143 research outputs found

    Molecular complexity of quantitative immunity in plants: from QTL mapping to functional and systems biology

    Get PDF
    In nature, plants defend themselves against pathogen attack by activating an arsenal of defense mechanisms. During the last decades, work mainly focused on the understanding of qualitative disease resistance mediated by a few genes conferring an almost complete resistance, while quantitative disease resistance (QDR) remains poorly understood despite the fact that it represents the predominant and more durable form of resistance in natural populations and crops. Here, we review our past and present work on the dissection of the complex mechanisms underlying QDR in Arabidopsis thaliana. The strategies, main steps and challenges of our studies related to one atypical QDR gene, RKS1 (Resistance related KinaSe 1), are presented. First, from genetic analyses by QTL (Quantitative Trait Locus) mapping and GWAs (Genome Wide Association studies), the identification, cloning and functional analysis of this gene have been used as a starting point for the exploration of the multiple and coordinated pathways acting together to mount the QDR response dependent on RKS1. Identification of RKS1 protein interactors and complexes was a first step, systems biology and reconstruction of protein networks were then used to decipher the molecular roadmap to the immune responses controlled by RKS1. Finally, exploration of the potential impact of key components of the RKS1-dependent gene network on leaf microbiota offers interesting and challenging perspectives to decipher how the plant immune systems interact with the microbial communities’ systems

    The Xanthomonas

    Full text link

    Groundwater : Making the Invisible Visible : FCDO Briefing Pack on Water Governance, Finance and Climate Change

    Get PDF
    Did you know that more people use groundwater for drinking than use rainwater or surface water and that agriculture is responsible for 70% of global water withdrawal? Groundwater is water found underground in aquifers which, although hidden from view, are vital to agriculture, economic growth, nature and health. Groundwater is an especially important source of water as rainfall varies due to Climate Change - see the latest IPCC report for more details. This briefing pack provides some of the latest evidence and information about groundwater. It also presents information on how the Climate and Environment Department at FCDO is tackling water security to reach two overarching goals: > Tackle and reverse growing water insecurity and its consequences caused by depletion and degradation of natural water sources > Address poor water management and increasing demand In this pack we discuss the UK’s Water action at COP26; programme activities around water and climate, water governance, finance, and gender and the UK’s welldeveloped water ‘offer’, that together, can help reach the goal of global water security. Here you will find key facts, messages and videos,– all intended for colleagues invited to World Water Day events or wanting to engage in some water diplomacy! For more info please contact Andy Roby, CED Senior Water Security Adviser at FCD

    Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Low-level, partial resistance is pre-eminent in natural populations, however, the mechanisms underlying this form of resistance are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used the model pathosystem Pseudomonas syringae pv. tomato DC3000 (Pst) - Arabidopsis thaliana to study the genetic basis of this form of resistance. Phenotypic analysis of a set of Arabidopsis accessions, based on evaluation of in planta pathogen growth revealed extensive quantitative variation for partial resistance to Pst. It allowed choosing a recombinant inbred line (RIL) population derived from a cross between the accessions Bayreuth and Shahdara for quantitative genetic analysis. Experiments performed under two different environmental conditions led to the detection of two major and two minor quantitative trait loci (QTLs) governing partial resistance to Pst and called PRP-Ps1 to PRP-Ps4. The two major QTLs, PRP-Ps1 and PRP-Ps2, were confirmed in near isogenic lines (NILs), following the heterogeneous inbred families (HIFs) strategy. Analysis of marker gene expression using these HIFs indicated a negative correlation between the induced amount of transcripts of SA-dependent genes PR1, ICS and PR5, and the in planta bacterial growth in the HIF segregating at PRP-Ps2 locus, suggesting an implication of PRP-Ps2 in the activation of SA dependent responses. CONCLUSIONS/SIGNIFICANCE: These results show that variation in partial resistance to Pst in Arabidopsis is governed by relatively few loci, and the validation of two major loci opens the way for their fine mapping and their cloning, which will improve our understanding of the molecular mechanisms underlying partial resistance

    Imbalanced Lignin Biosynthesis Promotes the Sexual Reproduction of Homothallic Oomycete Pathogens

    Get PDF
    Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant cell wall composition. However, the interaction of the resulting plants with the environment must be analyzed carefully to ensure that there are no undesirable side effects of lignin modification. We show here that Arabidopsis thaliana mutants with impaired 5-hydroxyguaiacyl O-methyltransferase (known as caffeate O-methyltransferase; COMT) function were more susceptible to various bacterial and fungal pathogens. Unexpectedly, asexual sporulation of the downy mildew pathogen, Hyaloperonospora arabidopsidis, was impaired on these mutants. Enhanced resistance to downy mildew was not correlated with increased plant defense responses in comt1 mutants but coincided with a higher frequency of oomycete sexual reproduction within mutant tissues. Comt1 mutants but not wild-type Arabidopsis accumulated soluble 2-O-5-hydroxyferuloyl-l-malate. The compound weakened mycelium vigor and promoted sexual oomycete reproduction when applied to a homothallic oomycete in vitro. These findings suggested that the accumulation of 2-O-5-hydroxyferuloyl-l-malate accounted for the observed comt1 mutant phenotypes during the interaction with H. arabidopsidis. Taken together, our study shows that an artificial downregulation of COMT can drastically alter the interaction of a plant with the biotic environment

    Detection and Functional Characterization of a 215 Amino Acid N-Terminal Extension in the Xanthomonas Type III Effector XopD

    Get PDF
    During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD1-760) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD216-760). Furthermore, the N-terminal extension of XopD, which is absent in XopD216-760, is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta

    Genetic Risk Score for Intracranial Aneurysms:Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity

    Get PDF
    BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (β=-4.82×10(-3) per year [95% CI, -6.49×10(-3) to -3.14×10(-3)]; P=1.82×10(-8)), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH

    A metabolic study of the regulation of proteolysis by sugars in maize root tips: effects of glycerol and dihydroxyacetone

    Get PDF
    International audienceSugars, the main growth substrates of plants, act as physiological signals in the complex regulatory network of sugar metabolism. To investigate the function of different glycolytic steps in sugar sensing and signalling we compared the effects of carbon starvation with those of glucose, glycerol and dihydroxyacetone on carbon metabolism, proteolysis, and protease expression in excised maize (Zea mays L.) root tips. Respiration, soluble proteins, protein turnover and proteolytic activities were monitored as a function of time, along with in-vitro and in-vivo analysis of a variety of metabolites (sugars, amino and organic acids, phosphoesters, adenine nucleotides...) using 13C, 31P and 1H NMR spectroscopy. Our results indicate that, in maize root tips, endopeptidase activities and protease expression are induced in response to a decrease in carbon supply to the upper part of the glycolytic pathway, i.e. at the hexokinase step. Proteolysis would be controlled downstream glycolysis, probably at the level of the respiratory substrate supply to mitochondria
    corecore