7,900 research outputs found

    Collinear Four-Wave Mixing of Two-Component Matter Waves

    Full text link
    We demonstrate atomic four-wave mixing of two-component matter waves in a collinear geometry. Starting from a single-species Bose-Einstein condensate, seed and pump modes are prepared through microwave state transfer and state-selective Kapitza-Dirac diffraction. Four-wave mixing then populates the initially empty output modes. Simulations based on a coupled-mode expansion of the Gross-Pitaevskii equation are in very good agreement with the experimental data. We show that four-wave mixing can play an important role in studies of bosonic mixtures in optical lattices. Moreover our system should be of interest in the context of quantum atom optics.Comment: 4 pages, 4 figures; revised version, essentially as publishe

    Compression Behaviour of Porous Dust Agglomerates

    Full text link
    The early planetesimal growth proceeds through a sequence of sticking collisions of dust agglomerates. Very uncertain is still the relative velocity regime in which growth rather than destruction can take place. The outcome of a collision depends on the bulk properties of the porous dust agglomerates. Continuum models of dust agglomerates require a set of material parameters that are often difficult to obtain from laboratory experiments. Here, we aim at determining those parameters from ab-initio molecular dynamics simulations. Our goal is to improveon the existing model that describe the interaction of individual monomers. We use a molecular dynamics approach featuring a detailed micro-physical model of the interaction of spherical grains. The model includes normal forces, rolling, twisting and sliding between the dust grains. We present a new treatment of wall-particle interaction that allows us to perform customized simulations that directly correspond to laboratory experiments. We find that the existing interaction model by Dominik & Tielens leads to a too soft compressive strength behavior for uni and omni-directional compression. Upon making the rolling and sliding coefficients stiffer we find excellent agreement in both cases. Additionally, we find that the compressive strength curve depends on the velocity with which the sample is compressed. The modified interaction strengths between two individual dust grains will lead to a different behaviour of the whole dust agglomerate. This will influences the sticking probabilities and hence the growth of planetesimals. The new parameter set might possibly lead to an enhanced sticking as more energy can be stored in the system before breakup.Comment: 11 pages, 14 figures, accepted for publication in A&

    Effect of Core Cooling on the Radius of Sub-Neptune Planets

    Full text link
    Sub-Neptune planets are very common in our galaxy and show a large diversity in their mass-radius relation. In sub-Neptunes most of the planet mass is in the rocky part (hereafter core) which is surrounded by a modest hydrogen-helium envelope. As a result, the total initial heat content of such a planet is dominated by that of the core. Nonetheless, most studies contend that the core cooling will only have a minor effect on the radius evolution of the gaseous envelope, because the core's cooling is in sync with the envelope, i.e., most of the initial heat is released early on timescales of about 10-100 Myr. In this Letter we examine the importance of the core cooling rate for the thermal evolution of the envelope. Thus, we relax the early core cooling assumption and present a model where the core is characterized by two parameters: the initial temperature and the cooling time. We find that core cooling can significantly enhance the radius of the planet when it operates on a timescale similar to the observed age, i.e. several Gyr. Consequently, the interpretation of sub-Neptunes' mass-radius observations depends on the assumed core thermal properties and the uncertainty therein. The degeneracy of composition and core thermal properties can be reduced by obtaining better estimates of the planet ages (in addition to their radii and masses) as envisioned by future observations.Comment: Accepted for publication in A&A Letter

    The Physics Case for the New Muon (g-2) Experiment

    Full text link
    This White Paper briefly reviews the present status of the muon (g-2) experiment and the physics motivation for a new effort. The present comparison between experiment and theory indicates a tantalizing 3.4σ3.4 \sigma deviation. An improvement in precision on this comparison by a factor of 2--with the central value remaining unchanged--will exceed the ``discovery'' threshold, with a sensitivity above 6σ6 \sigma. The 2.5-fold reduction improvement goal of the new Brookhaven E969 experiment, along with continued steady reduction of the standard model theory uncertainty, will achieve this more definitive test. Already, the (g-2) result is arguably the most compelling indicator of physics beyond the standard model and, at the very least, it represents a major constraint for speculative new theories such as supersymmetry or extra dimensions. In this report, we summarize the present experimental status and provide an up-to-date accounting of the standard model theory, including the expectations for improvement in the hadronic contributions, which dominate the overall uncertainty. Our primary focus is on the physics case that motivates improved experimental and theoretical efforts. Accordingly, we give examples of specific new-physics implications in the context of direct searches at the LHC as well as general arguments about the role of an improved (g-2) measurement. A brief summary of the plans for an upgraded effort complete the report.Comment: 18 pages, 7 figure

    The composition and size distribution of the dust in the coma of comet Hale-Bopp

    Full text link
    We discuss the composition and size distribution of the dust in the coma of comet Hale-Bopp. We do this by fitting simultaneously the infrared emission spectrum measured by the infrared space observatory (ISO) and the measured degree of linear polarization of scattered light at various phase angles and 12 different wavelengths. The effects of particle shape on the modeled optical properties of the dust grains are taken into account. We constrain our fit by forcing the abundances of the major rock forming chemical elements to be solar. The infrared spectrum at long wavelengths reveals that large grains are needed in order to fit the spectral slope. The size and shape distribution we employ allows us to estimate the sizes of the crystalline silicates. The ratios of the strength of various forsterite features show that the crystalline silicate grains in Hale-Bopp must be submicron sized. We exclude the presence of large crystalline silicate grains in the coma. Because of this lack of large crystalline grains combined with the fact that we do need large amorphous grains to fit the emission spectrum at long wavelengths, we need only approximately 4% of crystalline silicates by mass. After correcting for possible hidden crystalline material included in large amorphous grains, our best estimate of the total mass fraction of crystalline material is approximately 7.5%, significantly lower than deduced in previous studies in which the typical derived crystallinity is 20-30%. The implications of this on the possible origin and evolution of the comet are discussed. The crystallinity we observe in Hale-Bopp is consistent with the production of crystalline silicates in the inner solar system by thermal annealing and subsequent radial mixing to the comet forming region.Comment: Accepted for publication in Icaru

    Genetic Locus Required for Antigenic Maturation of \u3cem\u3eRhizobium etli\u3c/em\u3e CE3 Lipopolysaccharide

    Get PDF
    Rhizobium etli modifies lipopolysaccharide (LPS) structure in response to environmental signals, such as low pH and anthocyanins. These LPS modifications result in the loss of reactivity with certain monoclonal antibodies. The same antibodies fail to recognize previously isolated R. etli mutant strain CE367, even in the absence of such environmental cues. Chemical analysis of the LPS in strain CE367 demonstrated that it lacked the terminal sugar of the wild-type O antigen, 2,3,4-tri-O-methylfucose. A 3-kb stretch of DNA, designated as lpe3, restored wild-type antigenicity when transferred into CE367. From the sequence of this DNA, five open reading frames were postulated. Site-directed mutagenesis and complementation analysis suggested that the genes were organized in at least two transcriptional units, both of which were required for the production of LPS reactive with the diagnostic antibodies. Growth in anthocyanins or at low pH did not alter the specific expression of gusA from the transposon insertion of mutant CE367, nor did the presence of multiple copies of lpe3 situated behind a strong, constitutive promoter prevent epitope changes induced by these environmental cues. Mutations of the lpe genes did not prevent normal nodule development on Phaseolus vulgaris and had very little effect on the occupation of nodules in competition with the wild-type strain

    Accessibility in a Post-Apartheid City: Comparison of Two Approaches for Accessibility Computations

    Get PDF
    Many authors argue that issues related to interpretability, lack of data availability, and limited applicability in terms of policy analysis have hindered a more widespread use of accessibility indicators. Aiming to address these aspects, this paper presents two accessibility computation approaches applied to Nelson Mandela Bay in South Africa. The first approach, a household-based accessibility indicator, is designed to account for the high diversity both among the South African society and in terms of settlement patterns. Besides OpenStreetMap (OSM) as its main data source, this indicator uses a census and a travel survey to create a synthetic population of the study area. Accessibilities are computed based on people's daily activity chains. The second approach, an econometric accessibility indicator, relies exclusively on OSM and computes the accessibility of a given location as the weighted sum over the utilities of all opportunities reachable from that location including the costs of overcoming the distance. Neither a synthetic population nor travel information is used. It is found that the econometric indicator, although associated with much lower input data requirements, yields the same quality of insights regarding the identification of areas with low levels of accessibility. It also possesses advantages in terms of interpretability and policy sensitivity. In particular, its exclusive reliance on standardized and freely available input data and its easy portability are a novelty that can support the more widespread application of accessibility measures

    Resolving HD 100546 disc in the mid-infrared: Small inner disc and asymmetry near the gap

    Get PDF
    A region of roughly half of the solar system scale around the star HD 100546 is largely cleared of gas and dust, in contrast to the bright outer disc. However, some material is observed in the immediate vicinity of the star. We investigate how the dust is distributed within and outside the gap, and constrain the disc geometry with mid-infrared interferometric observations using VLTI/MIDI. With baseline lengths of 40m, our long baseline observations are sensitive to the inner few AU from the star, and we combined them with observations at shorter, 15m baselines, to probe emission beyond the gap at up to 20AU from the star. We modelled the mid-infrared emission using radial temperature profiles. Our model is composed of infinitesimal concentric annuli emitting as black bodies, and it has distinct inner and outer disc components. We derived an upper limit of 0.7AU for the radial size of the inner disc, from our longest baseline data. This small dusty disc is separated from the edge of the outer disc by a large, roughly 10AU wide gap. Our short baseline data place a bright ring of emission at 11+-1AU, consistent with prior observations of the transition region between the gap and the outer disc, known as the disc wall. The inclination and position angle are constrained by our data to i=53+-8deg and PA=145+-5deg. Compared to the rim and outer disc geometry this suggests co-planarity. Brightness asymmetry is evident in both short and long baseline data, and it is unequivocally discernible from any atmospheric or instrumental effects. The origin of the asymmetry is consistent with the bright disc wall, which we find to be 1-2AU wide. The gap is cleared of micron-sized dust, but we cannot rule out the presence of larger particles and/or perturbing bodies.Comment: 12 pages, 9 figures, accepted for publication in A&

    Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors

    Get PDF
    The deafness caused by early onset hypothyroidism indicates that thyroid hormone is essential for the development of hearing. We investigated the underlying roles of the TRa1 and TRß thyroid hormone receptors in the auditory system using receptor-deficient mice. TRa1 and TRß, which act as hormone-activated transcription factors, are encoded by the Thra and Thrb genes, respectively, and both are expressed in the developing cochlea. TRß is required for hearing because TRß-deficient (Thrb tm1/tm1) mice have a defective auditory-evoked brainstem response and retarded expression of a potassium current (I K,f) in the cochlear inner hair cells. Here, we show that although TRa1 is individually dispensable, TRa1 and TRß synergistically control an extended array of functions in postnatal cochlear development. Compared with Thrb tm1/tm1 mice, the deletion of all TRs inThra tm1/tm1 Thrb tm1/tm1mice produces exacerbated and novel phenotypes, including delayed differentiation of the sensory epithelium, malformation of the tectorial membrane, impairment of electromechanical transduction in outer hair cells, and a low endocochlear potential. The induction ofI K,f in inner hair cells was not markedly more retarded than in Thrb tm1/tm1mice, suggesting that this feature of hair cell maturation is primarily TRß-dependent. These results indicate that distinct pathways mediated by TRß alone or by TRß and TRa1 together facilitate control over an extended range of functions during the maturation of the cochlea
    corecore