11 research outputs found

    Implementing Horizon Scanning as a tool for the strategic development of regulatory guidelines for nanotechnology-enabled health products

    Get PDF
    Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called “valley of death” in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation

    Classification system for nanotechnology-enabled health products with both scientific and regulatory application

    Get PDF
    The lack of specific regulatory guidelines for nanotechnology-enabled health products (NHPs) is hampering development and patient access to these innovative technologies. Namely, there is an urgent need for harmonized regulatory definitions and classification systems that allow establishing a standardized framework for NHPs regulatory assessment. In this work, a novel classification system for NHPs is proposed. This classification can be applied for sorting nano-based innovations and regulatory guidelines according to the type of NHPs they address. Said methodology combines scientific and regulatory principles and it is based on the following criteria: principal mode of action, chemical composition, medical purpose and nanomanufacturing approach. This classification system could serve as a useful tool to sensor the state of the art of NHPs which is particularly useful for regulators to support strategy development of regulatory guidelines. Additionally, this tool would also allow manufacturers of NHPs to align their development plans with their applicable guidelines and standards and thus fulfill regulators expectations

    Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and beyond

    Get PDF
    The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice.We acknowledge funding from the European Union Horizon2020 Programme under Grant No. 881603 (Graphene Flagship Core 3). We acknowledge Consejo Superior de Investigaciones Científicas (CSIC) for the project “COVID19-122” granted in the call “Nuevas ayudas extraordinarias a proyectos de investigación en el marco de las medidas urgentes extraordinarias para hacer frente al impacto económico y social del COVID-19 (Ayudas CSIC–COVID-19)”. We acknowledge the MICROB-PREDICT Project for partially supporting the work. The MICROB-PREDICT project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant No. 825694. This reflects only the author’s view, and the European Commission is not responsible for any use that may be made of the information it contains. We also acknowledge Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) for the project MAT2017-87202-P. A.I. was supported by a PROBIST postdoctoral fellowship funded by European Research Council (Marie Skłodowska-Curie Grant No. 754510). C.C.C.S. acknowledges funding through CAPES–PRINT (Programa Institucional de Internacionalização; Grant Nos. 88887.310281/2018-00 and 88887.467442/2019-00) and Mackpesquisa-UPM. L.H. acknowledges funding through the China Scholarship Council. ICN2 is funded by the CERCA Programme/Generalitat de Catalunya and supported by the Severo Ochoa programme (MINECO Grant No. SEV-2017-0706)

    Nanodiagnostics to face SARS-CoV-2 and future pandemics : from an idea to the market and beyond

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaAltres ajuts: Consejo Superior de Investigaciones Científicas (CSIC) for the project "COVID19-122"The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice

    Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold

    No full text
    LysR-type transcriptional regulators (LTTRs) constitute the largest family of regulators in prokaryotes. The full-length structures of the LTTR TsaR from Comamonas testosteroni T-2 and its complex with the natural inducer para-toluensulfonate have been characterized by X-ray diffraction. Both ligand-free and complexed forms reveal a dramatically different quaternary structure from that of CbnR from Ralstonia eutropha, or a putative LysR-type regulator from Pseudomonas aeruginosa, the only other determined full-length structures of tetrameric LTTRs. Although all three show a head-to-head tetrameric ring, TsaR displays an open conformation, whereas CbnR and PA01-PR present additional contacts in opposing C-terminal domains that close the ring. Such large differences may be due to a broader structural versatility than previously assumed or either, reflect the intrinsic flexibility of tetrameric LTTRs. On the grounds of the sliding dimer hypothesis of LTTR activation, we propose a structural model in which the closed structures could reflect the conformation of a ligand-free LTTR, whereas inducer binding would bring about local changes to disrupt the interface linking the two compact C-terminal domains. This could lead to a TsaR-like, open structure, where the pairs of recognition helices are closer to each other by more than 10 Å. © 2010 Blackwell Publishing Ltd.This work has been funded by the Spanish Ministerio de Educación y Ciencia Grant BIO2006-14139, and a fellowship of the I3P Program of the Spanish research Council.Peer Reviewe

    High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR from Comamonas testosteroni T-2 and data-set analysis for a MIRAS structure-solution approach

    Get PDF
    The full-length LysR transcriptional regulator TsaR from C. testosteroni T-2 has been crystallized in two crystal forms and several native and derivative data sets have been collected using synchrotron and in-house X-ray sources

    Implementing Horizon Scanning as a tool for the strategic development of regulatory guidelines for nanotechnology-enabled health products

    No full text
    Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called "valley of death" in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.This work was supported by the Industrial Doctorates Plan of the Department of Research and Universities of the Generalitat de Catalunya (grant no 202015). PRG acknowledges the Ministry of Science, Innovation and Universities (MICINN-AEI) (AEI-PID2019-106755RB-I00 and AEI-PID2022-140423NB-I00) and the AGAUR (2021 SGR 00175 and 2021 PROD 00041) for financial support

    Classification system for nanotechnology-enabled health products with both scientific and regulatory application

    No full text
    The lack of specific regulatory guidelines for nanotechnology-enabled health products (NHPs) is hampering development and patient access to these innovative technologies. Namely, there is an urgent need for harmonized regulatory definitions and classification systems that allow establishing a standardized framework for NHPs regulatory assessment. In this work, a novel classification system for NHPs is proposed. This classification can be applied for sorting nano-based innovations and regulatory guidelines according to the type of NHPs they address. Said methodology combines scientific and regulatory principles and it is based on the following criteria: principal mode of action, chemical composition, medical purpose and nanomanufacturing approach. This classification system could serve as a useful tool to sensor the state of the art of NHPs which is particularly useful for regulators to support strategy development of regulatory guidelines. Additionally, this tool would also allow manufacturers of NHPs to align their development plans with their applicable guidelines and standards and thus fulfill regulators expectations

    Table_1_Implementing Horizon Scanning as a tool for the strategic development of regulatory guidelines for nanotechnology-enabled health products.pdf

    No full text
    Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called “valley of death” in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.</p

    Table_2_Implementing Horizon Scanning as a tool for the strategic development of regulatory guidelines for nanotechnology-enabled health products.XLSX

    No full text
    Strategic regulatory development is essential to ensure that new innovations in nanotechnology-enabled health products (NHPs) successfully reach the market and benefit patients. Currently, the lack of specific regulatory guidelines for NHPs is considered one of the primary causes of the so-called “valley of death” in these products, impacting both current and future advancements. In this study, we have implemented a methodology to anticipate key trends in NHP development and compare them with the current regulatory landscape applicable to NHPs. This methodology relies on Horizon Scanning, a tool commonly used by policymakers to foresee future needs and proactively shape a regulatory framework tailored to those needs. Through the application of this methodology, different trends in NHP have been identified, notably NHPs for drug delivery and dental applications. Furthermore, the most disruptive elements involve NHPs that are multicomposite and multifunctional, harnessing nano-scale properties to combine therapeutic and diagnostic purposes within a single product. When compared with the regulatory landscape, current regulations are gradually adapting to accommodate emerging trends, with specific guidelines being developed. However, for the most disruptive elements, multicomposite and multifunctional NHPs, their novelty still poses significant regulatory challenges, requiring a strategic development of guidelines by regulatory agencies to ensure their safe and effective integration into healthcare practices. This study underscores the importance of proactive regulatory planning to bridge the gap between NHP innovation and market implementation.</p
    corecore