40 research outputs found

    Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1- mutant

    Get PDF
    Nonsense-mediated mRNA decay, the accelerated turnover of mRNAs transcribed from genes containing early nonsense mutations, is dependent on the product of the UPF1 gene in yeast. Mutations that inactivate UPF1 lead to the selective stabilization of mRNAs containing early nonsense mutations but have no effect on the half-lives of almost all other mRNAs. Since the transcripts of nonsense alleles are not typical cellular constituents, we sought to identify those RNAs that comprise normal substrates of the nonsense-mediated mRNA decay pathway. Many yeast pre-mRNAs contain early in-frame nonsense codons and we consider it possible that a role of this pathway is to accelerate the degradation of pre-mRNAs present in the cytoplasm. Consistent with this hypothesis, we find that, in a strain lacking UPF1 function, the CYH2, RP51B, and MER2 pre-mRNAs are stabilized 2- to 5-fold and are associated with ribosomes. We conclude that a major source of early nonsense codon-containing cytoplasmic transcripts in yeast is pre-mRNAs and that the UPF1 protein may be part of a cellular system that ensures that potentially deleterious nonsense fragments of polypeptides do not accumulate

    Critical review of self-reported functional ankle instability measures.

    Get PDF
    a b s t r a c t Objective: Determine which ankle instability questionnaire predicts subject's ankle instability status based on a minimum accepted criteria for FAI (MC_FAI). Design: Cross-sectional study. Setting: Large Midwestern University. Participants: College aged subjects (n ¼ 1127 19.6 AE 2.1 years) from a university population were recruited for this study. Any volunteer, regardless of ankle injury history was included in the study. Main outcome measures: The independent variables were the score on three self-report ankle instability questionnaires: Ankle Instability Instrument, Cumberland Ankle Instability Tool, and Identification of Functional Ankle Instability. Subjects completed the questionnaires for their dominant limb during a single testing session. The dependent variable was created based on the previously established MC_FAI. This was established as at least one ankle sprain and at least one episode of giving way. Data were modeled using a chi-square and multinomial logistic regression. 95% confidence intervals were calculated for the resulting odds ratios. Results: A test of the full model with all three predictors against MC_FAI revealed that only the IdFAI (X 2 ¼ 457.09, p ¼ .001) had a significant relationship with the outcome variable. The IdFAI had an overall prediction rate of 87.8%. Conclusions: This analysis illustrates that IdFAI is a good overall option for predicting ankle stability status by self-reported questionnaire

    Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli

    Get PDF
    The pspE and glpE genes of Escherichia coli encode periplasmic and cytoplasmic single-domain rhodaneses, respectively, that catalyzes sulfur transfer from thiosulfate to thiophilic acceptors. Strains deficient in either or both genes were constructed. Comparison of rhodanese activity in these strains revealed that PspE provides 85% of total rhodanese activity, with GlpE contributing most of the remainder. PspE activity was four times higher during growth on glycerol versus glucose, and was not induced by conditions that induce expression of the psp regulon. The glpE/pspE mutants displayed no apparent growth phenotypes, indicating that neither gene is required for biosynthesis of essential sulfur-containing molecules. PspE was purified by using cation exchange chromatography. Two distinct active peaks were eluted and differed in the degree of stable covalent modification, as assessed by mass spectrometry. The peak eluting earliest contained the equivalent mass of two additional sulfur atoms, whereas the second peak contained mainly one additional sulfur. Kinetic properties of purified PspE were consistent with catalysis occurring via a double-displacement mechanism via an enzyme-sulfur intermediate involving the active site cysteine. Kms for SSO32- and CN- were 2.7 mM and 32 mM, respectively, and kcat was 64s-1. The enzyme also catalyzed transfer of sulfur from thiosulfate to dithiothreitol, ultimately releasing sulfide

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Regulation of Sucrose Non-Fermenting Related Kinase 1 Genes in Arabidopsis thaliana

    No full text
    The Sucrose non-Fermenting Related Kinase 1 (SnRK1) proteins have been linked to regulation of energy and stress signaling in eukaryotes. In plants, there is a small SnRK1 gene family. While the SnRK1.1 gene has been well studied, the role other SnRK1 isoforms play in energy or stress signaling is less well understood. We used promoter:GUS analysis and found SnRK1.1 is broadly expressed, while SnRK1.2 is spatially restricted. SnRK1.2 is expressed most abundantly in hydathodes, at the base of leaf primordia, and in vascular tissues within both shoots and roots. We examined the impact that sugars have on SnRK1 gene expression and found that trehalose induces SnRK1.2 expression. Given that the SnRK1.1 and SnRK1.2 proteins are very similar at the amino acid level, we sought to address whether SnRK1.2 is capable of re-programming growth and development as has been seen previously with SnRK1.1 overexpression. While gain-of-function transgenic plants overexpressing two different isoforms of SnRK1.1 flower late as seen previously in other SnRK1.1 overexpressors, SnRK1.2 overexpressors flower early. In addition, SnRK1.2 overexpressors have increased leaf size and rosette diameter during early development, which is the opposite of SnRK1.1 overexpressors. We also investigated whether SnRK1.2 was localized to similar subcellular compartments as SnRK1.1, and found that both accumulate in the nucleus and cytoplasm in transient expression assays. In addition, we found SnRK1.1 accumulates in small puncta that appear after a mechanical wounding stress. Together, these data suggest key differences in regulation of the SnRK1.1 and SnRK1.2 genes in plants, and highlights differences overexpression of each gene has on the development of Arabidopsis

    VTC4 Is a Bifunctional Enzyme That Affects Myoinositol and Ascorbate Biosynthesis in Plants12[W][OA]

    No full text
    Myoinositol synthesis and catabolism are crucial in many multiceullar eukaryotes for the production of phosphatidylinositol signaling molecules, glycerophosphoinositide membrane anchors, cell wall pectic noncellulosic polysaccharides, and several other molecules including ascorbate. Myoinositol monophosphatase (IMP) is a major enzyme required for the synthesis of myoinositol and the breakdown of myoinositol (1,4,5)trisphosphate, a potent second messenger involved in many biological activities. It has been shown that the VTC4 enzyme from kiwifruit (Actinidia deliciosa) has similarity to IMP and can hydrolyze l-galactose 1-phosphate (l-Gal 1-P), suggesting that this enzyme may be bifunctional and linked with two potential pathways of plant ascorbate synthesis. We describe here the kinetic comparison of the Arabidopsis (Arabidopsis thaliana) recombinant VTC4 with d-myoinositol 3-phosphate (d-Ins 3-P) and l-Gal 1-P. Purified VTC4 has only a small difference in the Vmax/Km for l-Gal 1-P as compared with d-Ins 3-P and can utilize other related substrates. Inhibition by either Ca2+ or Li+, known to disrupt cell signaling, was the same with both l-Gal 1-P and d-Ins 3-P. To determine whether the VTC4 gene impacts myoinositol synthesis in Arabidopsis, we isolated T-DNA knockout lines of VTC4 that exhibit small perturbations in abscisic acid, salt, and cold responses. Analysis of metabolite levels in vtc4 mutants showed that less myoinositol and ascorbate accumulate in these mutants. Therefore, VTC4 is a bifunctional enzyme that impacts both myoinositol and ascorbate synthesis pathways
    corecore