125 research outputs found
Magnetic fields and Sunyaev-Zel'dovich effect in galaxy clusters
In this work we study the contribution of magnetic fields to the Sunyaev
Zeldovich (SZ) effect in the intracluster medium. In particular we calculate
the SZ angular power spectrum and the central temperature decrement. The effect
of magnetic fields is included in the hydrostatic equilibrium equation by
splitting the Lorentz force into two terms one being the force due to magnetic
pressure which acts outwards and the other being magnetic tension which acts
inwards. A perturbative approach is adopted to solve for the gas density
profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement
of the gas density in the central regions for nearly radial magnetic field
configurations. Previous works had considered the force due to magnetic
pressure alone which is the case only for a special set of field
configurations. However, we see that there exists possible sets of
configurations of ICM magnetic fields where the force due to magnetic tension
will dominate. Subsequently, this effect is extrapolated for typical field
strengths (~ 10 micro G) and scaling arguments are used to estimate the angular
power due to secondary anisotropies at cluster scales. In particular we find
that it is possible to explain the excess power reported by CMB experiments
like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for
typical cluster magnetic fields. In addition we also see that the magnetic
field effect on the SZ temperature decrement is more pronounced for low mass
clusters ( ~ 2 keV). Future SZ detections of low mass clusters at few arc
second resolution will be able to probe this effect more precisely. Thus, it
will be instructive to explore the implications of this model in greater detail
in future works.Comment: 20 pages, 8 figure
Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML
The cohesin complex plays an essential role in chromosome maintenance and transcriptional regulation. Recurrent somatic mutations in the cohesin complex are frequent genetic drivers in cancer including myelodysplatic syndromes (MDS) and acute myeloid leukemia (AML). Here, using genetic dependency screens of STAG2-mutant AML, we identified DNA damage repair and replication as genetic dependencies in cohesin-mutant cells. We demonstrated increased levels of DNA damage and sensitivity of cohesin-mutant cells to PARP inhibition. We developed a mouse model of MDS in which Stag2 mutations arise as clonal secondary lesions in the background of clonal hematopoiesis driven by Tet2 mutations, and demonstrated selective depletion of cohesin-mutant cells with PARP inhibition in vivo. Finally, we demonstrated a shift from STAG2- to STAG1-containing cohesin complexes in cohesin-mutant cells, which is associated with longer DNA loop extrusion, more intermixing of chromatin compartments, and increased interaction with PARP and RPA proteins. Our findings inform the biology and therapeutic opportunities for cohesin-mutant malignancies
Finite Theories and the SUSY Flavor Problem
We study a finite SU(5) grand unified model based on the non-Abelian discrete
symmetry A_4. This model leads to the democratic structure of the mass matrices
for the quarks and leptons. In the soft supersymmetry breaking sector, the
scalar trilinear couplings are aligned and the soft scalar masses are
degenerate, thus solving the SUSY flavor problem.Comment: 17 pages, LaTeX, 1 figur
Cosmic Microwave Background constraint on residual annihilations of relic particles
Energy injected into the Cosmic Microwave Background at redshifts z<10^6 will
distort its spectrum permanently. In this paper we discuss the distortion
caused by annihilations of relic particles. We use the observational bounds on
deviations from a Planck spectrum to constrain a combination of annihilation
cross section, mass, and abundance. For particles with (s-wave) annihilation
cross section, =\sigma_0, the bound is
f[(\sigma_0/6e-27cm^3/s)(\Omega_{X\bar{X}}h^2)^2]/(m_X/MeV)<0.2, where m_X is
the particle mass, \Omega_{X\bar{X}} is the fraction of the critical density
the particle and its antiparticle contribute if they survive to the present
time, h=H_0/(100km/s/Mpc), H_0 is the Hubble constant, and f is the fraction of
the annihilation energy that interacts electromagnetically. We also compute the
less stringent limits for p-wave annihilation. We update other bounds on
residual annihilations and compare them to our CMB bound.Comment: submitted to Phys. Rev.
The formation, properties and impact of secondary organic aerosol: current and emerging issues
Secondary organic aerosol (SOA) accounts for
a significant fraction of ambient tropospheric aerosol and a
detailed knowledge of the formation, properties and transformation
of SOA is therefore required to evaluate its impact
on atmospheric processes, climate and human health.
The chemical and physical processes associated with SOA
formation are complex and varied, and, despite considerable
progress in recent years, a quantitative and predictive
understanding of SOA formation does not exist and therefore
represents a major research challenge in atmospheric
science. This review begins with an update on the current
state of knowledge on the global SOA budget and is followed
by an overview of the atmospheric degradation mechanisms
for SOA precursors, gas-particle partitioning theory
and the analytical techniques used to determine the chemical
composition of SOA. A survey of recent laboratory,
field and modeling studies is also presented. The following
topical and emerging issues are highlighted and discussed
in detail: molecular characterization of biogenic SOA constituents,
condensed phase reactions and oligomerization, the
interaction of atmospheric organic components with sulfuric
acid, the chemical and photochemical processing of organics
in the atmospheric aqueous phase, aerosol formation
from real plant emissions, interaction of atmospheric organic
components with water, thermodynamics and mixtures in atmospheric
models. Finally, the major challenges ahead in
laboratory, field and modeling studies of SOA are discussed
and recommendations for future research directions are proposed
What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet
Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems
Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
Constraints on the cosmic expansion history from GWTC–3
We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814
- …