428 research outputs found
Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review.
International audienceThe metabolome is the set of small molecular mass organic compounds found in a given biological media. It includes all organic substances naturally occurring from the metabolism of the studied living organism, except biological polymers, but also xenobiotics and their biotransformation products. The metabolic fingerprints of biofluids obtained by mass spectrometry (MS) or nuclear magnetic resonance (NMR)-based methods contain a few hundreds to thousands of signals related to both genetic and environmental contributions. Metabolomics, which refers to the untargeted quantitative or semi-quantitative analysis of the metabolome, is a promising tool for biomarker discovery. Although proof-of-concept studies by metabolomics-based approaches in the field of toxicology and clinical chemistry have initially been performed using NMR, the use of liquid chromatography hyphenated to mass spectrometry (LC/MS) has increased over the recent years, providing complementary results to those obtained with other approaches. This paper reviews and comments the input of LC/MS in this field. We describe here the overall process of analysis, review some seminal papers in the field and discuss the perspectives of metabolomics for the biomonitoring of exposure and diagnosis of diseases
Azithromycin fails to reduce increased expression of neutrophil-related cytokines in primary-cultured epithelial cells from cystic fibrosis mice
AbstractBackgroundBeneficial effects of azithromycin in cystic fibrosis (CF) have been reported, however, its mechanism of action remains unclear. The present study aimed at investigating the effect of azithromycin on CF airway epithelial cells.MethodsPrimary cultures of purified tracheal epithelial cells from F508del and normal homozygous mice were established. Responses to lipopolysaccharide from Pseudomonas aeruginosa (LPS, 0.1 µg/ml) on mRNA expression of neutrophil-related chemokines, pro- and anti-inflammatory cytokines were investigated in the presence or the absence of azithromycin (1 µg/ml).ResultsCF airway epithelial cells showed upregulation of MIP-2 and KC responses to LPS, and azithromycin failed to downregulate these responses. In contrast, in CF cells, azithromycin increased KC and TNF-α expression under non-stimulated and LPS-stimulated conditions, respectively. In non-CF cells, the macrolide potentiated the LPS response on MIP-2 and on IL-10.ConclusionsAirway epithelial cells contribute to the dysregulated immune processes in CF. Azithromycin rather stimulates cytokine expression in CF airway epithelial cells
Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles
Inhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive. Here, we have identified a unique subfamily of silanols as the major determinant of silica particle toxicity. This population of “nearly free silanols” (NFS) appears on the surface of quartz particles upon fracture and can be modulated by thermal treatments. Density functional theory calculations indicates that NFS locate at an intersilanol distance of 4.00 to 6.00 Å and form weak mutual interactions. Thus, NFS could act as an energetically favorable moiety at the surface of silica for establishing interactions with cell membrane components to initiate toxicity. With ad hoc prepared model quartz particles enriched or depleted in NFS, we demonstrate that NFS drive toxicity, including membranolysis, in vitro proinflammatory activity, and lung inflammation. The toxic activity of NFS is confirmed with pyrogenic and vitreous amorphous silica particles, and industrial quartz samples with noncontrolled surfaces. Our results identify the missing key molecular moieties of the silica surface that initiate interactions with cell membranes, leading to pathological outcomes. NFS may explain other important interfacial processes involving silica particles
Is aggregated synthetic amorphous silica toxicologically relevant?
The regulatory definition(s) of nanomaterials (NMs) frequently uses the term 'agglomerates and aggregates' (AA) despite the paucity of evidence that AA are significantly relevant from a nanotoxicological perspective. This knowledge gap greatly affects the safety assessment and regulation of NMs, such as synthetic amorphous silica (SAS). SAS is used in a large panel of industrial applications. They are primarily produced as nano-sized particles (1-100 nm in diameter) and considered safe as they form large aggregates (> 100 nm) during the production process. So far, it is indeed believed that large aggregates represent a weaker hazard compared to their nano counterpart. Thus, we assessed the impact of SAS aggregation on in vitro cytotoxicity/biological activity to address the toxicological relevance of aggregates of different sizes
Work-related musculoskeletal disorders: Comparison of data sources for surveillance
Work-related upper extremity musculoskeletal disorders “associated with repeated trauma” account for more than 60% of all newly reported occupational illness, 332,000 in 1994 according to the U.S. Department of Labor. These numbers do not include, for example, those disorders categorized as “injuries due to overexertion in lifting,” approximately 370,000. Early identification of potential disorders and associated risk factors is needed to reduce these disorders. There are a number of possible methods for conducting surveillance for work-related musculoskeletal disorders (WMDs) based on health outcome: workers' compensation, sickness and accident insurance, OSHA 200 logs, plant medical records, self-administered questionnaires, professional interviews, and physical examinations. In addition, hazard surveillance based on evaluation of job exposures to physical stressors by nonoccupational health personnel is possible. As part of a large labor-management-initiated intervention study to reduce the incidence of WMDs in four automotive plants, we were able to compare the strengths and limitations of each of these surveillance tools. University administered health interviews yielded the highest rate of symptoms; combined physical examinations plus interview (point prevalence) rates were similar to self-administered questionnaires (period prevalence) rates. Plant medical records yielded the lowest rate of WMDs. WMD status on self-administered questionnaire and on physical examination were associated with risk factor exposure scores. This study suggests that symptoms questionnaires associated with risk factor exposure scores. This study suggests that symptoms questionnaires and checklist-based hazard surveillance are feasible within the context of joint labor-management ergonomics programs and are more sensitive indicators of ergonomic problems than pre-existing data sources. Am. J. Ind. Med. 31:600–608, 1997. © 1997 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34815/1/15_ftp.pd
Biological monitoring and health effects of low-level exposure to N -methyl-2-pyrrolidone: a cross-sectional study
Purpose: To examine the value of urinary 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) in a population of workers exposed to N-methyl-2-pyrrolidone (NMP) and to look for health effects of exposure to this organic solvent. Methods: Airborne NMP was determined according to the NIOSH method. Urinary 5-HNMP and 2-HMSI (after and before next shift) were determined by liquid chromatography with tandem mass spectrometry. Outcomes were effects on lung, kidney, skin and mucous membranes, nervous system, haematopoiesis and liver determined by clinical examination and laboratory measurements. Univariate statistical methods and multiple regressions were used to analyse results. Skin resorption, smoking and other potential confounders were taken into account. Results: Three hundred twenty-seven workers were eligible out of which 207 workers (63%) participated. Ninety-one of these worked with NMP. Occupational exposure to NMP did often not occur daily and ranged from non-detectable to 25.8mg/m3 (median=0.18). Urinary 2-HMSI (mg/l; before next shift) was the best biomarker of exposure to NMP, explaining about 70% of the variance, but most likelihood ratios did not allow for ruling exposure in or out, at these low levels of exposure. Creatinine adjustment did not improve the results clearly. No clear and consistent health effects could be associated with NMP exposure. No indication for a bias due to non-participation was found. Conclusions: Biological monitoring, primarily urinary 2-HMSI (mg/l; before next shift), is of value to estimate exposure to NMP even when exposure is irregular and low. Likelihood ratios of urinary 5-HMNP or 2-HMSI are, however, not quite satisfactory at these low levels. No irritant or other health effects were found
Dysregulated Proinflammatory and Fibrogenic Phenotype of Fibroblasts in Cystic Fibrosis
Morbi-mortality in cystic fibrosis (CF) is mainly related to chronic lung infection and inflammation, uncontrolled tissue rearrangements and fibrosis, and yet the underlying mechanisms remain largely unknown. We evaluated inflammatory and fibrosis responses to bleomycin in F508del homozygous and wild-type mice, and phenotype of fibroblasts explanted from mouse lungs and skin. The effect of vardenafil, a cGMP-specific phosphodiesterase type 5 inhibitor, was tested in vivo and in culture. Responses of proinflammatory and fibrotic markers to bleomycin were enhanced in lungs and skin of CF mice and were prevented by treatment with vardenafil. Purified lung and skin fibroblasts from CF mice proliferated and differentiated into myofibroblasts more prominently and displayed higher sensitivity to growth factors than those recovered from wild-type littermates. Under inflammatory stimulation, mRNA and protein expression of proinflammatory mediators were higher in CF than in wild-type fibroblasts, in which CFTR expression reached similar levels to those observed in other non-epithelial cells, such as macrophages. Increased proinflammatory responses in CF fibroblasts were reduced by half with submicromolar concentrations of vardenafil. Proinflammatory and fibrogenic functions of fibroblasts are upregulated in CF and are reduced by vardenafil. This study provides compelling new support for targeting cGMP signaling pathway in CF pharmacotherapy
The European Registered Toxicologist (ERT) : Current status and prospects for advancement
Acknowledgements We would like to thank the participants of the five workshops in which the issues presented in this paper were discussed and the revised guidelines prepared, as well as the EUROTOX Executive Committee and the societies of toxicology of Sweden, the Netherlands, Switzerland, Austria and France for their support which allowed the workshops to take place.Peer reviewedPostprin
- …