8 research outputs found

    Deep graphs

    Get PDF
    Netzwerk Theorie hat sich als besonders zweckdienlich in der Darstellung von Systemen herausgestellt. Jedoch fehlen in der Netzwerkdarstellung von Systemen noch immer essentielle Bausteine um diese generell zur Datenanalyse heranzuziehen zu können. Allen voran fehlt es an einer expliziten Assoziation von Informationen mit den Knoten und Kanten eines Netzwerks und einer schlüssigen Darstellung von Gruppen von Knoten und deren Relationen auf verschiedenen Skalen. Das Hauptaugenmerk dieser Dissertation ist der Einbindung dieser Bausteine in eine verallgemeinerte Rahmenstruktur gewidmet. Diese Rahmenstruktur - Deep Graphs - ist in der Lage als Bindeglied zwischen einer vereinheitlichten und generalisierten Netzwerkdarstellung von Systemen und den Methoden der Statistik und des maschinellen Lernens zu fungieren (Software: https://github.com/deepgraph/deepgraph). Anwendungen meiner Rahmenstruktur werden dargestellt. Ich konstruiere einen Regenfall Deep Graph und analysiere raumzeitliche Extrem-Regenfallcluster. Auf Grundlage dieses Graphs liefere ich einen statistischen Beleg, dass die Größenverteilung dieser Cluster einem exponentiell gedämpften Potenzgesetz folgt. Mit Hilfe eines generativen Sturm-Modells zeige ich, dass die exponentielle Dämpfung der beobachteten Größenverteilung durch das Vorhandensein von Landmasse auf unserem Planeten zustande kommen könnte. Dann verknüpfe ich zwei hochauflösende Satelliten-Produkte um raumzeitliche Cluster von Feuer-betroffenen Gebieten im brasilianischen Amazonas zu identifizieren und deren Brandeigenschaften zu charakterisieren. Zuletzt untersuche ich den Einfluss von weißem Rauschen und der globalen Kopplungsstärke auf die maximale Synchronisierbarkeit von Oszillatoren-Netzwerken für eine Vielzahl von Oszillatoren-Modellen, welche durch ein breites Spektrum an Netzwerktopologien gekoppelt sind. Ich finde ein allgemeingültiges sigmoidales Skalierungsverhalten, und validiere dieses mit einem geeignetem Regressionsmodell.Network theory has proven to be a powerful instrument in the representation of complex systems. Yet, even in its latest and most general form (i.e., multilayer networks), it is still lacking essential qualities to serve as a general data analysis framework. These include, most importantly, an explicit association of information with the nodes and edges of a network, and a conclusive representation of groups of nodes and their respective interrelations on different scales. The implementation of these qualities into a generalized framework is the primary contribution of this dissertation. By doing so, I show how my framework - deep graphs - is capable of acting as a go-between, joining a unified and generalized network representation of systems with the tools and methods developed in statistics and machine learning. A software package accompanies this dissertation, see https://github.com/deepgraph/deepgraph. A number of applications of my framework are demonstrated. I construct a rainfall deep graph and conduct an analysis of spatio-temporal extreme rainfall clusters. Based on the constructed deep graph, I provide statistical evidence that the size distribution of these clusters is best approximated by an exponentially truncated powerlaw. By means of a generative storm-track model, I argue that the exponential truncation of the observed distribution could be caused by the presence of land masses. Then, I combine two high-resolution satellite products to identify spatio-temporal clusters of fire-affected areas in the Brazilian Amazon and characterize their land use specific burning conditions. Finally, I investigate the effects of white noise and global coupling strength on the maximum degree of synchronization for a variety of oscillator models coupled according to a broad spectrum of network topologies. I find a general sigmoidal scaling and validate it with a suitable regression model

    Deep graphs—A general framework to represent and analyze heterogeneous complex systems across scales

    No full text
    International audienceNetwork theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. Particularly in recent years, a great progress has been made by augmenting "traditional" network theory in order to account for the multiplex nature of many networks, multiple types of connections between objects, the time-evolution of networks, networks of networks and other intricacies. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks and multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties (which are permitted to be arbitrary mathematical objects). Second, the mathematical concept of partition lattices is transferred to the network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows us to aggregate, compute, and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations, and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. On the basis of the formal framework described here, we provide a rich, fully scalable (and self-explanatory) software package that integrates into the PyData ecosystem and offers interfaces to popular network packages, making it a powerful, general-purpose data analysis toolkit. We exemplify an application of deep graphs using a real world dataset, comprising 16 years of satellite-derived global precipitation measurements. We deduce a deep graph representation of these measurements in order to track and investigate local formations of spatio-temporal clusters of extreme precipitation events

    Spatio-temporal patterns of extreme fires in Amazonian forests

    Get PDF
    Fires are a fundamental part of the Earth System. In the last decades, they have been altering ecosystem structure, biogeochemical cycles and atmospheric composition with unprecedented rapidity. In this study, we implement a complex networks-based methodology to track individual fires over space and time. We focus on extreme fires—the 5% most intense fires—in the tropical forests of the Brazilian Legal Amazon over the period 2002–2019. We analyse the interannual variability in the number and spatial patterns of extreme forest fires in years with diverse climatic conditions and anthropogenic pressure to examine potential synergies between climate and anthropogenic drivers. We observe that major droughts, that increase forest flammability, co-occur with high extreme fire years but also that it is fundamental to consider anthropogenic activities to understand the distribution of extreme fires. Deforestation fires, fires escaping from managed lands, and other types of forest degradation and fragmentation provide the ignition sources for fires to ignite in the forests. We find that all extreme forest fires identified are located within a 0.5-km distance from forest edges, and up to 56% of them are within a 1-km distance from roads (which increases to 73% within 5 km), showing a strong correlation that defines spatial patterns of extreme fires

    Deep graphs—A general framework to represent and analyze heterogeneous complex systems across scales

    No full text
    Network theory has proven to be a powerful tool in describing and analyzing systems by modelling the relations between their constituent objects. In recent years great progress has been made by augmenting `traditional' network theory. However, existing network representations still lack crucial features in order to serve as a general data analysis tool. These include, most importantly, an explicit association of information with possibly heterogeneous types of objects and relations, and a conclusive representation of the properties of groups of nodes as well as the interactions between such groups on different scales. In this paper, we introduce a collection of definitions resulting in a framework that, on the one hand, entails and unifies existing network representations (e.g., network of networks, multilayer networks), and on the other hand, generalizes and extends them by incorporating the above features. To implement these features, we first specify the nodes and edges of a finite graph as sets of properties. Second, the mathematical concept of partition lattices is transferred to network theory in order to demonstrate how partitioning the node and edge set of a graph into supernodes and superedges allows to aggregate, compute and allocate information on and between arbitrary groups of nodes. The derived partition lattice of a graph, which we denote by deep graph, constitutes a concise, yet comprehensive representation that enables the expression and analysis of heterogeneous properties, relations and interactions on all scales of a complex system in a self-contained manner. Furthermore, to be able to utilize existing network-based methods and models, we derive different representations of multilayer networks from our framework and demonstrate the advantages of our representation. We exemplify an application of deep graphs using a real world dataset of precipitation measurements.Comment: 27 pages, 6 figures, 4 tables. For associated Python software package, see https://github.com/deepgraph/deepgraph/ . Due to length limitations the abstract appearing here is shorter than that in the PDF file. To be published in "Chaos: An Interdisciplinary Journal of Nonlinear Science
    corecore