluorescence (LIF) instruments that measure OH is challenging because it is difficult to reliably introduce a known amount of this reactive radical into a measurement apparatus. In a recent paper, Hofzumahaus et al., [1996] describe a novel and seemingly simple technique to accomplish this goal: they dissociate trace quantities of water vapor in air with a low pressure mercury (Hg) lamp to produce low concentrations (10^5 - 10^9 cm^(-3)) of OH (R1)

    Constraints on Primordial Nongaussiantiy from the High-Redshift Cluster MS1054--03

    Get PDF
    The implications of the massive, X-ray selected cluster of galaxies MS1054--03 at z=0.83z=0.83 are discussed in light of the hypothesis that the primordial density fluctuations may be nongaussian. We generalize the Press-Schechter (PS) formalism to the nongaussian case, and calculate the likelihood that a cluster as massive as MS1054 would appear in the EMSS. The probability of finding an MS1054-like cluster depends only on \omegam and the extent of primordial nongaussianity. We quantify the latter by adopting a specific functional form for the PDF, denoted ψλ,\psi_\lambda, which tends to Gaussianity for λ1,\lambda\gg 1, and show how λ\lambda is related to the more familiar statistic T,T, the probability of 3σ\ge 3\sigma fluctuations for a given PDF relative to a Gaussian. We find that Gaussian initial density fluctuations are consistent with the data on MS1054 only if \omegam\simlt 0.2. For \omegam\ge 0.25 a significant degree of nongaussianity is required, unless the mass of MS1054 has been substantially overestimated by X-ray and weak lensing data. The required amount of nongaussianity is a rapidly increasing function of \omegam for 0.25 \le \omegam \le 0.45, with λ1\lambda \le 1 (T \simgt 7) at the upper end of this range. For a fiducial \omegam=0.3, \omegal=0.7 universe, favored by several lines of evidence we obtain an upper limit λ10,\lambda \le 10, corresponding to a T3.T\ge 3. This finding is consistent with the conclusions of Koyama, Soda, & Taruya (1999), who applied the generalized PS formalism to low (z\simlt 0.1) and intermediate (z\simlt 0.6) redshift cluster data sets.Comment: 15 pages, 11 figures, submitted to the Astrophysical Journal, uses emulateapj.st

    Spin configurations in Co2FeAl0.4Si0.6 Heusler alloy thin film elements

    Full text link
    We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong influence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined geometries up to 800 K. The switching temperature for the transition from transverse to vortex walls in ring elements is found to increase with ring width, an effect attributed to structural changes and consequent changes in magnetic anisotropy, which start to occur in the narrower elements at lower temperatures.Comment: 4 pages, 4 figure

    Polarization Diagnostics for Cool Core Cluster Emission Lines

    Get PDF
    The nature of the interaction between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits ( 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfacesPeer reviewe

    Primary Production and Carbon Allocation in Creosotebush

    Get PDF

    Adiabatic Domain Wall Motion and Landau-Lifshitz Damping

    Get PDF
    Recent theory and measurements of the velocity of current-driven domain walls in magnetic nanowires have re-opened the unresolved question of whether Landau-Lifshitz damping or Gilbert damping provides the more natural description of dissipative magnetization dynamics. In this paper, we argue that (as in the past) experiment cannot distinguish the two, but that Landau-Lifshitz damping nevertheless provides the most physically sensible interpretation of the equation of motion. From this perspective, (i) adiabatic spin-transfer torque dominates the dynamics with small corrections from non-adiabatic effects; (ii) the damping always decreases the magnetic free energy, and (iii) microscopic calculations of damping become consistent with general statistical and thermodynamic considerations

    Characterization of large genomic deletions in the FBN1 gene using multiplex ligation-dependent probe amplification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Connective tissue diseases characterized by aortic aneurysm, such as Marfan syndrome, Loeys-Dietz syndrome and Ehlers Danlos syndrome type IV are heterogeneous and despite overlapping phenotypes, the natural history, clinical manifestations and interventional course for each diagnosis can be quite unique. The majority of mutations involved in the etiology of these disorders are missense and nonsense mutations. However, large deletions and duplications undetected by sequencing may be implicated in their pathogenesis, and may explain the apparent lack of genotype-phenotype correlation in a subset of patients. The objective of this study was to search for large pathogenic deletions and/or duplications in the <it>FBN1, TGFβR1</it>, and <it>TGFβR2 </it>genes using multiplex-ligation dependent probe amplification (MLPA) in patients with aortopathy, in whom no mutations in the <it>FBN1, TGFβR1</it>, and <it>TGFβR2 </it>genes were identified by sequencing.</p> <p>Methods</p> <p>The study included 14 patients from 11 unrelated families with aortic aneurysm. Of those, six patients (including 3 first-degree relatives), fulfilled the revised Ghent criteria for Marfan syndrome, and eight had predominantly aortic aneurysm/dilatation with variable skeletal and craniofacial involvement. MLPA for <it>FBN1, TGFβR1</it>, and <it>TGFβR2 </it>was carried out in all patients. A 385 K chromosome 15 specific array was used in two patients with a deletion of the entire <it>FBN1 </it>in order to define its size and boundaries.</p> <p>Results</p> <p>We identified two novel large deletions in the <it>FBN1 </it>gene in four patients of two unrelated families who met clinical diagnostic criteria for Marfan syndrome. One patient was found to have a <it>FBN1 </it>deletion encompassing exons 1-5. The other three patients had a 542 Kb deletion spanning the whole <it>FBN1 </it>gene and five additional genes (<it>SLC24A5, MYEF2, CTXN2, SLC12A1, DUT</it>) in the chromosome 15.</p> <p>Conclusions</p> <p>Our findings expand the number of large <it>FBN1 </it>deletions, and emphasize the importance of screening for large genomic deletions in connective tissue disorders featuring aortopathies, especially for those with classic Marfan phenotype.</p
    corecore