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Abstract

The tremendous amount of data that is generated and accessible these days
(often referred to as “Big Data”) provides a great opportunity from a scientific
perspective. However, it also poses methodological challenges, particularly
since more and more of that information originates in unstructured form. To
analyze data, methods from traditional disciplines such as probability theory,
multivariate statistics and non-linear dynamics are employed, but also new
tools are being developed, especially in the fields of machine learning and
deep learning. Regarding the representation of systems, network theory has
proven to be a powerful instrument. Yet, even in its latest and most general
form (i.e., multilayer networks), it is still lacking essential qualities to serve
as a general data analysis framework. These include, most importantly, an
explicit association of information with the nodes and edges of a network, and a
conclusive representation of groups of nodes and their respective interrelations
on different scales. I consider these qualities to be crucial in the representation
of systems, but also in their analysis. First, because they facilitate the means
to represent features and relations on different scales, and second, because
they allow us to coarse-grain, simplify and highlight important large-scale
structures in a data-driven analysis. The implementation of these qualities into a
generalized framework is the primary contribution of this dissertation. I develop
a network-based framework capable of representing heterogeneous complex
systems across scales. As opposed to other frameworks in the scientific literature,
groups of objects (supernodes) and their respective interrelations (superedges)
are incorporated into a self-contained network representation. Furthermore,
potentially unstructured and diverse information is explicitly associated with
the different (super)nodes and (super)edges. For these reasons, my framework
is capable of acting as a go-between, joining a unified and generalized network
representation of systems with the statistical tools of traditional fields, as well
as the methods developed in the rising field of machine learning. In combination
with the software package that accompanies this dissertation, my framework,
deep graphs, thus makes an important contribution to the field of complex
systems and potentially to data analytics in general.

A number of applications of my framework are demonstrated. By constructing
a deep graph of extreme rainfall events, I conduct an explorative analysis of
spatio-temporal rainfall clusters and find propagation patterns that have not
yet been identified in the meteorological literature. Based on the constructed
deep graph, I provide statistical evidence that the spatio-temporally integrated
size distribution of extreme rainfall clusters does not - as previously suggested
- follow a powerlaw. Instead, I find that the size distribution over the oceans
is best approximated by an exponentially truncated powerlaw. By means of
a generative storm-track model, I argue that the exponential truncation of
the observed distribution could be caused by the presence of land masses. In
another application, I combine two high-resolution satellite products to identify
spatio-temporal clusters of fire-affected areas in the Brazilian Amazon and
characterize their land use specific burning conditions. Finally, I investigate the
effects of white noise and global coupling strength on the maximum degree of
synchronization for a variety of oscillator models coupled according to a broad
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spectrum of network topologies. I find a general sigmoidal scaling and validate
it with a suitable regression model.
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Zusammenfassung

Die enorme Menge an Daten die heutzutage zur Verfügung steht - und mit
“Big Data” einen Sammelbegriff gefunden hat - bietet ungeahnte Möglichkeiten
für die Wissenschaft. Allerdings gehen mit der Datenmenge auch methodische
Herausforderungen einher, vor allem wenn man bedenkt, dass ein großer Teil der
Daten die heute erzeugt werden unstrukturiert und heterogen sind. Zur Analy-
se von Daten werden Methoden aus traditionellen Fachgebieten, wie z.B. der
Wahrscheinlichkeitsrechnung, der multivariaten Statistik und der nicht-linearen
Dynamik herangezogen. Aber auch neue Methoden werden entwickelt, spezi-
ell in den Gebieten des maschinellen Lernens und des ”Deep Learnings”. Zur
Darstellung von Systemen hat sich die Theorie von Netzwerken als besonders
zweckdienlich herausgestellt. Jedoch fehlen in der Netzwerkdarstellung von Sys-
temen - selbst in ihrer jüngsten und allgemeinsten Abwandlung (sogenannte
”multilayer networks”) - noch immer essentielle Bausteine um diese generell zur
Datenanalyse heranzuziehen zu können. Allen voran fehlt es an einer expliziten
Assoziation von Informationen mit den Knoten und Kanten eines Netzwerks und
einer schlüssigen Darstellung von Gruppen von Knoten und deren Relationen auf
verschiedenen Skalen. Diese Bausteine halte ich für besonders wichtig, sowohl in
der Darstellung von komplexen Systemen, als auch für deren Analyse. Erstens
erlauben sie die Darstellung von Eigenschaften und Relationen auf verschiedenen
Skalen eines Systems, und zweitens ermöglichen sie eine granulare Vereinfachung
von Systemen um besonders wichtige, großskalige Eigenschaften herauszustellen.
Das Hauptaugenmerk dieser Dissertation ist der Einbindung dieser Bausteine in
eine verallgemeinerte Rahmenstruktur gewidmet. Ich entwickle eine Netzwerk-
basierte Rahmenstruktur die es ermöglicht heterogene, komplexe Systeme über
sämtliche Skalen hinweg zu repräsentieren. Im Gegensatz zu anderen Rahmen-
strukturen in der wissenschaftlichen Literatur integriere ich Gruppen von Knoten
(Superknoten) und deren Relationen (Superkanten) in eine in sich geschlossene
Netzwerkdarstellung. Außerdem werden potentiell unstrukturierte und vielfältige
Information explizit mit den (Super)Knoten und (Super)Kanten des Netzwerks
assoziiert. Aus diesen Gründen ist meine Rahmenstruktur in der Lage als Binde-
glied zwischen einer vereinheitlichten und generalisierten Netzwerkdarstellung
von Systemen, den statistischen Methoden traditioneller Fachgebiete, sowie den
Methoden des maschinellen Lernens zu fungieren. In Verbindung mit dem von
mir entwickelten Softwarepaket stellt diese verallgemeinerte Netzwerkdarstellung,
Deep Graphs, einen wichtigen Beitrag zur Theorie der komplexen Systeme, und
wahrscheinlich zur Datenanalyse im generellen, dar.

Eine Reihe von Anwendungen meiner Rahmenstruktur werden ebenfalls darge-
stellt. Ich konstruiere einen Deep Graph von globalen, extremen Regenereignissen
zur explorativen Analyse von raumzeitlich ausgedehnten Regenfallclustern, und
finde dabei Ausbreitungsmuster die in der wissenschaftlichen Literatur noch
nicht identifiziert wurden. Auf Grundlage des Regenfall Deep Graphs liefere ich
einen statistischen Beleg, dass die raumzeitlich integrierte Größenverteilung von
Extremregenfallclustern keinem Potenzgesetz folgt, wie in der Literatur vermutet
wurde. Stattdessen zeige ich, dass die Größenverteilung der Extremregenfallclus-
ter über den Ozeanen am besten durch ein exponentiell gedämpftes Potenzgesetz
beschrieben wird. Mit Hilfe eines generativen Sturm-Modells zeige ich, dass die
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exponentielle Dämpfung der beobachteten Größenverteilung durch das Vorhan-
densein von Landmasse auf unserem Planeten zustande kommen könnte. In
einer weiteren Anwendung meiner Netzwerkdarstellung verknüpfe ich zwei hoch-
auflösende Satelliten-Produkte um raumzeitliche Cluster von Feuer-betroffenen
Gebieten im brasilianischen Amazonas zu identifizieren, und deren Landnut-
zungsspezifischen Brandeigenschaften zu charakterisieren. Zuletzt untersuche ich
den Einfluss von weißem Rauschen und der globalen Kopplungsstärke auf die ma-
ximale Synchronisierbarkeit von Oszillatoren-Netzwerken für eine Vielzahl von
Oszillatoren-Modellen, welche durch ein breites Spektrum an Netzwerktopologien
gekoppelt sind. Ich finde ein allgemeingültiges sigmoidales Skalierungsverhalten,
und validiere dieses mit einem geeignetem Regressionsmodell.
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Chapter .

Introduction

At the present time, we are observing a quantification of our world at an unprecedented
rate. On the one hand – due to the rapid technological progress – we are extracting
an ever increasing amount of information from nature, ranging from subatomic
to astronomical scales. On the other hand, we are producing a vast amount of
information in our daily lives interacting with electronic devices, thereby generating
traceable information, tracked and stored by us personally, but also by organizations,
companies and governments.

From a scientific point of view, this rapid increase in the amount and heterogeneity
of available data poses both a great opportunity, but also methodological challenges:
how can we describe and represent complex systems, made of multifarious subsystems
interacting intricately on various scales; and once we have a suitable representation,
how do we detect structures, patterns and correlations therein, develop and test
hypotheses and eventually come up with models and working theories of underlying
mechanisms?
Rich tool sets to tackle these questions have been developed in the past, such

as probability theory (Jaynes, ), multivariate statistics (Anderson, ), non-
linear dynamics (Strogatz, ; Thiel et al., ) and game theory (Osborne and
Rubinstein, ). Additionally, new methodologies to deal with the immense amount
of information are being developed, especially in the fields of machine learning and
deep learning (Hastie et al., ; Bishop, ; Haykin, ; Vapnik, ; Deng
and Yu, ).
When it comes to the representation of data, network theory - which models

the relations between a system’s constituent objects - has proven to be a powerful
tool (Newman, ). In recent years, substantial progress has been made by
augmenting ‘traditional’ network theory in order to account for, e.g., the time-
evolution of networks, the multiplex nature of many networks, networks of networks,
and multiple types of connections between objects (Boccaletti et al., ; Kivelä
et al., ; Berlingerio et al., ; Han, ; De Domenico et al., ; Gao et al.,
a; Gao et al., b; Santiago and Benito, ). However, even in its latest and
most general form (i.e., multilayer networks (Kivelä et al., )), network theory
is still lacking crucial traits to serve as a general data analysis framework, and to
bridge the gap between (big) data and its modelling. Most importantly, these include
an explicit association of information with the nodes and edges of a network, and a
conclusive representation of groups of nodes as well as the interactions between such
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groups on different scales. We consider these qualities to be indispensable, not only
in the representation of complex systems, but also in their analysis. First, because
they facilitate the means to represent features, relations and interactions on different
scales, and second, because they allow us to coarse-grain, simplify and highlight
important large-scale structures in a data-driven analysis.
To solve these issues is the primary contribution of this dissertation. We will

provide a network-based framework that is capable of representing heterogeneous
complex systems across scales. For the first time, groups of objects (supernodes)
and their respective interrelations and interactions (superedges) are incorporated
into a self-contained network representation. Furthermore, potentially unstructured
and diverse information is explicitly associated with the different (super)nodes and
(super)edges. For these reasons, our framework is capable of acting as a go-between,
joining a unified and generalized network representation of systems with the tools
and methods of traditional fields, such as multivariate statistics and probability
theory, as well as the rising field of machine learning. Therefore, in combination with
the software package that accompanies this dissertation, our deep graphs framework
makes an important contribution to the field of complex systems and quite possibly
to data analytics in general.

A number of applications will be presented, demonstrating benefits of the deep graph
framework. In an explorative analysis of extreme rainfall measurements, we construct
a deep graph to track and categorize the formation of spatio-temporal rainfall clusters.
Thereby, we uncover propagation patterns over subtropical South America that were
just recently discovered using rather complicated statistical methods, as well as
extreme rainfall clusters over tropical South America that have not yet been identified
and analyzed in the meteorological literature. Based on the constructed rainfall
deep graph, we will also provide statistical evidence that the spatio-temporally
integrated size distribution of extreme rainfall clusters does not - as previously
suggested - follow a powerlaw. Instead, we find that the size distribution over the
oceans is best approximated by an exponentially truncated powerlaw. Arguing with
a generative storm-track model, we explain how the exponential truncation of the
observed distribution could be caused by the presence of land masses. In another
application of the deep graph framework, we combine two high-resolution satellite
products in order to identify spatio-temporal clusters of fire-affected areas in the
Brazilian Amazon and characterize their land-use specific burning conditions. By
means of the statistical characteristics we find, we will take the first steps towards a
probabilistic classifier of fire-clusters into land use types with the ultimate goal of
predicting whether a measured fire-cluster was caused by anthropogenic activities or
natural causes. Finally, we investigate the effects of white noise and global coupling
strength on the maximum degree of synchronization for a variety of oscillator models
coupled linearly and non-linearly according to a broad spectrum of network topologies.
We find a general sigmoidal scaling and validate it with a simple regression model.

The dissertation is structured as follows. In chapter  we introduce the theoretical
framework, deep graphs, laying the groundwork for this dissertation. In chapter  we
employ the deep graph framework to track, cluster and categorize local formations





of extreme rainfall. A statistical analysis of the size distribution of spatio-temporal
extreme rainfall clusters is conducted in chapter . Chapter  is dedicated to a
statistical characterization of fire-cluster burning conditions on different land use
types in the Brazilian Amazon. In chapter  we investigate the effects of white noise
and global coupling strength on the maximum degree of synchronization in complex
networks. Finally, conclusions are drawn in chapter .







Part I.

Theoretical Framework





Chapter .

Deep Graphs - A General Framework to
Represent and Analyze Heterogeneous
Complex Systems across Scales

.. Summary

Network theory has proven to be a powerful tool in describing and analyzing systems
by modelling the relations between their constituent objects. Particularly in recent
years, great progress has been made by augmenting ‘traditional’ network theory
in order to account for the multiplex nature of many networks, multiple types of
connections between objects, the time-evolution of networks, networks of networks and
other intricacies. However, existing network representations still lack crucial traits to
serve as a general data analysis tool, and to bridge the gap between (big) data and its
modelling. These include, most importantly, an explicit association of information with
possibly heterogeneous types of objects and relations, and a conclusive representation
of the properties of groups of nodes as well as the interactions between such groups
on different scales. In this thesis, we introduce a collection of definitions resulting in a
framework that, on the one hand, entails and unifies existing network representations
(e.g., network of networks, multilayer networks), and on the other hand, generalizes
and extends them by incorporating the above features. To implement these features,
we first specify the nodes and edges of a finite graph as sets of properties (which are
permitted to be arbitrary mathematical objects). Second, the mathematical concept
of partition lattices is transferred to network theory in order to demonstrate how
partitioning the node and edge set of a graph into supernodes and superedges allows
to aggregate, compute and allocate information on and between arbitrary groups
of nodes. The derived partition lattice of a graph, which we denote by deep graph,
constitutes a concise, yet comprehensive representation that enables the expression
and analysis of heterogeneous properties, relations and interactions on all scales of
a complex system in a self-contained manner. Furthermore, to be able to utilize
existing network-based methods and models, we derive the different representations
of multilayer networks from our framework and demonstrate the advantages of our
representation. We also provide a powerful software implementation of the theoretical
framework introduced here, which integrates seamlessly into the PyData ecosystem
making it accessible to a vast number of computational scientists. This chapter is
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based on the associated publication P, and the following sections will closely follow
parts of this publication.

.. Introduction

We propose a framework that is capable of representing arbitrarily complex systems
in a self-contained manner, and establishes an interface for the tools and methods
developed in a variety of research disciplines, such as multivariate statistics, machine
learning and graph theory. The framework is based on the ontological assumption
that every system can be described in terms of its constituent objects (anything
conceivable, i.e., “beings”, “things”, “entities”, “events”, “agents”, “concepts” or “ideas”)
and their relations. With this assumption in mind, we build this framework based
on graph or network theory. A graph, in its simplest form, is a collection of nodes
(representing objects) where some pairs of nodes are connected by edges (representing
the existence of a relation) (Bollobas, ). On top of that, we define an additional
structure in order to meet the following objectives:

. any node of the network may explicitly incorporate properties of the object(s)
it represents. We refer to these properties as the features of a node, which
themselves are mathematical objects.

. any edge of the network may explicitly incorporate properties of the relation(s)
it represents. We refer to these properties as the relations of an edge, which
themselves are mathematical objects.

. any subset of the set of all nodes of the network may be grouped into a supernode.
Thereby, we may aggregate the features of the supernodes’ constituent nodes.
Furthermore, we may allocate features particular to that supernode (“emergent”
properties of the compound supernode), based on either the aggregated features,
a priori knowledge, or both.

. any subset of edges of the set of all edges of the network may be grouped
into a superedge. Thereby, we may aggregate the relations of the superedges’
constituent edges. Furthermore, we may allocate relations particular to that
superedge (“emergent” properties of the compound superedge), based on either
the aggregated relations, a priori knowledge, or both.

. we may place edges between any pair of supernodes, as well as between supern-
odes and nodes.

We believe that a comprehensive treatment of groups of objects, as well as their
relations, is just as indispensable as an explicit incorporation of data, not only in
the representation of complex systems, but also in their analysis. First, because it
facilitates the means to represent features, relations and interactions on different scales,
and second, because it allows us to coarse-grain, simplify and highlight important
large-scale structures in a data-driven analysis.
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Needless to say, this is not the first attempt to augment simple graphs in order
to satisfy at least some of the above objectives. In weighted graphs, for instance,
one can assign a number to each edge (i.e., the weight, strength, or distance of an
edge) (Horvath, ). In node-weighted networks, it is possible to assign numbers
to the nodes of the network (Wiedermann et al., ). In hypergraphs, one can
define edges joining more than two vertices at a time (called hyperedges), essentially
allowing for the assignment of groups in a network (Berge, ). Such a membership
of nodes in groups can also be represented by bipartite networks, where one of two
kinds of nodes represents the original objects, and the other kind represents the
groups to which the objects belong (Asratian et al., ). Particularly in recent years
– certainly also due to the deluge of available data – a multitude of frameworks has
been proposed with the aim of pluralizing the number of labels and values that may be
assigned to a node, and allowing for different categories of connections between pairs
of nodes, such as, e.g.: multivariate networks; multidimensional networks; interacting
networks; interdependent networks; networks of networks; heterogeneous information
networks; and multilayer networks (see Boccaletti et al. (), Kivelä et al. (),
Berlingerio et al. (), Han (), De Domenico et al. (), Gao et al. (a),
Gao et al. (b), and Santiago and Benito () and references therein).

However, none of these frameworks satisfies all of the above objectives at the same
time. In contrast, the framework proposed in this thesis meets all these objectives.
This allows us, on the one hand, to derive all of the above network representations as
special cases by imposing certain constraints on our framework, which enables the
utilization of the network-based methods, models and measures developed for them.
On the other hand, we will demonstrate how the implementation of these objectives
into our framework generalizes existing network representations, making it possible
to combine heterogeneous datasets (e.g., climatological and socio-ecological data or
(electro-)physiological records of different organs), integrate a priori knowledge of
groups of objects and their relations, and conduct an analysis of potential interrelations
of the respective systems within the same network representation. Based on the
introduced framework, we also provide a Python software package that is fully scalable
and integrates into the PyData ecosystem comprised of various libraries for scientific
computing.
This chapter is structured as follows. The theoretical part of our framework is

described in Sec. ., where we introduce our representation of a graph, and Sec. .,
where we demonstrate a comprehensive manner of graph partitioning. Then, we
outline the general procedure of constructing a deep graph in Sec. .. We show how
to impose traditional graph representations and how our framework integrates with
existing data analysis tools in Secs. . and .. Thereafter, we make a number of
general remarks regarding the identification of nodes, edges, their respective properties
and partitions (Sec. .), and briefly describe the accompanying software package
(Sec. .). Finally, we draw our conclusions in Sec. ..
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Table ..: Deep Graph Notation. The symbol “#” reads: “number of”, and “IP” reads:
“intersection partition”.

.. Graph Representation

Throughout this chapter, we assume (w.l.o.g.) that (super)nodes, (super)edges, types
of features and types of relations are represented by consecutive integers starting
from . Also, in Tab. . one may find a summary of all the important quantities of
a deep graph.

The basis of our representation is a finite, directed graph (possibly with self loops),
given by a pair

G = (V,E), (.)

where V is a set of n := |V | nodes,

V = {Vi i ∈ {1, 2, ..., n}}, (.)

and E is a set of m := |E| directed edges, given by

E ⊆ {Eij i, j ∈ {1, 2, ..., n}} =: E′. (.)

Every node Vi ∈ V of this graph represents some object(s), and every edge Eij ∈ E
represents the existence of some relation(s) from node Vi to node Vj . We say that





.. Graph Representation

an edge Eij is incident to both nodes Vi and Vj . In order to explicitly incorporate
information or data of the objects and their pairwise relations, we specify every node
Vi and every edge Eij of G as a set of its respective properties. We refer to the
properties of a node as its features, and to the properties of an edge as its relations.

Hence, we define every node Vi as a set of fi features (and its index, to guarantee
uniqueness of the nodes), given by

Vi = {i, F 1
i , F

2
i , ..., F

fi
i }. (.)

As opposed to the ‘weight’ of a node in node-weighted networks (Wiedermann et al.,
) – which is usually a real number – a feature F ji can be any mathematical
object (e.g. numbers; quantitative or categorical variables; sets; matrices; tensors;
functions; nodes; edges; graphs; but also strings to represent abstract objects, such
as concepts or ideas). Furthermore, we associate every feature with a type, in
order to express the kind of property a feature is related to and to establish a
comparability between the features of different nodes. For example, for a node
representing a city, some types of features might be ‘location’, ‘age’, ‘number of
inhabitants’, ‘unemployment rate’ and ‘voting patterns’. For a node representing
a neuron, some types of features could be ‘time series of the membrane potential’,
‘measuring device’ and ‘distribution of ion channel types’. On that account, we denote
with F = {F ji i ∈ {1, 2, ..., n} ∧ j ∈ {1, 2, ..., fi}} the set of all features, and with
Tv = {1, 2, ..., ntypes} the set of all distinct types of features contained in the graph
G. We then define a surjective function mapping every feature to its corresponding
type,

tv : F → Tv, F
j
i 7→ tv(F ji ) := T ji ∈ Tv, (.)

such that tv(F ji ) = tv(F lk) for all pairs of features that share the same type. However,
we do not allow a node Vi to have multiple features of the same type, tv(F ji ) 6= tv(F ki )
for all j 6= k ∈ {1, 2, ..., fi}. In other words, every node Vi has exactly fi distinct
types of features. Figure .(a) depicts different nodes along with their features and
the feature’s types.
Analogously, we define every edge Eij ∈ E as a set of rij relations (and its index

pair, to guarantee uniqueness of the edges), given by

Eij = {(i, j), R1
ij , R

2
ij , ..., R

rij
ij }. (.)

Again, as opposed to the commonly real-valued ‘weight’ of an edge in edge-weighted
networks (Horvath, ), a relation Rkij can be any mathematical object. Just
like features, we map every relation to its corresponding type, indicating the kind
of property of a relation (e.g. ‘distance between’, ‘correlation between’, ‘similarity
between’, ‘works for’, ‘is part of’). We denote with R = {Rkij i, j ∈ {1, 2, ..., n} ∧ k ∈
{1, 2, ..., rij}} the set of all relations, and with Te = {1, 2, ...,mtypes} the set of all
distinct types of relations contained in the graph G. We then map every relation





Chapter . Deep Graphs - Represent Heterogeneous Complex Systems across Scales

0

8

1

9

2

3 6 1011 13 4

7 12

5

a)

b)

c)

Figure ..: Graph Representation. Illustration of a fictional graph G = (V,E) consisting
of n = 14 nodes and m = 22 directed edges. (a) Representation of the nodes
Vi ∈ V . The left column indicates the nodes’ indices, the top row indicates the
types of features. A feature denoted “n/a” means that the corresponding node
does not have a feature of the corresponding type. (b) Representation of the
edges Eij ∈ E. The first two columns from the left indicate the indices of edges
Eij from node Vi to node Vj and the top row indicates the types of relations. A
relation denoted “n/a” means that the corresponding edge does not have a relation
of the corresponding type. (c) Depiction of the graph’s topology, where nodes are
represented by indexed circles and edges are represented by arrows.
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onto a type,

te : R→ Te, R
k
ij 7→ te(Rkij) := T kij ∈ Te, (.)

such that te(Rkij) = te(Rlmn) for all pairs of relations that share the same type, and
te(Rkij) 6= te(Rlij) for all k 6= l ∈ {1, 2, ..., rij}. Therefore, every edge Eij has exactly
rij distinct types of relations. Figure .(b) illustrates several edges with different
types of relations.

For notational convenience later on, we define all elements Eij ∈ E′ that are not in
E as empty sets,

Eij := ∅ for all i, j ∈ {1, 2, ..., n} : Eij ∈ E′ \ E. (.)

In other words, we say an edge from node Vi to node Vj exists if Eij 6= ∅, and in
this context, we term Vi the source node and Vj the target node. Therefore, we can
rewrite the set of edges of G = (V,E) as

E = {Eij i, j ∈ {1, 2, ..., n} ∧ Eij 6= ∅}. (.)

.. Graph Partitioning

In this section, we introduce a comprehensive concept of graph partitioning. To avoid
confusion: we do not refer to graph partitioning in the sense of finding “good” partitions
(i.e. communities) based on some cost function or statistical measures (Buluç et al.,
) such as, e.g., Newman’s modularity measure (Newman and Girvan, ).
Instead, we refer to graph partitioning in the more general sense of partitions of
sets (Lucas, ).
First, we demonstrate how partitioning the node set V of a graph G = (V,E)

enables us to group arbitrary nodes into supernodes, and equivalently, how partitioning
the edge set E allows us to group arbitrary edges into superedges. Then, we introduce
a coherent manner of partitioning a graph G = (V,E) into a supergraph, where the
edge set E is partitioned in accordance with a given partition of the node set V ,
based on the edges’ incidences to the nodes.
Partitioning nodes, edges or graphs – as we will show – not only conserves the

information contained in the graph G = (V,E), but allows us to redistribute it. This
enables us to aggregate the features and relations of any desirable group of nodes
and edges, and to allocate information particular to them. Furthermore, it facilitates
the means to place edges between any supernodes or between supernodes and nodes,
allowing us to represent interactions or relations on any scale of a complex system.
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... Partitioning Nodes

Given a graph G = (V,E) with n = |V | nodes, we define a surjective function
mapping every node Vi ∈ V to a supernode label (i.e. feature) vSi,

vp : V → vS = {1, 2, ..., np}, Vi 7→ vp(Vi) := vSi ∈ vS. (.)

This function induces a partition V p of V into np = |V p| supernodes V p
i , given by

V p
i = {Vj j ∈ {1, 2, ..., n} ∧ vp(Vj) = vSi}, and (.)
V p = {V p

i i ∈ {1, 2, ..., np}}. (.)

The number of nodes a supernode V p
i ∈ V p contains is denoted by np,i := |V p

i | ≥ 1.
The supernode labels given by the function vp(Vi) = vSi can be transferred as

features to the nodes of G,

Vi = {i, F 1
i , F

2
i , ..., F

fi
i ,

vSi}, (.)

where the type of feature of vSi is the same for all nodes, tv(vSi) = tv(vSj) for all
i, j ∈ {1, 2, ..., n}. In turn, every feature itself can be interpreted as a supernode
label, and we can say that its corresponding type induces a partition of the node
set. For instance, looking at Fig. .(a), we see that the type of feature ‘political
ideology’ induces a partition of V into np = 5 supernodes: ‘egalitarianism’ (consisting
of np,1 = 4 nodes), ‘conservatism’ (np,2 = 6 nodes), ‘anarchism’ (np,3 = 1 node),
‘environmentalism’ (np,4 = 2 nodes) and ‘neoliberalism’ (np,5 = 1 node). Since some
nodes might not have a feature of a certain type [see for instance the type ‘gender’
in Fig. .(a)], there is a degree of freedom when partitioning by that type: we can
create one supernode comprising all nodes without the feature; create a separate
supernode for every node without the feature; or create no supernode at all for these
nodes. This choice is of course dependent on the analysis.

... Partitioning Edges

Partitioning the edge set E of a given graph G = (V,E) with n = |V | nodes and
m = |E| edges can be realized just like partitioning the node set. However, since
edges Eij are incident to pairs of nodes (Vi, Vj), we later demonstrate how to exploit
this association in order to partition edges based on properties of the nodes. Here, we
demonstrate the procedure analogous to that of partitioning nodes. Hence, we define
a surjective function mapping every edge Eij ∈ E to a superedge label (i.e. relation)
eSr, given by

ep : E → eS = {1, 2, ...,mp}, Eij 7→ ep(Eij) := eSr ∈ eS. (.)

This function induces a partition Ep of E into mp = |Ep| superedges Epr , where

Epr = {Euv Φe(u, v) ∧ ep(Euv) = eSr}, (.)
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Φe(u, v) : (u, v ∈ {1, 2, ..., n} ∧ Euv 6= ∅), and (.)
Ep = {Epr r ∈ {1, 2, ...,mp}}. (.)

The number of edges a superedge Epr ∈ Ep contains is denoted by mp,r := |Epr | ≥ 1.
Equivalently to supernode labels, we can transfer the superedge labels given by the

function ep(Eij) = eSr as relations to the edges of G,

Eij = {(i, j), R1
ij , R

2
ij , ..., R

rij
ij ,

eSr}, (.)

where the type of relation of eSr is the same for all edges, te(eSi) = te(eSj) for all
i, j ∈ {1, 2, ...,m}. Again, every relation itself can be interpreted as a superedge label,
and we say that its corresponding type induces a partition of the edge set. Looking at
Fig. .(b), we see that the type of relation ‘kind of payment’ induces a partition of E
into mp = 6 superedges: ‘bribe’ (consisting of mp,1 = 4 edges), ‘donation’ (mp,2 = 3
edges), ‘expense’ (mp,3 = 1 edge), ‘investment’ (mp,4 = 2 edges), ‘tax’ (mp,5 = 10
edges), and ‘n/a’ (mp,6 = 2 edges). Since the last two edges do not have a relation
of the type ‘kind of payment’, we could have also partitioned the edges into mp = 5
superedges (leaving the two edges out), or into mp = 7 superedges (the two edges are
put into separate superedges).

... Partitioning a Graph

Here, we introduce a coherent manner of partitioning a graph G = (V,E) with
n = |V | nodes and m = |E| edges, based on the edges’ incidences to the nodes. Given
a partition V p of V induced by a function vp(Vi) = vSi [see Eqs. (.)-(.)], we
define the corresponding partition Ep of E into mp = |Ep| superedges Epij by the
following equations:

Epij := {Euv Φe(u, v) ∧ vp(Vu) = vSi ∧ vp(Vv) = vSj}, (.)

where

Φe(u, v) : (u, v ∈ {1, 2, ..., n} ∧ Euv 6= ∅) , and (.)
Ep := {Epij i, j ∈ {1, 2, ..., np} ∧ Epij 6= ∅}. (.)

By this definition, we group all edges Eij originating from nodes in supernode V p
i and

targeting nodes in supernode V p
j into a superedge Epij , consisting of mp,ij := |Epij | ≥ 0

edges. It is straightforward to show that this corresponding partition is indeed a
partition of E, and therefore we can say that partitioning the node set V by vp
induces a supergraph Gp = (V p, Ep). In reference to the graph in Fig. ., a partition
of the nodes by the type of feature ‘category’, for instance, would yield a supergraph
consisting of np = 7 supernodes: ‘bank’ (consisting of np,1 = 1 node), ‘company’
(np,2 = 1 node), ‘newspaper’ (np,3 = 1 node), ‘party’ (np,4 = 1 node), ‘person’
(np,5 = 7 nodes), ‘state’ (np,6 = 2 nodes) and ‘think tank’ (np,7 = 1 node); and
mp = 8 corresponding superedges: from ‘bank’ to ‘person’ (consisting of mp,15 = 1
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Figure ..: Graph Partitioning. Illustration of a supergraph, ‘naturally’ induced by a
partition of the node set. (a) The graph G = (V,E), comprised of n = 4 nodes
V = {V1, V2, V3, V4} and m = 7 edges E = {E11, E13, E14, E23, E24, E34, E42}.
(b) The supergraph Gp = (V p, Ep), obtained by grouping the nodes V3 and V4 into
the supernode V p

3 = {V3, V4}. It is comprised of np = 3 nodes V p = {V p
1 , V

p
2 , V

p
3 },

and mp = 5 edges Ep, given by: Ep
11 = {E11}, Ep

13 = {E13, E14}, Ep
23 =

{E23, E24}, Ep
32 = {E42}, and Ep

33 = {E34}.

edge); and from ‘person’ to: ‘bank’ (mp,51 = 1 edge), ‘company’ (mp,52 = 1 edge),
‘newspaper’ (mp,53 = 1 edge), ‘party’ (mp,54 = 2 edges), ‘person’ (mp,55 = 5 edges),
‘state’ (mp,56 = 10 edges) and ‘think tank’ (mp,57 = 1 edge). See also Fig. . for an
illustration of grouping a graph’s nodes and edges into a supergraph.

... The Partition Lattices of a Graph

In this section, we explain some general mathematical properties that arise when
partitioning a graph. This provides for a deeper understanding of this framework,
and sets the stage for the next sections.

Before we go into details of graph-specific partitioning, we point out some relevant
properties of what in mathematics is known as partition lattices (Birkhoff, ).
Assume we are given a finite, non-empty n-element set X. The total number of
distinct partitions we can create of it is given by the Bell number B(n) (Bell, ;
Becker and Riordan, ). The set of all possible partitions, which we denote by
P = {Pi i ∈ {1, 2, ..., B(n)}}, is a partially ordered set, since some of the elements of
P have a pair-wise relation, which is called the finer-than relation. A partition Pi is
said to be a refinement of a partition Pj , if every element of Pi is a subset of some
element of Pj . If this condition is fulfilled, one says that Pi is finer than Pj , Pi ≤ Pj ,
and vice versa, Pj is coarser than Pi, Pj ≥ Pi. Since X is finite, every partition Pi is
bounded from below and from above with respect to this finer-than relation,

Pf ≤ Pi ≤ Pc, for all i ∈ {1, 2, ..., B(n)}, (.)

where Pf is called the finest element of P, given by Pf = {{X1}, {X2}, ..., {Xn}},
and Pc is the coarsest element, given by the trivial partition Pc = {X}. This implies
that each set of elements of P has a finest upper bound and a coarsest lower bound.
Therefore, the set of all possible partitions P is called a partition lattice (or more
precisely, a geometric lattice, since X is finite (Welsh, )). Any totally ordered
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subset of P is called a chain, and any subset of P for which there exists no relation
between any two different elements of that subset is called an antichain.
Since in this thesis we are dealing with finite graphs exclusively, we can directly

build the lattices of the node set V and the edge set E, and translate the above
properties of lattices into the context of graphs. However, we will also make use of
the natural way of partitioning a graph as demonstrated in Sec. .., in order to
create the geometric lattice of a graph G = (V,E). This lattice, by construction,
entails the lattice of the node set V , and a specific subset of the lattice of the edge
set E, and there are therefore two lattices of interest: the lattice of a graph G, and
the lattice of its edges E.

Let us note down the lattice of a graph G with n nodes and m edges, for which there
is a total of B(n) different supergraphs. We create the set of all distinct partitions of
V by prescribing a set of functions vp = {vpk k ∈ {1, 2, ..., B(n)}}, such that each
function

vpk : V → vSk = {1, 2, ..., npk}, (.)

Vi 7→ vpk(Vi) := vSki ∈ vSk, k ∈ {1, 2, ..., B(n)}, (.)

induces a supergraph Gpk = (V pk , Ep
k) as demonstrated in Sec. .. and illustrated

in Fig. .. The partition lattice of V , induced by the set of functions vp, is therefore
given by V L = {V pk k ∈ {1, 2, ..., B(n)}}. The finer-than relation between partitions
translated to the lattice of V means that if V pk ≤ V pl , then every supernode V pl

i of V pl

is the union of supernodes V pk

j ∈ V pk . We transfer the finer-than relation to graphs,
by saying that Gpk ≤ Gp

l , if both V pk ≤ V pl and Ep
k ≤ Ep

l . With reference to
Eqs. (.)-(.), we see that for all partitions V pk ≤ V pl , it follows that Epk ≤ Epl

by construction, and consequently, we denote with GL = {Gpk k ∈ {1, 2, ..., B(n)}
the partition lattice of G, henceforth referred to as the deep graph of G. The lattice
of the graph depicted in Fig. .(a) is illustrated in Fig. .. Some of its properties
are: the finest element of GL is the graph G = (V,E) itself; the coarsest element,
which we denote by Gpc = (V pc , Ep

c), consists of one supernode connected to itself
by a single superedge; and every chain in GL, illustrated by the red, dashed lines in
Fig. ., corresponds to some agglomerative, hierarchical clustering of the nodes of G.
The dashed blue lines in Fig. . will be explained in the next section.

However, the lattice of E is generally not covered entirely by the lattice of G. In
fact, maximally B(n) of B(m) possible partitions of E are contained in GL, due
to the partitioning of E by correspondence [see Eqs. (.)-(.)]. The full lattice
of E can be created analogously to that of V , by prescribing a set of functions
ep = {epk k ∈ {1, 2, ..., B(m)}}, such that each function

epk : E → eSk = {1, 2, ...,mpk}, (.)

Eij 7→ epk(Eij) := eSkr ∈ eSk, k ∈ {1, 2, ..., B(m)}, (.)
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Figure ..: A deep graph, i.e. the geometric partition lattice of a graph. Illustration of
the graph G = (V,E) as described in Fig. .(a), and its B(n) = 15 corresponding
supergraphs, ordered by refinement from the right to the left. The supergraph Gp1

is illustrated in detail in Fig. .(b). Each link in this Hasse diagram corresponds to
the finer-than relation between a pair of supergraphs. The dashed lines colored in red
correspond to chains in the lattice. An intersection partition is illustrated by Gp2·p3

,
which results from intersecting Gp2

and Gp3
. It constitutes a refinement of both Gp2

and Gp3
(blue dashed lines). The figure is a modification of Wikimedia Commons

().
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induces a partition Epk of E as demonstrated in Eqs. (.)-(.). The lattice of E
is then given by EL = {Epk k ∈ {1, 2, ..., B(m)}}.
In the next section, we introduce a useful tool that can be used to navigate the

lattices GL and EL for the sake of creating meaningful partitions, based on the
features and relations of a given graph.

... Intersection Partitions

Due to the rapid increase of possible partitions with growing numbers of nodes and
edges, it is only possible to actually compute the full lattices of G and E for very small
graphs. However, we are generally not interested in every single partition, but rather a
meaningful subset of them. Here, we demonstrate how to create intersection partitions
and thereby establish a valuable tool to find potentially informative partitions based
on the features and relations of a graph. Furthermore, as we will demonstrate later,
one can utilize intersection partitions in order to compute similarity measures between
different partitions. We will also make use of intersection partitions in Sec. . in
order to derive a tensor-like representation of a multilayer network (De Domenico
et al., ).

To begin with, let us demonstrate what we mean by intersection partitions with a
simple example. Imagine a standard 52-card deck, partitioned by color on the one
hand (red and black, both comprised of 26 cards), and by suit on the other hand
(spades, diamonds, hearts and clubs, each comprised of 13 cards). The intersection
partition of color and suit would then be comprised of 8 elements: cards that are
red and at the same time spades (0 cards); red & diamonds (13 cards); etc. Before
showing some examples with regard to the exemplary graph in Fig. ., let us note
down the different ways of creating intersection partitions of a graph.
We first demonstrate the construction of intersection partitions of V . Assume

we are given a set of K [≤ B(n)] partitions of V , induced by a set of functions
vp = {vpk k ∈ IK}, where IK = {1, 2, ...,K} is the partition index set. From this
set of available partitions, we choose a collection g ⊆ IK , which is used to create an
intersection partition. We define an element V

p

i of the intersection partition V p by

V
p

i := {Vj j ∈ {1, 2, ..., n} ∧ ∀k ∈ g : vpk(Vj) = vSkik}, where (.)

p = (pk)k∈g, i = (ik)k∈g, ik ∈ {1, 2, ..., np
k}, (.)

and the intersection partition itself by

V p :=
⋃
i

V
p

i . (.)

Since ∅ /∈ V p by construction, and by showing that

V
p

i ∩ V
p

j = ∅ for all V
p

i 6= V
p

j ∈ V
p, where (.)

j = (jk)k∈g, jk ∈ {1, 2, ..., np
k}, (.)
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we see that V p is indeed a partition of V . A supernode V
p

i of an intersection partition
is comprised of np,i := |V p

i | nodes Vj of G that simultaneously belong to all supernodes
vSk

ik
chosen by g. The number of supernodes of an intersection partition, np := |V p|,

is bounded by
∏
k∈g n

pk , and every intersection partition constitutes a refinement of
the partitions it has been constructed from, V p ≤ V pk for all k ∈ g. The number
of distinct intersection partitions we can construct from IK is bounded from above
by I(K) =

∑K
|g|=0

(K
|g|
)

= |P(IK)|, where P(IK) is the power set of the partition
index set, hence I(K) = 2K . Looking at Fig. ., the intersection partition of the
collection of partitions g = {‘category’, ‘political ideology’} would yield np = 10
supernodes. The supernodes comprised of more than 1 node of G would be: ‘person’
& ‘egalitarianism’ ( nodes); ‘person’ & ‘environmentalism’ ( nodes); and ‘state’ &
‘conservatism’ ( nodes).

Defining the corresponding intersection partition Ep of E into mp := |Ep| su-
peredges E

p

ij by

E
p

ij := {Euv Φe(u, v) ∧ ∀k ∈ g : vpk(Vu) = vSkik ∧ ∀k ∈ g : vpk(Vv) = vSkjk} (.)

and Ep :=
⋃
i,j E

p

ij , it follows that p induces a supergraph G
p = (V p, Ep), in analogy to

Eqs. (.)-(.). A superedge E
p

ij is comprised ofmp,ij := |Epij | edges Euv originating
from nodes in supernode V

p

i and targeting nodes in supernode V
p

j . Figure . depicts
a supergraph, created from intersecting two different supergraphs (blue dashed lines).

With regard to partitioning the edges of a graph, however, there are other options
than partitioning by types of relations [see Eqs. (.)-(.)], or by correspondence
[see Eqs. (.)-(.)]. We now show how to utilize the edges’ relations and the
features of their incident nodes in all possible combinations. For instance, regarding
the graph in Fig. ., we might want to know how many edges originate from nodes
with a ‘political ideology’ of ‘egalitarianism’, or ‘conservatism’, etc. The answer would
yield a total of mp = 5 superedges, originating from: ‘anarchism’ (comprised of 
edges); ‘egalitarianism’ ( edges); ‘conservatism’ ( edges); ‘environmentalism’ (
edges); and ‘neoliberalism’ ( edge). These superedges, however, could be refined by
asking how many of their constituent edges target nodes of the ‘category’ ‘bank’, or
‘company’ and so forth. We would then see, for instance, that the edges originating
from nodes with a ‘political ideology’ of ‘egalitarianism’ all target nodes of the
‘category’ ‘state’. Refining these superedges even further, we could ask, how many
edges originating from nodes with a ‘political ideology’ of ‘egalitarianism’ and targeting
nodes of the ‘category’ ‘state’ are of the ‘kind of payment’ ‘tax’, or ‘bribe’, etc. Let
us note down all the combinations formally, to clarify the procedure of partitioning
edges.

Assume we are given a set of vK partitions of V , induced by vp = {vpk k ∈ vIK},
where vIK = {1, 2, ..., vK} is the partition index set of the nodes. Additionally,
we have a set of eK partitions of E, induced by ep = {epk k ∈ eIK}, where
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eIK = {1, 2, ..., eK} is the partition index set of the edges. From these partitions,
we choose three different collections: a source type collection gs ⊆ vIK , a target type
collection gt ⊆ vIK and a relation type collection gr ⊆ eIK . Then, we denote a
superedge by E

p

ij,r, where

p =
(
(spk)k∈gs , (tpk)k∈gt , (rpk)k∈gr)

)
, (.)

i = (ik)k∈gs , with ik ∈ {1, 2, ..., np
k}, (.)

j = (jk)k∈gt , with jk ∈ {1, 2, ..., np
k}, and (.)

r = (rk)k∈gr , with rk ∈ {1, 2, ...,mpk}, (.)

and define it by

E
p

ij,r := {Euv Φe(u, v) ∧ Φv
gs(u) ∧ Φv

gt(v) ∧ Φe
gr(u, v)}, where (.)

Φv
gs(u) : (∀k ∈ gs : vpk(Vu) = vSkik), (.)

Φv
gt(v) : (∀k ∈ gt : vpk(Vv) = vSkjk), and (.)

Φe
gr(u, v) : (∀k ∈ gr : epk(Euv) = eSkrk). (.)

The partition Ep of E is then given by Ep :=
⋃
i,j,r E

p

ij,r. Based on these definitions,
we denote the number of superedges by mp = |Ep|, and the number of edges contained
in a superedge by mp,ij,r := |Epij,r|. If all collections are empty at the same time,

gx = ∅ for all x ∈ {s, t, r}, it follows that E
p

ij,r = E, which means that the edge
set is partitioned into the trivial partition, comprised of one superedge entailing all
edges. Furthermore, if we choose gs = gt and gr = ∅, we get the definition of the
corresponding partition, as stated in Eq. (.). Expressed formally, the example
stated in the above paragraph would hence be described as follows: we choose the
source type collection by gs = {‘political ideology’}, the target type collection by
gt = {‘category’} and the relation type collection by gr = {‘kind of payment’}. The
superedge E

p

ij,r corresponding to i = (‘egalitarianism’), j = (‘state’) and r = (‘tax’)
would then be comprised of mp,ij,r = 5 edges.

Before we turn to the next section, let us make some general remarks regarding
intersection partitions:
i) First of all, it is noteworthy that it only makes sense to create intersection

partitions of antichains, since any chain in g, gs, gt or gr can be replaced by the finest
element of the respective chain.
ii) When creating intersection partitions we have to be aware of the fact that

a supernode V
p

i might be comprised of zero nodes, np,i = 0. In this case, we say

the supernode V
p

i does not exist. This stands in contrast to the supernodes V pk

i

of supergraphs Gpk , for which np,i ≥ 1 for all i ∈ {1, 2, ..., npk}, since we chose the
functions vpk to be surjective. This does not pose a problem though, since for a





Chapter . Deep Graphs - Represent Heterogeneous Complex Systems across Scales

superedge E
p

ij with mp,ij = 0, we can still deduce if the superedge does not exist

because at least one of the supernodes does not exist (np,i or np,j = 0), or because
there is in fact no superedge between existing supernodes (np,i and np,j ≥ 1).

iii) Finally, we want to refer to Appendix A, where we demonstrate how to utilize
intersection partitions in order to compute similarity measures between different
(intersection) partitions. Such measures can be utilized, for instance, to assess
the community structure of time-evolving networks, as Granell et al. () have
demonstrated.

... Redistribution and Allocation of Information on the Lattices

The last sections were dedicated to constructing partitions, allowing us to group any
desirable subset of nodes and edges into supernodes and superedges, respectively.
Here, we demonstrate that the information of a graph – expressed by the features and
relations of its constituent nodes and edges – is not only conserved under partitioning,
but redistributed on the partition lattices, according to the partition function(s) we
choose. This allows us to aggregate data of any desirable group of nodes or edges.
We then demonstrate how to allocate partition-specific features and relations, which
also allows us to create superedges independently of the edges in G.
First, the information contained in a given graph G = (V,E) is conserved when

creating partitions: given a partition V p of V induced by p [see Eqs. (.)-(.)],
every supernode V

p

i ∈ V
p is a subset of the nodes of G, where each node is comprised

of a set of features. The complete set of features contained in supernode V
p

i can then
be partitioned by their corresponding types, and therefore expressed as a collection
of sets of features of common type. Hence, a supernode V

p

i – expressed in terms of
its constituent features – is given by

V
p

i = {i} ∪ {F p,Ti,t }t∈{1,2,...,np,itypes}
, (.)

where the number of distinct types of features in supernode V
p

i is denoted by n
p,i

types,

and the number of features of type t by n
p,i

t := |F p,Ti,t |. Looking at Fig. ., the
supernode comprised of the nodes with indices (2, 6, 11), for instance, has a total of
n
p,i

types = 7 types of features: ‘category’ (n
p,i

1 = 3: ‘person’:  nodes, ‘company’: 

node); ‘name’ (n
p,i

2 = 3: ‘Avon Barksdale’:  node, ‘Rust Cohle’:  node, ‘Viktor’s
Gun Shop’:  node); ‘occupation’ (n

p,i

3 = 2: ‘chief executive officer’:  node, ‘federal
police officer’:  node); ‘age’ (n

p,i

4 = 3: ‘’:  node, ‘’:  node, ‘’:  node); etc.
By this example, it becomes clear that we can easily create frequency distributions of
the values of a supernodes’ different types of features.

Analogously, we can express superedges in terms of the relations of their constituent
edges, which we also partition by their corresponding types: given a partition Ep of
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E induced by p [see Eqs. (.)-(.)], a superedge E
p

ij,r is given by

E
p

ij,r = {(i, j, r)} ∪ {Rp,Tij,r,t}t∈{1,2,...,mp,ij,rtypes }
, (.)

where the number of distinct types of relations in superedge E
p

ij,r is denoted by m
p,ij,r

types,

and the number of relations of type t by m
p,ij,r

t := |Rp,Tij,r,t|. For mathematical details,
we refer to Appendix B.

By this representation of supernodes and superedges, we can clearly see that the
information of a graph G is not only conserved under partitioning, but redistributed
according to the partition function(s) we choose. This means that every supergraph
Gp on the lattice GL, and every partition Ep on the lattice EL, corresponds to a
unique redistribution of the information contained in a graph G, and the collection
of all possible redistributions is given by the lattices GL and EL.
Second, we show how to allocate partition-specific information on the lattice GL.

Note that we omit the vector notation of intersection partitions for the remainder
of this section for reasons of notational simplicity. Given a supergraph Gp ∈ GL,
we know that its supernodes are comprised of features {F p,Ti,t }t∈{1,2,...,np,itypes}

, and its

superedges are comprised of relations {Rp,Tij,t}t∈{1,2,...,mp,ijtypes}
. Based on these features

and relations, we can compute additional properties (e.g., moments, correlations) by
applying some set of functions on them. For the sake of notational convenience, we
write single functions mapping to sets of new properties:

f({F p,Ti,t }t∈{1,2,...,np,itypes}
) = {pF p,Ti,t }t∈{1,2,...,pnp,itypes}

, (.)

f({Rp,Tij,t}t∈{1,2,...,mp,ijtypes}
) = {pRp,Tij,t}t∈{1,2,...,pmp,ijtypes}

, (.)

where the additional p-index on the upper left corner indicates that these features and
relations are specific to the supergraph Gp. Of course, we can also allocate features to
supernodes independently from the features of the supernodes’ constituent nodes. The
same goes for the relations of superedges, even in the case when they are comprised of
zero edges (for which Epij = ∅ and therefore also {Rp,Tij,t}t∈{1,2,...,mp,ijtypes}

= ∅). We do
not, however, denote these independently allocated features and relations differently
to the computed features and relations in Eqs. (.) and (.). Hence, the properties
of supernodes and superedges of a supergraph can be written as

V p
i = {i} ∪ {F p,Ti,t }t∈{1,2,...,np,itypes}

∪ {pF p,Ti,t }t∈{1,2,...,pnp,itypes}
, (.)

and

Epij = {(i, j)} ∪ {Rp,Tij,t}t∈{1,2,...,mp,ijtypes}
∪ {pRp,Tij,t}t∈{1,2,...,pmp,ijtypes}

. (.)

Of course, the partition-specific features and relations only bear meaning for the
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unique element of the lattice Gp ∈ GL. Furthermore, they can only be redistributed
on the set of all coarser supergraphs, given by the chains entailed in {Gp′

p′ ∈
{1, 2, ..., B(n)} ∧ p′ > p} ⊆ GL (see the red, dashed lines in Fig. .).

.. How to Construct a Deep Graph

The theoretical framework satisfying the objectives stated in the Introduction is
now fully described. Here, we want to roughly describe the general procedure of
constructing a deep graph. For this purpose, we introduce two types of auxiliary
functions: connectors, which are functions allowing us to create (super)edges between
(super)nodes, purely based on the properties of the represented objects; and selectors,
which are functions allowing us to select (i.e. filter) (super)edges, based on their
respective properties. In combination, these functions effectively allow us to forge the
topology of a deep graph, which we will exemplify in chapters  and . Furthermore,
we demonstrate in this section how our framework integrates with existing network
theory and other data analysis tools, and finally make some general remarks regarding
the identification of (super)nodes, (super)edges and partitions.
Given a set of n objects, the general procedure of constructing a deep graph can

be outlined as follows

. identify each object as a node Vi, i = 1, 2, ..., n.

. assign features to each node Vi, Vi = {i, F 1
i , F

1
i , ..., F

fi
i }.

. define connectors

mij(Vi, Vj) := Eij = {(i, j), R1
ij , R

2
ij , ..., R

rij
ij }, (.)

where mij is a function mapping a pair of sets of features to a set of relations.
Connector functions create “computable”, or “external” relations between objects.
They are typically based on distance or similarity measures of objects, or some
information or physical flow between them. A few examples are the scalar
product of vectors, the distance of objects in a metric space, or correlation
coefficients between variables. Networks solely based on one such measure are
often termed functional networks (Boers et al., ; Zhou et al., ).

. create the set of all possible edges E′ by applying the connector functions on
all pairs of nodes.

. if there is any a priori knowledge of relations between the objects (as opposed
to the computed relations by connectors), append them to the corresponding
edges. By a priori known relations, we mean any inherent, internal, physical,
trivial or abstract relations, such as flightpaths between airports, synapses
between neurons, social relationships between humans, or relations of plants to
the treatment of medical conditions.
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. define selectors

sij(Eij) :=
{
Eij if Eij satisfies conditions of sij
∅ if Eij does not satisfy conditions of sij

, (.)

where sij is a function mapping a set of relations to itself, if the set satisfies
the conditions expressed in the function, or to an empty set otherwise, thereby
removing the corresponding edge from the edge set E. Selectors can be simple
thresholding functions (e.g., for some features F kj and F li : Eij 7→ Eij if |F kj −
F li | ≤ T , else Eij 7→ ∅), but they can also be more complicated and elaborate,
involving different types of relations at the same time.

. select E ⊆ E′ by applying the selector functions on all edges E′.

The graph is then given by G = (V,E), where the objects’ properties are represented
by sets of features Vi, and the relational information of pairs of objects is represented
by sets of relations Eij .

The next step is to repeat the following procedure for any supergraph Gp ∈ GL for
which we want to allocate, aggregate or evaluate information. Again, for notational
clarity, we omit vector notation.

. identify a partition Gp of G. This partition might be induced by the (intersection
of) features of the nodes in G (see Sec. .. and Sec. ..), or created by
any other means, such as manual assignment of supernode labels, clustering
algorithms, community detection algorithms, or partitioning by the connected
components of G.

. compute and allocate partition-specific features to any of the supernodes

V p
i = {i} ∪ {F p,Ti,t }t∈{1,2,...,np,itypes}

∪ {pF p,Ti,t }t∈{1,2,...,pnp,itypes}
.

. compute and allocate partition-specific relations to any of the superedges

Epij = {(i, j)} ∪ {Rp,Tij,t}t∈{1,2,...,mp,ijtypes}
∪ {pRp,Tij,t}t∈{1,2,...,pmp,ijtypes}

.

. define connectors between supernodes,

mij : V p × V p → E′p, (V p
i , V

p
j ) 7→ mij(V p

i , V
p
j ),

to further enrich the relations of the superedges in Gp,

Epij = {(i, j)} ∪ {Rp,Tij,t}t∈{1,2,...,mp,ijtypes}
∪ {pRp,Tij,t}t∈{1,2,...,pmp,ijtypes}

∪mij(V p
i , V

p
j ).
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. define selectors on the set of superedges,

sij(Epij) :=
{
Epij if Epij satisfies conditions of sij
∅ if Epij does not satisfy conditions of sij

.

. select Ep ⊆ E′p by applying the selector functions on all edges E′p.

The supergraph is then represented by Gp = (V p, Ep). Repeating this procedure
for different elements Gp ∈ GL, we continuously extend the information contained in
GL. This information, in turn, can then be redistributed on the lattice (see Sec. ..,
and the red lines in Fig. .), and increases the number of possible ways to create
intersection partitions (see Sec. .., and the blue lines in Fig. .).

.. Imposing Traditional Graph Representations

Here, we show how to obtain existing network representations, by imposing certain
restrictions on our framework resulting in the multilayer network (MLN) representa-
tion, as defined by Kivelä et al. (). We chose to demonstrate only the attainment
of the MLN representation for two reasons. First, because it is – to the best of our
knowledge – the most general framework of network representation today, and second,
because it allows us refer to the extensive work done by Kivelä et al. (), Boccaletti
et al. (), and references therein. In these papers, the reader can find derivations of
many additionally constrained network representations down to the level of ordinary
graphs (Bollobas, ), as well as a compendium of network tools, models and
concepts to analyze networks. Therefore, the derivation of the MLN representation –
in conjunction with the work done in these papers – allows us to exploit the already
existing tool set of network theory.

For readers unfamiliar with MLNs, we provide a summary in Appendix A. Without
loss of generality, we assume a MLN M = (VM , EM , V N ,L) with |V N | =: N nodes
and |VM | =: n ≤ |V N | ·

∏d
a=1 |La| node-layers. First, we have to restrict ourselves to

the representation of a single element of the partition lattice of a deep graph, Gp ∈ GL.
Let us assume that this element is the finest element of GL w.l.o.g., G = (V,E).
Then, there are two choices of G, resulting in distinct representations of M . We can
place the additional information attributed to the layered structure of M either in
the nodes of G, or in the edges of G. The latter case is described in Appendix D.
The former case, which is the favourable representation of M , is described in the
following.

We identify each node Vi ∈ V = {V1, V2, ..., Vn} with a node-layer VM,i ∈ VM , such
that

Vi = {V N
i , L1,i, L2,i, ..., Ld,i} =̂ VM,i ∈ V N × L1 × L2 × · · · × Ld, (.)

where V N
i ∈ V N and La,i ∈ La for all a ∈ {1, 2, ..., d}. This means that every

node Vi of G has one feature corresponding to the index of a node V N
i ∈ V N and
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d features corresponding to elementary layers of the aspects La ∈ L. An edge
Eij ∈ E′ = {E11, E12, ..., Enn} is given by

Eij =
{
{w ((VM,i, VM,j))} if (VM,i, VM,j) ∈ EM
∅ if (VM,i, VM,j) /∈ EM

. (.)

Therefore, the edge set E corresponding to EM is given by E = {Eij i, j ∈
{1, 2, ..., n} ∧ Eij 6= ∅}. Every edge Eij ∈ E has exactly one relation, whose type
is determined by the tuple of features ({La,i}da=1, {La,j}da=1) of the adjacent nodes
Vi and Vj . The derived representation G = (V,E) corresponds one to one to the
‘supra-graph’ representation of a MLN, given by the tuple (VM , EM ). Figure .
shows an examplary MLN, side by side with its representation derived here and a
tensor-like representation we derive in Appendix D.
In Appendix D, we demonstrate how the subset of the partition lattice GL of

G =̂ M induced by the types of features of its constituent nodes corresponds to
different representations of a MLN, including the above mentioned tensor-like represen-
tation (De Domenico et al., ). There, we also discuss the constraints imposed on
our framework in order to obtain the MLN representation, and how our representation
solves the issues encountered in the representation of MLNs.
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(d)(c) (e)

Figure ..: An exemplary multilayer network (MLN) and its representation by
our framework. (a) An exemplary MLN, M = (VM , EM , V N ,L), con-
sisting of four nodes, V N = {1, 2, 3, 4}, and two aspects, L = {L1, L2},
where L1 = {A,B} and L2 = {X,Y }. It has a total of  node-layers, VM =
{(1, A,X), (1, B,X), (1, B, Y ), (2, A,X), (2, A, Y ), (3, A,X), (3, A, Y ), (3, B,X),
(4, B,X)}, connected pair-wise by a total of  edges, EM ⊂ VM × VM . For
notational brevity, we consider the edges to be directed (with randomly chosen
directions). (b) The same MLN as in (a), depicted by its underlying ‘supra-graph’
representation, GM = (VM , EM ). (c) The nodes Vi ∈ V of the graph G = (V,E),
representing the MLN described in (a). G has a total of  nodes (corresponding to
the MLN’s node-layers), whose indices are given by the left column. The top row
indicates the nodes’ types of features, which correspond one-to-one to the MLN’s
node indices and its aspects. (d) The edges Eij ∈ E of the graph G = (V,E),
representing the MLN described in (a). G has a total of  edges, corresponding
to the edges EM of M . The first two columns indicate the indices of edges Eij

from node Vi to node Vj . The (complex- or real-valued) relations of the edges
are denoted by ri and their corresponding types by Ri (which are condensed into
one column, for reasons of space). (e) A tensor-like representation of the edges
of the MLN described in (a). It is derived from the graph G [see (c) and (d)],
by constructing the intersection partition of all its types of features, resulting in
the supergraph GV N ·L1·L2 = (V V N ·L1·L2 , EV N ·L1·L2). The supergraph’s edges
EV N ·L1·L2

iV N ·iL1 ·iL2 ,jV N ·jL1 ·jL2
∈ EV N ·L1·L2 are indexed like a tensor, as apparent from

the table. See Appendix D for mathematical details. Figure .(a) and (b) are
reproduced with permission from Journal of Complex Networks ,  -  ().
Copyright  Oxford University Press - Journals.
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.. Integration with other Data Analysis Tools

As demonstrated above, the (super)nodes and (super)edges of a (super)graph Gp ∈ GL
are nothing less than collections of sets of mathematical objects,

V
p

i = {i} ∪ {F p,Ti,t }t∈{1,2,...,np,itypes}
∪ {pF p,Ti,t }t∈{1,2,...,pnp,itypes}

, and (.)

E
p

ij = {(i, j)} ∪ {Rp,Tij,t}t∈{1,2,...,mp,ijtypes}
∪ {pRp,Tij,t}t∈{1,2,...,pmp,ijtypes}

∪mij(V
p

i , V
p

j ),

(.)

just like the superedges of the partitions Ep ∈ EL [see Eq. (.)]

E
p

ij,r = {(i, j, r)} ∪ {Rp,Tij,r,t}t∈{1,2,...,mp,ij,rtypes }
. (.)

Therefore, there is nothing hindering us from utilizing the tool sets developed in
fields such as multivariate statistics, probability theory, supervised and unsupervised
machine learning, and graph theory, in order to analyze the properties of (super)nodes
and their relations. For instance, we can use machine learning algorithms to predict
missing features of nodes, or to predict relations between objects. We can use
statistical tools to compute properties such as moments, ranges, covariances and
cross-entropies. We can also compute graph theoretical measures, such as centrality
measures (e.g. eigenvector centralities, betweenness centralities, closeness centralities,
degree centralities), participation coefficients, matching indices or local clustering
coefficients. Furthermore, we can compute similarity or distance measures through
connector functions and then use appropriate clustering algorithms, such as stochastic
block models, in order to find informative partitions (Aicher et al., ; Peixoto,
; Peixoto, ; Peixoto, ). All these properties and labels can then be
reassigned to the features and relations of the (super)nodes and (super)edges.

.. Identification of (Super)Nodes, (Super)Edges and
Partitions

The framework we have laid down offers a good deal of flexibility in mapping systems
onto networks. For that reason, we want to conclude this section by making a number
of general remarks regarding the identification of (super)nodes, (super)edges, their
respective properties and partitions.
i) First of all, recall that the nodes of a graph represent arbitrary objects. There

are no restrictions of what constitutes an object, so a node might represent literally
anything that comes to mind. On top of that, the features of a node themselves
can be arbitrary objects. This means, however, that the features of a node might
themselves be identified as nodes, and vice versa. With regard to the exemplary
graph in Fig. ., for instance, the nodes with indices 8 and 9 (each representing a
‘state’) might just as well have been identified as features (of type ‘lives in’) of the
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nodes representing persons (indices 0-6). Yet, we identified them as nodes connected
by edges (with the type of relation ‘lives in’) to the nodes 0-6. There are, of course,
no general rules of what to identify as features, and what as nodes. This choice
depends mainly on the context.

ii) A similar situation arises when dealing with variables X = {xi i ∈ {1, 2, ..., n}}.
Imagine, for instance, a set of variables, each representing a time-series of measure-
ments (e.g. of the channels in an EEG measurement). Then, each variable can be
identified as a node, whose feature is the variable itself. But we could also identify
each single value assumed by the variables as a node, and include features indicating
the variables (supernodes) each node belongs to. Similar to the identification of the
node-layers (as opposed to the nodes) of a MLN as the nodes of a deep graph (see
Appendix B), the latter choice is more flexible, and actually contains the former choice
as supernodes. By identifying each value of a time-series as a node, for instance, we
can create additional supernode labels corresponding to discretizations of either axis
(time or values), such as a discretization into a certain number of quantiles. Such
a concept has been used by Campanharo et al. () to create a map from a time
series to a network with an approximate inverse operation. Within our framework, a
bijection between a variable X and the nodes of a graph G is trivially given by

mb : X ↔ V, xi 7→ mb(xi) := Vi = {i, xi}, (.)

m−1
b (mb[X]) = X. (.)

Similarly, we can map multidimensional objects (or observations, in machine learning
parlance)

X = {xi = (xji )j∈{1,2,...,p} ∈ Rp i ∈ {1, 2, ..., n}} (.)

to the nodes of a graph G = (V,E), by a function

mb : X ↔ V, xi 7→ mb(xi) := Vi = {i, xi}, (.)

m−1
b (mb[X]) = X. (.)

This allows us, for instance, to create edges between objects containing the derivatives

of each pair of variables, m(Vi, Vj) := Eij = {x
k
j−x

k
i

xlj−x
l
i

}k 6=l∈{1,2,...,p}.
iii) It is also straightforward to represent and analyze recurrence networks (Marwan,

) by deep graphs. Given a p-dimensional phase space and a (discretized) phase-
space trajectory represented by a temporal sequence of p-dimensional vectors xi ∈ X
[see Eq. .], we first map each point xi of the trajectory to a node Vi as described
in Eq. .. Then, we create edges between these nodes, based on some metric on
the given phase space (e.g., the euclidian distance), m(Vi, Vj) := Eij = {‖xj − xi‖}.
Finally, we define a selector s(Eij), s(Eij) 7→ Eij if ‖xj − xi‖ < ε, else s(Eij) 7→
∅, leaving only edges between nodes with a distance smaller than ε, indicating
the recurrence of a state in phase space. The recurrence network is then given
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by G = (V,E). This approach can be generalized to cross and joint recurrence
networks (Marwan and Kurths, ), by mapping a collection of phase space
trajectories to the nodes of a graph (where to each node an additional feature is
prescribed, indicating the trajectory it belongs to), and defining connectors and
selectors accordingly.

iv) As a general rule of thumb, any divisible or separable entity of a system to be
mapped to a deep graph should be divided into separate nodes, and their membership
to the corresponding entity indicated by supernode labels.

v) A convenient manner of representing the time evolution of a network, for instance,
is to take a graph (such as the one illustrated in Fig. .), and prescribe to every
node (edge) a feature (relation) of the type ‘time’. Then, one simply copies the nodes
and edges of the graph, indicates their point in time, and adjusts their features and
relations according to whatever properties of the graph have changed over time. The
deep graph incorporating the time evolution of the network is then given by joining
all the copies of nodes and edges that we created into one graph.

vi) In terms of detecting partitions and identifying supernodes, we can also exploit
the topological structure of a graph. In this respect, the auxiliary connector and
selector functions introduced above constitute a helpful tool. Given a set of objects,
the application of connectors and selectors allows us to effectively forge the topology
of a (super)graph according to the research question at hand. This is particularly
useful for spatially, temporally or spatio-temporally embedded systems, where we
can define a metric space in which we place the objects of interest. Thereby, for
instance, we may track objects in space over time by connecting them whenever they
are close according to the metric, and then identify the connected components as the
trajectories of the objects. Or, as we will demonstrate in the next chapter, we can
use graph forging as a clustering scheme inducing a partition of the objects, and then
define similarity measures on the induced subgraphs to detect recurrences of patterns.
vii) Finally, we want to emphasize that the identification of supernodes and

superedges also constitutes a convenient manner of querying a deep graph, by allowing
us to select any desirable group of nodes and edges, in order to aggregate their
respective properties. Such a query could also involve graph theoretic objects, such as:
in- and out-neighbours of a (super)node; paths; trees; forests; clusters; components;
or communities.

.. The DeepGraph Software Package

The introduced framework is accompanied by a data analysis software package (The
DeepGraph Python Package) [https://github.com/deepgraph/deepgraph]. The basis
of this software package is Pandas, a fast and flexible data analysis tool for the
Python programming language, and part of the PyData Ecosystem comprised of
various libraries for scientific computing. Utilizing one of its primary data structures,
the DataFrame (i.e., a table), we represent the (super)nodes of a graph by one set of
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tables, and their pairwise relations (i.e. the (super)edges of a graph) by another set
of tables. Its main features are

• create edges: A method that enables an iterative, yet vectorized computation
of pairwise relations (edges) between nodes using arbitrary, user-defined func-
tions on the nodes’ properties. The method provides arguments to parallelize
the computation and control memory consumption, making it suitable for very
large datasets and adjustable to whatever hardware you have at hand (from
netbooks to cluster architectures).

• partition nodes, edges or a graph: Methods to partition nodes, edges
or a graph by the graph’s properties and labels, enabling the aggregation,
computation and allocation of information on and between arbitrary groups of
nodes. These methods also let you express elaborate queries on the information
contained in a deep graph.

• interfaces to other packages: Methods to convert to common network
representations and graph objects of popular Python network packages (e.g.,
SciPy sparse matrices, NetworkX graphs, graph-tool graphs).

• plotting: A number of useful plotting methods for networks, including drawings
on geographical map projections.

.. Conclusions

We have introduced a collection of definitions resulting in deep graphs, a theoretical
framework to describe and analyze heterogeneous systems across scales. Our frame-
work unifies existing network representations and generalizes them by fulfilling two
essential objectives: an explicit incorporation of information or data, and a compre-
hensive treatment of groups of objects and their relations. The former objective is
implemented by specifying the nodes and edges of a (super)graph as sets of their
respective properties. These properties, which may differ from node to node and
from edge to edge, can be arbitrary mathematical objects. The second objective is
implemented by transferring the mathematical concept of partition lattices to our
graph representation. We have demonstrated how partitioning the node and edge
set of a graph facilitates the means to aggregate, compute and allocate information
on and between arbitrary groups of nodes. This information can then be stored on
the lattices of a graph, allowing us to express and study properties, relations and
interactions on all scales of the represented system(s).
Based on our representation, we were able to show how deep graphs establish

an interface for common data analysis and modelling tools. This includes network-
based concepts, models and methods, since we derived the different representations
of a multilayer network (Kivelä et al., ), which was the most general network
representation to date.





.. Conclusions

Yet, we have also introduced additional tools to support a comprehensive data
analysis. We have demonstrated how the auxiliary connector and selector functions
enable us to create and select (super)edges, thereby allowing us to forge the topology
of a deep graph. Intersection partitions not only allow us to derive a tensor-like
representation of a multilayer network (De Domenico et al., ), but also to
calculate similarity measures between (intersection) partitions of a graph and to
express elaborate queries on the information contained in a deep graph.

The DeepGraph Python Package (see Sec. .) provides a powerful software imple-
mentation of the theoretical framework introduced here, and integrates seamlessly
into the PyData Ecosystem making it accessible to a vast number of computational
scientists.
We hope that our framework initiates attempts to generalize existing network

measures and to develop new measures, particularly in respect of the heterogeneity
of a system’s components and their interactions on different scales. In the context
of multilayer networks, generalizations of network measures have already led to
significant new insights, and we expect the same to become true for deep graphs.







Part II.

Applications





Chapter .

Spatio-Temporal Tracking and
Clustering of Extreme Rainfall

.. Summary

We exemplify an application of deep graphs using a dataset comprising  years of
satellite-derived, gauge-calibrated global rainfall measurements. We extract extreme
rainfall events from the data and construct a deep graph representation in order to
track and categorize the formation of spatio-temporal rainfall clusters. First, we
represent the extreme rainfall events as nodes of a graph, whose features indicate
their location, time and rainfall rate. Creating edges on the basis of spatio-temporal
proximity between nodes allows us to identify cohesive clusters as the connected
components of the graph. Thereby, we can track and visualize the clusters’ temporal
evolution and calculate characterizing features, such as their lifetime, their spatial
coverage, and the total volume of water they precipitated. We further agglomerate
clusters into regional families based on a metric of spatial overlap between them.
Finally, we discuss climatological characteristics of two of these families over the
South American continent. The first, which is concentrated over the subtropics,
was just recently discovered using rather complicated statistical methods, while the
second, which is concentrated over tropical South America, has to our knowledge not
yet been identified and analyzed in the meteorological literature. These particular
clusters could be a promising subject for further research. The approach of tracking
and coarse-graining spatio-temporal events applied here is easily transferable to other
systems, as for instance demonstrated in chapter  of this thesis. This chapter is
based on the associated publication P, and some of the following sections will closely
follow parts of this publication.

.. Introduction

In this chapter, we present a use case of the deep graph framework particularly
relevant in the context of spatio-temporal systems. Given a set of events embedded in
space and time, a common task is to cluster them into groups based on their spatio-
temporal proximity. A number of algorithms exist for that purpose, such as: K-Means
clustering (Arthur and Vassilvitskii, ), Mean-Shift clustering (Comaniciu and
Meer, ), Spectral clustering (Ng et al., ) or DBSCAN (density-based spatial
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clustering of applications with noise) (Ester et al., ). Here, we introduce a novel,
network-based clustering procedure relying on user-defined pairwise distance metrics
and a set of thresholds. First, the events are represented as nodes of a graph, whose
features indicate their spatio-temporal coordinates. Then, the pairwise proximity of
events is determined by applying appropriate connector and selector functions (see
Sec. .). The connector functions express the distance metrics to be used, whereas
the selector functions eliminate edges between events we deem not to be related by
imposing thresholds on the spatial and temporal distances. Thereby, a topological
structure is created which we use to identify clusters as the connected components of
the network. An advantage of this clustering scheme is that the number of clusters
does not have to be determined beforehand. However, suitable thresholds have to
be selected in the context of the problem at hand, which indirectly determines the
number of clusters.
Here, we use this clustering procedure to track the formation and propagation of

extreme rainfall events in space and time. The basis is a quasi-global, high-resolution
satellite product comprised of rainfall measurements from  to . Although
other network-based studies of this dataset exist, they focus on the creation of
synchronization-based functional networks from the time-series of rainfall measure-
ments corresponding to the different geographical locations (e.g., Stolbova et al., ;
Boers et al., ; Boers et al., ).

First, we identify spatio-temporal rainfall clusters and track their temporal resolu-
tion. Then, we partition the resulting clusters into regional families according to their
spatial overlap. Finally, climatological interpretations of two exemplary propagation
patterns over the South American continent are provided.

.. The Rainfall Data

We employ the Tropical Rainfall Measuring Mission (TRMM) B V dataset (Huff-
man et al., ), with -hourly temporal resolution for the time period from 1998 to
2014. The dataset is spatially gridded at a resolution of 0.25◦ × 0.25◦ ranging from
50◦S to 50◦N. Each of the N = 46.752 · 1440 · 400 ≈ 2.69 · 1010 data point consists
of the time of the measurement ti, the geographical location given by a tuple of
coordinates (loni, lati), and the average rainfall rate during a 3-hour time window ri.
We extract extreme rainfall events from the data by considering only those mea-

surements above the 90th percentile of so-called wet times (defined as data points
with rainfall rates r ≥ 0.1 mm/h). The 90th percentile is chosen in agreement with
the definition of extreme rainfall events in the IPCC report (Field et al., a). The
threshold values at each geographical location are depicted in Fig. .. This results
in n ≈ 2.16 × 108 extreme events, which serve as the data basis for the following
construction of a deep graph.
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Figure ..: Extreme rainfall thresholds. The 90th percentile threshold values (in [mm/h])
for each geographical location. Only rainfall events with rainfall rates above these
thresholds are considered in this study.

.. Preprocessing and Representation of the Data as
Nodes of a Graph

We first identify each of the n extreme rainfall events as a node Vi of the Graph
G = (V,E), with V = {Vi i ∈ {1, 2, ..., n}}. Then, we assign features F ji to the
nodes Vi by processing the information given by the dataset as follows.

We enumerate the given longitude, latitude and time coordinates, in order to asso-
ciate every node with discrete space-time coordinates, (loni, lati, ti)↔ (xi, yi, ti) =: xi.
By this association, we are embedding the nodes into a -dimensional grid-cell ge-
ometry, which we will use below to identify spatio-temporal clusters. Furthermore,
to each tuple (loni, lati) we assign a geographical label, (loni, lati) ↔ Li, such that
nodes with the same geographical location share the same label. This will enable us
to measure spatial overlaps of spatio-temporal clusters later on. We also compute the
surface area ai and the volume of water precipitated vi for each node. Hence, at this
stage, every node has a total of six features, Vi = {Li, xi, ai, ri, vi}, as summarized in
Tab. .(a).
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Table ..: The features and relations of the graph G = (V,E). (a) The features of the
nodes Vi, representing extreme rainfall measurements. The type of feature ‘cluster
membership’ is introduced in Sec. . and the type of feature ‘family membership’
in Sec. .. (b) The relation of the edges Eij , representing the spatio-temporal
distance between rainfall measurements. An edge only exists, if the condition stated
in the table is fulfilled.

.. Partitioning into Spatio-Temporal Rainfall Clusters

As we have assigned the same types of features to all nodes, we can define a single
connector that we apply to all pairs of nodes,

m(Vi, Vj) := Eij = {(xj − xi)} =: {dxij}. (.)

The set of all edges is therefore given by E′ = {Eij i, j ∈ {1, 2, ..., n}}, where each of
the |E′| ≈ 4.69 · 1016 elements corresponds to a discrete distance vector of a pair of
measurements. The edges of G will be utilized to detect spatio-temporal clusters in
the data, or in more technical terms: to partition the set of all nodes into subsets of
connected grid points. One can imagine the nodes to be elements of a  dimensional
grid box, where we allow every node to have  possible neighbours ( neighbours
in the time slice of the measurement, ti, and  neighbours in each the time slice
ti − 1 and ti + 1). We can compute the clusters by identifying them as the connected
components of the graph G = (V,E), where E is given by applying the selector

s(Eij) :=
{
Eij if |dαij | ≤ 1∀α ∈ {x, y, t} ∧ i 6= j

∅ else
(.)

on all edges, such that E = {Eij i, j ∈ {1, 2, ..., n}∧Eij 6= ∅} leaves only m = |E| ≈
9.16 · 108 edges between nodes that are neighbours on the grid. See Fig. . for an
illustration of this clustering scheme.
Identifying the connected components of G results in a labelling of the nodes

according to their respective cluster membership. We find a total of nC ≈ 1.42 · 107

spatio-temporal clusters, and transfer their labels as features to the nodes of G,
Vi = {Li, xi, ai, ri, vi, Ci}, where Ci indicates to which cluster a node Vi belongs to. We
denote the corresponding partition function by pC , hence pC(Vi) = Ci. This labelling
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Figure ..: Sketch of spatio-temporal cluster detection. In order to partition the extreme
rainfall events into clusters, we first enumerate the given longitude, latitude and
time coordinates, allowing us to associate every event with discrete space-time
coordinates, (loni, lati, ti) ↔ (xi, yi, ti). Each event can have up to  possible
neighbors ( neighbors in the time slice of the measurement, ti, and  neighbors in
each of the time slices ti − 1 and ti + 1). Linking all pairs of neighboring extreme
rainfall events, we find the clusters by identifying them as the connected components
of the graph G = (V,E), where the the set of nodes V is comprised of the events
themselves, and the set of edges E indicates whether events are neighbors on the
space-time grid. An exemplary cluster is depicted on the very right.

induces a partition of the graph G = (V,E) into nC spatio-temporal clusters V C
i of

the supergraph GC = (V C , EC), with V C
i = {Vj j ∈ {1, 2, ..., n} ∧ pC(Vj) = Ci}.

Next, we compute partition-specific features CF ji to assign to the supernodes V C
i ,

based on the features of the nodes Vi ∈ V . These features and their calculation are
summarized in Tab. .(a).





Chapter . Spatio-Temporal Tracking and Clustering of Extreme Rainfall

Table ..: The features and relations of the rainfall supergraph GC = (V C , EC). (a)
The features of the supernodes V C

i , representing spatio-temporal clusters of extreme
rainfall measurements. To compute the spatial coverage of a cluster, we map each
geographical grid cell to its surface area, Li 7→ A(Li) (see also the type of feature
‘surface area’ in Tab. .). The type of feature ‘family membership’ is introduced in
Sec. .. (b) The relations of the superedges EC

ij .

.. Partitioning into Families of Clusters

We now create superedges between the spatio-temporal clusters, in order to find
families of clusters that have a strong regional overlap. Applying the following
partition-specific connector function will provide the information necessary for this
task,

m(V C
i , V

C
j ) := ECij = {dtij , ICij , ISij}, (.)

where dtij = tminj − tmini is the temporal distance between a pair of clusters,
ICij = |Lseti ∩ Lsetj | is the intersection cardinality, which is the number of coin-
ciding geographical grid cells, and ISij = ICij

min{|Lseti |,|L
set
j |}
∈ [0, 1] is the intersection

strength, a measure for the spatial overlap of a pair of spatio-temporal clusters. These
properties are also summarized in Tab. .(b).

Based on the above measure of spatial overlap between clusters, we now perform an
agglomerative, hierarchical clustering of the spatio-temporal clusters into regionally
coherent families. We restrict ourselves to the largest nc = 40.000 clusters with
respect to their type of feature ‘total vol. of water precipitated’, since we are only
interested in the strongest extreme rainfall clusters in this chapter. We use the
UPGMA algorithm (Sokal et al., ) on the distance vector d = (dij)i,j∈{1,...,nc},i<j ,
where dij = d(V C

i , V
C
j ) = 1 − ISij , such that we get a total of nF = 50 families.

We transfer their labels to both the supernodes of GC and the nodes of G, hence
V C
i = {tmini , tmaxi ,∆ti, vsumi , Lseti , asumi , Fi} and Vi = {Li, xi, ai, ri, vi, Ci, Fi}, where
Fi indicates to which family the node Vi belongs to. We denote the corresponding
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Table ..: The features and relations of the rainfall supergraph GF = (V F , EF ). (a)
The features of the supernodes V F

i , representing families of spatio-temporal rainfall
clusters. The first three features are simply the aggregated features of the clusters
V C

i . (b) The relations of the superedges EF
ij . They are also just the unprocessed,

aggregated relations between intra-family (i = j) and inter-family (i 6= j) clusters.

partition function by pF , hence pF (Vi) = Fi.
Next, we identify each family of spatio-temporal clusters as a supernode of the

induced supergraphGF = (V F , EF ), where V F
i = {Vj j ∈ {1, 2, ..., n}∧pF (Vj) = Fi}.

Note that, if we were to take the entire set of spatio-temporal clusters, and not just
the strongest nc = 40.000, this partition would be a further coarse-graining of the
partition induced by pC , G ≤ GC ≤ GF . Therefore, we can redistribute the partition-
specific information of GC , in order to compute the features and relations of GF as
stated in Tab. .(a) and (b), respectively.

We could now compute the temporal inter-cluster intervals of intra-family clusters,
or measure the temporal similarities between families. Indeed, the information
contained in the properties of GF can easily be mapped onto event time series. We
would only need to identify either Tmini or Tmaxi as the time index set Ti, and choose
the corresponding feature FF ji [or function of features f(FF 1

i , ...,
FF fii )] as the values

vi,

mb : V F → X,V F
i 7→ mb(V F

i ) := Xi = {vit}t∈Ti . (.)

However, in this chapter, we refrain from doing any statistical analysis. Instead,
we demonstrate in the next section how the above created deep graph allows us to
track and visualize the time evolution of extreme rainfall clusters.
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.. Exploring Families of Extreme Rainfall Clusters over
South America

In the following, we restrict ourselves to two families of spatio-temporal extreme event
clusters located over the South American continent. The first family is confined to
the subtropical domain [roughly between 40◦S and 20◦S, see Fig. .(a)], while the
second is centered over the tropical Amazon region [roughly between 10◦S and 10◦N ,
see Fig. .(a)].
The first family [Fig. .(a)] contains spatio-temporal clusters of extreme events

which are characterized by a concise propagation pattern from southeastern South
America (around 30◦S, 60◦W ) northwestward to the eastern slopes of the northern
Argentinean and Bolivian Andes [see Fig. .(b) for an example cluster in this family].
These clusters are remarkable from a meteorological point of view, as their direction
of propagation appears to be against the low-level wind direction in this region,
which is typically from NW to SE (Vera et al., ; Marengo et al., ). A case
study based on infrared satellite images (Anabor et al., ) analyzes some of the
“upstream propagating” clusters in this family in detail. This study, together with a
detailed climatological analysis of these events using the TRMM B dataset (Boers
et al., ), reveals that these spatio-temporal clusters are in fact comprised of
sequences of Mesoscale Convective Systems (Maddox, ; Durkee et al., ;
Durkee and Mote, ), which form successively along the pathway from southeastern
South America towards the Central Andes. The synoptic mechanism explaining this
phenomenon is based on the interplay of cold frontal systems approaching from the
South, a climatological low-pressure system of northwestern Argentina, and low-level
atmospheric moisture flow originating from the tropics (Boers et al., ): extensive
low-pressure systems associated with Rossby wave trains emanating from the southern
Pacific Ocean merge with the low-pressure system over northwestern Argentina to
produce a saddle point of the isobars. Due to the eastward movement of the Rossby
wave train, the configuration of the two low-pressure systems changes such that the
saddle point moves from southeastern South America towards the Central Andes.
The deformation of winds around this saddle point leads to strong frontogenesis
and hence creates favorable conditions for the development of large-scale organized
convection, which explains the observed formation of several mesoscale convective
systems along the pathway this saddle point takes. Due to the large spatial extents of
these rainfall cluster, as well as due the fact that they propagate into high elevations
of the Andean orogen, these systems impose substantial risks in form of flash-floods
and landslides, with severe consequences for the local populations. Since this pattern
is a recurring feature of the South American Climate system, a complex network
approach could recently be employed to formulate a simple statistical forecast rule,
which predicts more than 60% of extreme rainfall events at the eastern slopes of the
Central Andes (Boers et al., ).

The second family [Fig. .(a)] we want to show includes spatio-temporal clusters
which exhibit equally concise propagation patterns in the tropical parts of South
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Figure ..: Family of rainfall clusters over subtropical South America. (a) The entire
family of spatio-temporal clusters over subtropical South America. The colors
indicate how often a given grid cell iL is hit by clusters in this family. This
number is given by the number of nodes nF L,iF iL

in supernode V F L
iF iL of the

intersection partition V F L. Note that the superscript FL indicates that the
supernodes V F L

iF iL arise from intersecting the partitions given by the types of features
‘family membership’ F and ‘geographical label’ L. High values over southeastern
South America therefore indicate that this is the core region of this family, where
most of its clusters pass by in course of their lifetime. (b) Exemplary cluster of
this family. Each colored grid cell has received at least one event above the 90th
percentile belonging to this cluster. The colors indicate the last time (in units of
hours) a given grid cell is hit by the cluster, relative to its initiation on February
, , : UTC. The temporal evolution of this cluster therefore shows a
concise propagation pattern from the Argentinean lowlands across Uruguay toward
the eastern slopes of the Central Andes in Bolivia, where the clusters ends on
February , , : UTC. This cluster thus lasted for ∆ti = 45h, and the
total sum of water it precipitated was vsum

i = 4.08 · 1010m3, over a total area of
asum

i = 9.39 · 105km2.
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America. Similarly to the case described in the previous paragraph, we find several
tropical clusters which propagate in the opposite direction of the climatological
low-level wind fields. Some of these are initiated at the boundary between tropics
and subtropics, move northward along the eastern slopes of the Peruvian Andes,
before turning eastward toward the Amazonian lowlands [as for example the cluster
shown in Fig. .(b)]. Other instances form just east of the northern Andes, and
roughly follow the equator toward the East [as for example the cluster shown in
Fig. .(c)]. In view of the above explanations for the first family, we speculate that
similar mechanisms leading to the “upstream” propagation of favorable conditions for
organized convection are at work in these cases. However, frontal systems do rarely
reach these tropical latitudes (Siqueira and Rossow, ), and a saddle point similar
to the one described above is not present in this case. While Amazonian squall lines,
which propagate from the northern Brazilian coast into the continent, have been
thoroughly analyzed (Tulich and Kiladis, ; Cohen et al., ), these organized
spatio-temporal clusters moving northward along the tropical Andes and from West
to East across the Amazon have – to our knowledge – not yet been studied in the
meteorological and climatological literature. We therefore propose these particular
spatio-temporal clusters as a promising subject for further research.
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Figure ..: Family of rainfall clusters over tropical South America. (a) The entire family
of spatio-temporal clusters over tropical South America. The colors indicate how
often a given grid cell iL is hit by clusters in this family, given by nF L,iF iL

[see the
caption of Fig. .(a)]. High values over the western Amazon therefore indicate that
this the core region of this family, where most of its clusters pass by in course of
their lifetime. (b) First exemplary cluster of this family. Each colored grid cell has
received at least one event above the 90th percentile belonging to this cluster. The
colors indicate the last time (in units of hours) a given grid cell is hit by the cluster,
relative to its initiation on November , , : UTC. The temporal evolution
of this cluster therefore shows a concise propagation pattern from central Bolivia
northward, along the eastern slopes of the Andes mountain range, before turning
west in northern Peru. The cluster ends on November , , : UTC over
Colombia and northwestern Brazil, resulting in a total lifetime of ∆ti = 78h. The
total sum of water precipitated by this cluster is vsum

i = 4.90 · 1010m3, covering
a total area of asum

i = 1.53 · 106km2. (c) Second exemplary cluster of this
family. It initiated on March , , : UTC, at the eastern slopes of the
northern Peruvian Andes, and thereafter propagated eastward across the entire
Amazon basin, ending on March , , : UTC over northern Brazil. During
its lifetime of ∆ti = 96h, the total sum of water precipitated by this cluster is
vsum

i = 1.17 · 1011m3, covering a total area of asum
i = 2.61 · 106km2.
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.. Conclusions

In this chapter, we exemplified benefits of the deep graph framework particularly
useful in the context of spatio-temporally evolving systems. We did so by conducting
an explorative analysis of extreme rainfall events derived from a global, high-resolution
satellite product.
First we represented extreme rainfall events as nodes of a graph, whose features

indicate their location, time and rainfall rate. By applying suitable connector and
selector functions on the set of nodes, we created edges between neighboring events on
the spatio-temporal grid prescribed by the resolutions of the data. We then identified
cohesive rainfall clusters as the connected components of the graph, allowing us to
track and visualize their temporal resolution, and calculate characterizing features:
their lifetime, their spatial coverage, and the total volume of water they precipitated.
Focussing on the largest . clusters, we applied another connector function in
order to compute the spatial overlap of clusters. This allowed us to create families of
clusters with a strong regional overlap.

Finally, we have discussed climatological characteristics of two of these families over
the South American continent. The first family, concentrated over the subtropics,
was just recently discovered using a rather complicated statistical method. The
second, concentrated over tropical South America, has to our knowledge not yet been
identified and analyzed in the meteorological literature. We believe these particular
clusters would be a promising subject for further research.

The demonstrated approach of tracking and coarse-graining events living in space
and time can be easily applied to other spatio-temporal systems. In chapter , for
instance, we use a similar strategy to characterize fire-cluster burning conditions on
different land use types in the Legal Amazon area.
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The Size Distribution of Extreme
Rainfall Clusters around the Globe

.. Summary

The scaling behavior of rainfall has been extensively studied both in terms of event
magnitudes and in terms of spatial extents of the events. Different heavy-tailed
distributions have been proposed as candidates for both instances, but statistically
rigorous treatments are rare. Here, we combine the domains of event magnitudes and
event area sizes by a spatio-temporal integration of -hourly rain rates corresponding
to extreme events derived from the quasi-global high-resolution rainfall product
TRMM B. A maximum-likelihood evaluation reveals that the distribution of
spatio-temporally integrated extreme rainfall cluster sizes over the oceans is best
described by a truncated powerlaw, calling into question previous statements about
scale-free distributions. The observed sub-powerlaw behavior of the distribution’s
tail is evaluated with a simple generative model, which indicates that the exponential
truncation of an otherwise scale-free spatio-temporal cluster size distribution over
the oceans could be explained by the existence of land masses on the globe. This
chapter is based on the associated publication P, and some of the following sections
will closely follow parts of this publication.

.. Introduction

The spatial and temporal scaling behavior of convection and rainfall has attracted
considerable attention in the physical and atmospheric sciences during the past
decades. The spatial size distributions of single rainfall events and clouds have
been thoroughly analyzed on the basis of various datasets (without considering
temporal extents of the events), and these distributions are mostly assumed to be
best approximated by a lognormal distribution (e.g. López, ; Houze Jr. and
Cheng, ; Cheng and Houze Jr., ; Williams and Houze Jr., ). However,
recent studies (Mapes and Houze Jr., ; Nesbitt et al., ) have called this into
question, and a powerlaw-type behavior has been proposed as an alternative (e.g.
Cahalan and Joseph, ; Neggers et al., ). Similarly, the scaling properties
of rainfall event magnitudes without considering spatial and temporal extents of
the events have been studied extensively (e.g. Papalexiou and Koutsoyiannis, ;
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Serinaldi and Kilsby, ), and the number of rainfall events as a function of the
event magnitude has been found to exhibit a scale-free range over several orders of
magnitude, hinting at similarities to non-equilibrium relaxation processes such as
earthquakes or avalanches (Peters et al., ; Dickman, ; Peters et al., ).
Indeed, strong empirical evidence has been reported that rainfall might be a real-world
example of self-organized criticality (Andrade et al., ; Peters and Neelin, ;
Peters and Neelin, ).
However, existing studies investigating the spatial and temporal scaling behavior

of rainfall do not perform statistically rigorous comparisons of the proposed powerlaw
to alternative heavy-tailed distributions, which may attain shapes that are very
hard to distinguish from a true powerlaw (Clauset et al., ; Virkar and Clauset,
). Whether the relative event magnitude or area size frequencies actually follow
a powerlaw distribution has therefore not been rigorously assessed to date. In fact,
both the area size and the magnitude distributions have been suggested to exhibit
tails which decay faster than that of a powerlaw distribution fitted to the observed
values (Peters et al., ). Additionally, the scaling characteristics of rainfall have
been investigated either in the spatial domain, or in the magnitude domain. For
instance, Peters et al. () analyzed the frequency distribution of instantaneous
rainfall rates integrated over the spatial extents of the corresponding rainfall cluster
- defined there as the set of connected pixels experiencing significant rainfall - but
only for single time slices, thus excluding the temporal extents of the events. Also
for this quantity, the tail of the frequency distribution decays faster than that of a
corresponding powerlaw distribution (Peters et al., ).

Here, we analyze the frequency distribution of the total water volume precipitated in
spatio-temporally extended extreme rainfall events. The distributional characteristics
of the spatio-temporally integrated water volumes, i.e. the total cluster sizes, have
previously been proposed to follow a scale-free distribution even if this does not
hold true for neither the area size, the single-site event magnitudes, nor the spatially
integrated event magnitudes (Peters et al., ). We use the satellite-derived,
gauge-calibrated rainfall dataset TRMM B (V), available at -hourly temporal
resolution on a regular 0.25◦-grid covering earth’s surface from 50◦N to 50◦S, and
study the spatio-temporal cluster sizes with respect to possible differences over the
global oceans and land masses. This is further motivated by the fact that the largest
rainfall events at the earth’s surface are thunderstorms in the form of Mesoscale
Convective Systems and hurricanes (typhoons over the NW Pacific) (Maddox, ;
Goldenberg, ; Zipser et al., ), which are - in addition to their spatial sizes -
characterized by their outstanding temporal persistence.
We use maximum likelihood estimation (MLE) and maximum likelihood ratio

(MLR) comparison tests between several plausible heavy-tailed candidate distributions,
and find that the total cluster size distributions over the oceans (land masses) are best
described by an exponentially truncated powerlaw (stretched exponential) although
they appear to be scale-free over several orders of magnitude. With the help of
a simple generative model, we propose the existence of land masses as a possible
explanation of the sub-powerlaw behaviour of these distributions.





.. The Rainfall Data

.. The Rainfall Data

As in the previous chapter, we employ the satellite-derived and gauge-calibrated
rainfall data product from the Tropical Rainfall Measurement Mission (TRMM
B V, (Huffman et al., )) with -hourly temporal and 0.25◦ × 0.25◦ spatial
resolutions, for the time period from 1998 to 2014.

Again, we extract extreme rainfall events from the data by considering only those
measurements above the 90th percentile of so-called wet times (defined as data points
with rainfall rates r ≥ 0.1 mm/h). This wet-time threshold is employed to assure
that only data points with significant rainfall are used to compute the distributional
characteristics we are interested in here (e.g. Huffman et al., ; Scheel et al., ;
Chen et al., ; Zulkafli et al., ). The 90th percentile is chosen in agreement
with the definition of extreme rainfall events in the IPCC report (Field et al., b)
(see Fig. .(a) for the threshold values at each geographical location). This results
in n ≈ 2.16× 108 extreme events, which we partition into spatio-temporal clusters as
described in Sec. ...

.. Methods

We first recap the concept of spatio-temporal clusters and their sizes from the last
chapter. Then, we introduce the different candidate distributions, and the elements
of Bayesian parameter inference used to fit candidate distributions to the observed
histograms of cluster sizes. Finally, we propose a minimal generative model which
reproduces the observed truncated-powerlaw behavior for the cluster size distribution
over the global oceans.

... Spatiotemporal clusters and their sizes

A spatio-temporal cluster of extreme rainfall is defined as the union of nearest
neighbors of extreme rainfall events in the discrete space-time grid prescribed by the
resolutions of the TRMM dataset. In order to detect the clusters, we first enumerate
the given longitude, latitude and time coordinates. Thereby, we can associate every
event with discrete space-time coordinates, (loni, lati, ti)↔ (xi, yi, ti). Every event
can have up to  possible neighbors ( neighbors in the time slice of the measurement,
ti, and  neighbors in each of the time slices ti − 1 and ti + 1). Having linked all
pairs of neighboring extreme rainfall events, we find the clusters by identifying them
as the connected components of the graph G = (V,E), where the set of nodes V is
given by the events, and the set of edges E by the links between pairs of neighboring
events (see section . for details of the graph methodology used to determine the
spatio-temporal clusters and Fig. . for an illustration of the clustering scheme). We
find a total of nC ≈ 1.42× 107 spatio-temporal clusters. For each of these clusters,
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we compute the total volume of water precipitated (of dimension: length3), i.e. the
cluster size s of cluster C, by

s =
∑
C

ai · ri · 3h, (.)

where ai is the surface area of a rainfall event, given by

ai = (111km)2 · (0.25)2 · cos
( 2π

360◦ · lati
)
. (.)

This definition of cluster size follows the definition of “event size” in Peters et al., .
Note that an alternative choice of defining the size of clusters would be to simply
take the number of events belonging to a cluster. In fact, for the clusters obtained as
described above, the total volume of precipitated water is highly correlated to the
number of events (rPearson = 0.98). However, we chose the total volume of water as
the metric for cluster sizes, since it is more accurate.

The set of all clusters is then partitioned into three groups: clusters that precipitated
mainly above ocean, mainly above land, and a group for the remaining clusters. For
this, we first use a land-ocean mask to classify every rainfall event as an ocean or a land
event. We then decide that a cluster belongs to the ocean (land) group if more than
90% of its constituent events are ocean (land) events, leading to nCocean ≈ 8.68× 106

(nCland ≈ 5.20 × 106) clusters. The remaining cluster are attributed to the mixed
group, with nCmixed ≈ 3.55× 105 elements. Note that the results presented below are
insensitive to changing this parameter, e.g., from 90% to 100%.

... Estimation of the distributions of spatio-temporal extreme
rainfall clusters

For all clusters combined, the ocean and land groups separated, and the generative
model introduced in the next section, we fit a set of candidate distributions to the
cluster size distributions. These candidates include a powerlaw (PL), a truncated
powerlaw (TPL), a stretched exponential (SEXP), and a log-normal (LN), given by

PL: f(x) = (α− 1)
xmin

( x

xmin
)−α (.)

TPL: f(x) = λ1−α

Γ(1− α, λxmin)x
−αe−λx (.)

SEXP: f(x) = βλxβ−1e−λ(xβ−xβmin) (.)

LN: f(x) =
√

2
πσ2

[
erfc

(
lnxmin − µ√

2σ

)]−1 1
x
exp

(
−(lnx− µ)2

2σ2

)
(.)

In a first step, optimal functional forms for these distributions with respect to the
observed cluster sizes are determined by MLE (Clauset et al., ): For each proposed
candidate ρ, the likelihood of its parameters P , given the set of observed cluster size
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values C is maximized. Under the assumption of flat priors P (ρ,P), Bayes’ Theorem
assures that the parameters determined via this optimization are the most likely
parameters given the observed data C:

P (ρ,P|C) = P (C|ρ,P)P (ρ,P)
P (C) , (.)

where P (C) is unknown and in practical terms impossible to compute. The likelihood
of the parameters P given the data C is defined as LC(ρ,P) ≡ P (C|ρ,P), and assuming
that P (ρ,P) is non-informative (i.e., a flat distribution), we have P (ρ,P|C) ∝
LC(ρ,P). We are thus left with the following optimization problem:

P∗ = arg max
P
LC(ρ,P) = arg max

P

nC∏
i=1

ρ(si;P) , (.)

where nC denotes the number of clusters and si their respective spatio-temporally
integrated size. The optimal parameters thus determined for the four candidate
distributions are listed in the legends of Figs. .(a)-(c).
The likelihood of each candidate, evaluated with the respective MLE-optimal

parameters, is then compared by means of a MLR comparison test. The Neyman-
Pearson lemma assures that this is the most efficient statistical test possible to
compare between two candidate distributions (Neyman and Pearson, ). Setting
LC(ρ) = maxP LC(ρ,P), we compute for two candidates ρ1 and ρ2 the log-ratio

RC(ρ1, ρ2) = log LC(ρ1)
LC(ρ2) . (.)

If RC(ρ1, ρ2) > 0 (< 0), we conclude that ρ1 is a more (less) likely model of the
observed cluster size distribution than ρ2. A test of statistical significance for the
values of R can be derived from the central limit theorem (see Clauset et al. ()
for details, in particular for cases where the two distributions to be compared are
nested versions of each other).

... Generative model for spatio-temporal cluster sizes

Here, we introduce a generative model to test the hypothesis that the sub-powerlaw
behaviour of observed spatio-temporal extreme rainfall cluster size distributions is due
to the existence of land masses on earth. The model is motivated by the assumption
of a scale-free (i.e., PL) distribution of rainfall cluster sizes, whose truncation is
caused by the fact that hurricanes end prematurely as soon as they hit the coast.
The model is designed as follows: A synthetical storm with a lifetime drawn from
a PL distribution is placed on a random pixel of a cage consisting of  × 
pixels. The temporal evolution of the storm is prescribed by randomly selecting
a neighboring pixel at each time step, where the selection probabilities depend on
the previous direction of movement. Moving in the same direction as before has a
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higher probability (p = 0.95) than turning left (p = 0.04) or right (p = 0.01), and
the probability to move backwards is zero. The storm keeps moving either until its
predetermined (PL-distributed) lifetime ends, or until it hits the boundary of the cage,
which immediately ends the lifetime of the storm. With each time step, the storm
grows by one unit, hence its “size” is proportional to its lifetime. The experiment is
simulated with a large number of storms (.), for each of which we record its
effective lifetime. The resulting distribution of lifetimes is shown in Fig. .(d) and
discussed in Sec. ..
The inertia of the storm’s movement scheme imposed by the dynamic selection

probabilities ensures more realistic storm tracks: First, a storm is very unlikely to
move backwards (hence p = 0 for turning backwards). Second, the symmetry of
moving left or right is broken in order to mimic the influence of the Coriolis force.
However, we found that changing the selection probabilities, or removing the inertia
entirely (p = 0.25 for each direction) does not lead to qualitatively different lifetime
distributions.
The assumptions behind this generative mechanism is that large storms such as

hurricanes typically initiate over the ocean, and that their lifetimes over the oceans
would be PL-distributed due to the abundant energy provided by the ocean. However,
most large storms eventually hit the coast, where the lack of available energy for
their persistence causes them to die out (Whitaker and Davis, ; Briegel and
Frank, ; Raymond and Sessions, ; Nolan et al., ). The lifetimes can
be approximately taken to be proportional to the sizes of the storms in terms of
total precipitated water. Therefore, this model is suitable to investigate how the
boundaries of the oceans (i.e., the coasts) would impact a cluster size distribution
prescribed as a PL.

.. Results

The observed spatio-temporally integrated extreme rainfall cluster sizes for all clusters
(Fig. .(a)) as well as for clusters over the global oceans (Fig. .(b)) extend beyond
103km3 of precipitated water. In contrast, the cluster size distribution over the
global land masses only reaches sizes up to 102km3 (Fig. .(c)). Out of the four
distributions proposed as candidates for the cluster sizes (PL, TPL, SEXP, and LN),
the SEXP wins the MLR comparison test (see Sec. ..) for the combination of all
clusters. The TPL wins for the subset of clusters over the oceans. Note that visually,
the SEXP may appear to be the better model. This is, however, only caused by the
fact that the log-log representation of the probability density functions emphasizes
the tail of distributions rather than the comparably smaller cluster sizes, which have
higher probability weights by several orders of magnitude. For clusters over the
global land masses, the SEXP is again the most likely candidate distribution. For
comparison, the generative model of synthetical storms, with PL-distributed lifetimes
that are put into a cage with absorbing boundaries, leads to a TPL distribution of
the effective lifetimes as the most likely candidate (Tab. .).
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Figure ..: Histograms of the observed spatio-temporal extreme rainfall cluster sizes
and the effective lifetimes of the generative model introduced in Sec. ..
(circles), as well as the corresponding MLE-optimized fits of the proposed
candidate distributions (lines). In all panels, blue lines indicate the optimal
powerlaw (PL) fits, red lines the truncated powerlaw (TPL) fits, cyan lines the
stretched exponential (SEXP) fits and magenta lines the log-normal (LN) fits.
The respective optimal parameters of the MLE fits are stated in the legends.
(a) Histogram of observed cluster sizes for all clusters combined (nC ≈ 1.42 · 107)
and MLE-fitted cluster size distributions. (b) Histogram of observed cluster sizes
for the subset of ocean clusters (nC

ocean ≈ 8.68 · 106), and MLE-fitted cluster size
distributions for this subset. (c) Histogram of observed cluster sizes for the subset
of land clusters (nC

land ≈ 5.20 · 106), and MLE-fitted cluster size distributions for
this subset. (d) Histogram of effective lifetimes obtained from the generative model
introduced in Sec. .., and corresponding MLE-fitted lifetime distributions. Note
that the units are arbitrary in this case.
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All Ocean Land Model
RC(ρTPL, ρPL)    
RC(ρSEXP, ρPL)    
RC(ρSEXP, ρTPL)  -  -
RC(ρLN, ρPL) - - - -
RC(ρLN, ρTPL) - - - -
RC(ρLN, ρSEXP) - - - -

Table ..: MLR test results for the comparisons between candidate distributions for
cluster sizes. MLR test results for the comparisons between all considered candidate
distributions (PL, TPL, SEXP and LN) for the observed cluster size distributions
(“All" clusters, “Ocean" clusters and “Land” clusters) and the lifetime distribution of
the synthetical storm model (“Model”). We recall from Sec. .. that a distribution
ρ1 is more (less) likely than another distribution ρ2 if RC(ρ1, ρ2) > 0 (< 0). All
corresponding p-values are smaller than 10−30.

A visual comparison of all four histograms with their respective optimal PL-fits (a
straight line in the log-log-plots of Fig. .) may suggest a scale-free distribution at
least over several orders of magnitude (approximately: for all clusters up to 20 km3,
for ocean clusters up to 40 km3, for land clusters up to 3 km3 and for the generative
model up to 4000 units). However, the PL does not win the MLR comparison even
when only considering cluster sizes and lifetimes below these values. Towards larger
cluster sizes, all observed histograms clearly show dampened tails as compared to the
PL, albeit to different extents.

To get a visual impression of clusters at the tail-end of the distributions, we show
the time evolution of the largest cluster observed over land, as well as the largest
clusters over the Atlantic, Pacific, and Indian Ocean (Fig. .). The partitioning of
extreme rainfall events into clusters of (spatio-temporally) connected neighboring
pixels can lead to clusters with very clear trajectories (Figs. .(a) and (c)), but also
to rather scattered clusters without a clear propagation direction (Figs. .(b) and
(d)). Amongst the largest clusters over the oceans we found - by visual inspection - a
large number of hurricanes (typhoons), such as the one over the Atlantic (Fig. .(a)).
The largest land cluster in the data (Fig. .(c)) has recently been discussed by Boers
et al. (), Boers et al. (), and Traxl et al. ().
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Atlantic Ocean Indian Ocean

Land Pacific Ocean

a) b)

d)c)

Figure ..: Largest clusters of the land and different ocean groups. For each panel, each
colored grid cell has received at least one event above the 90th percentile belonging
to the respective cluster. The colors indicate the last time (in units of hours) a
given grid cell is hit by the cluster, relative to its initiation time (see titles of the
respective panels). (a) The largest cluster that precipitated above the Atlantic
ocean. (b) The largest cluster that precipitated above the Indian ocean. (c) The
largest cluster that precipitated above land. (d) The largest cluster that precipitated
above the Pacific ocean.
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.. Discussion

Our results indicate that none of the observed spatio-temporally integrated extreme
rainfall cluster size distributions are described well by a PL. This is in contrast to
propositions of scale-free distributions in the literature (Cahalan and Joseph, ;
Peters et al., ; Dickman, ; Neggers et al., ), but also corroborates earlier
results obtained for cluster sizes defined by either a temporal or a spatial integration
of rain rates (Peters et al., ). Although the size distributions of rainfall clusters
over the lands and oceans are visually similar to the PL-fits over several orders of
magnitude, both of them decay faster than the corresponding PL at the tails of the
distributions. The MLR test results (SEXP for all clusters combined, TPL for ocean
clusters, and SEXP for land clusters) suggest that the influence of the subsets of land
and mixed clusters on the size distribution of all clusters combined leads to a SEXP
also for all clusters. However, clusters larger than 102km3 occur almost exclusively
over the oceans, and this is also the domain where the dampening of the distribution
as compared to a corresponding PL becomes most apparent (Fig. .(a)).

The proposed generative model (Sec. ..) tries to explain the observed behavior
by postulating that the ocean cluster sizes would indeed follow a scale-free (i.e., PL)
distribution on a planet without land masses, and that the exponential truncation
occurs primarily due to the fact that hurricanes end prematurely as soon as they
hit the coast. Physically, this hypothesis can be motivated as follows: While the
specific mechanisms of cyclogenesis are still not entirely understood, it is clear that
cyclones can only maintain themselves over the oceans, under the conditions (among
others) of sufficiently warm sea surface temperatures and strong, moist convection,
which guarantee that enough latent heat can be released to the atmosphere to fuel
the storms. Shortly after their landfall, the cyclones die because these conditions are
no longer fulfilled (Whitaker and Davis, ; Briegel and Frank, ; Raymond
and Sessions, ; Nolan et al., ). In the generative model, storms with a
relatively longer lifetime have a higher probability of hitting a border of the cage at
some point in their life span, which leads to the observed truncation of the effective
lifetime distribution (Fig. .(d)). The analogy to the ocean cluster size distribution
is that it would in fact also follow a powerlaw, if there were no land masses on the
planet. Hence, rainfall clusters could freely move, like the synthetical storms without
a cage, on this imaginary aqua planet, with their size distribution predetermined
by a powerlaw. The fact that there are land masses on earth would then lead to an
exponential truncation of the PL distribution (Fig. .(b)), as it is the case for the
synthetical storms of the generative model (Fig. .(d)).

We note that the proposed hypotheses corresponds to a very simplified view of the
complex physical processes involved in the formation and maintenance of cyclones.
We do not propose that the only relevant physics behind the exponential truncation
of extreme rainfall cluster size distributions are given by the stated hypotheses. It is,
however, remarkable that the generative model is – despite its simplicity – capable
of reproducing the observed statistical characteristics of rainfall cluster sizes over
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the oceans. From a purely statistical point of view, our hypothesis can hence not be
rejected.

.. Conclusion

Based on the high-resolution TRMM B dataset, we have provided statistically
rigorous evidence that the spatio-temporally integrated size distribution of extreme
rainfall clusters does not - as previously suggested - follow a powerlaw. Instead, we
find that the size distribution of rainfall clusters over the oceans (land masses) is
best approximated by an exponentially truncated powerlaw (stretched exponential),
leading to a stretched exponential as the most likely candidate distribution for all
clusters combined (land and ocean together). We hypothesize that the size distribution
of extreme rainfall clusters over the oceans could, in principle, follow a scale-free
distribution on a planet without land masses, and that the exponential truncation of
the observed distribution is caused by the presence of land masses. Physically, this
is motivated by the fact that the conditions for cyclogenesis are not met over land.
To test this hypothesis, we proposed a simple generative model of synthetic storms
with powerlaw distributed lifetimes, evolving in a finite spatial area with absorbing
boundaries. This simple model reproduces the exponentially truncated powerlaw
observed for extreme rainfall clusters over the oceans, indicating that the proposed
hypothesis suffices to explain the distributional characteristics discovered here.







Chapter .

Characterizing Fire-Cluster Burning
Conditions on different Land Use Types

.. Summary

The Amazon rainforest has a major influence on carbon storage and climate, and plays
a key role in reducing pollutant levels on a regional and global scale. Unfortunately,
it is becoming increasingly vulnerable to catastrophic fires due to a combination
of droughts, climate change and human activities such as conversions of natural
vegetation into pasture and agricultural fields and deforestation in general. We advance
the understanding to what extent different land use types influence fire occurrence in
the Amazonian ecosystem, which is particularly relevant for its conservation. Based
on a combination of two high-resolution satellite products - maps of fire-affected
areas and land cover maps showing a detailed land use classification - the deep graph
framework is employed to identify spatio-temporal fire clusters in the Legal Amazon
region, and their land use specific burning conditions are characterized statistically.
For each identified cluster, we generate a set of features: its size; lifetime; dominant
land use type (given by the most frequent land use type within the spatial domain
of the cluster); and the land use type of the location where the fire started. We
find that the distributions of diameters and lifetimes are dominated by clusters that
occur in savannah-type ecosystems, not only in terms of frequency, but also in largest
sizes and longest lifetimes. This is followed by forest-fires, fires on pasture fields and
fires on agricultural fields, which show a consistent decrease in frequency and slopes.
The least frequent, smallest and shortest clusters occur on secondary vegetation
and deforested areas. By means of likelihood-ratio tests we find that all diameter
and lifetime distributions exhibit heavy tails, i.e. their tails are not exponentially
bounded. With respect to the originating land use type(s) of clusters, we found that
% of all identified fire clusters have “Pasture”, % have “Agriculture”, and % have
“Deforested” in their set of land use types measured on the first satellite pass. Finally,
we derive probabilistic classifiers of fire clusters into dominant land use types, based
on different combinations of their features. Considering either diameters or lifetimes
of clusters separately, we find that the probability of finding fire clusters other than
savannah-type clusters rapidly declines with increasing diameters (lifetimes). Overall,
the best bet for any given cluster’s diameter (lifetime) is to classify it as savannah-type.
We increase the separability of classes by taking into account both a cluster’s lifetime
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and its diameter, and find that for certain combinations, clusters occurring on pasture
fields and forests are more likely to be found than savannah-type clusters. The
classifiers also provide for insightful visualizations of the burning characteristics for
the different kinds of clusters. Finally, we discuss ideas how to improve the classifiers’
predictive power. This chapter is part of publication P, which is in preparation.

.. Introduction

In this chapter, we employ the deep graph framework to identify spatio-temporal fire
clusters in the Legal Amazon - a region in the Amazon basin covering more than
 million square kilometers - and then characterize their land use specific burning
conditions.

Investigating the land use specific burning conditions of fires in the Amazon basin
is of particular interest. First, because the Amazon rainforest has a major influence
on carbon storage and climate, and plays a key role in reducing pollutant levels on a
regional and global scale (Laurance, ; Cochrane and Laurance, ; Liu et al.,
). Without the Amazon rainforest, the greenhouse effect would likely be more
pronounced, and climate change may possibly get worse in the future. Second, because
a vast majority of burning events in the Amazon rainforest result from anthropogenic
activities, whereas natural fire occurrences are extremely rare (Cochrane, ; Asner
et al., ; Laurance et al., ). There is an intensive, deliberate use of fire
to convert natural vegetation into pasture and agricultural fields (Morton et al.,
; Armenteras and Retana, ; Davidson et al., ), to maintain deforested
areas (Cochrane et al., ; Barona et al., ), and to re-new the grass of pasture
fields for the cattle of farmers. It has been shown that escaping fires from managed
pastures and agricultural lands significantly contribute to forest fires (Cano-Crespo
et al., ). Therefore, advancing our understanding to what extent different land
use types influence fire occurrences in the Amazonian forest is particularly relevant
for its conservation.
Here, we combine two different, high-resolution satellite products - maps of fire-

affected areas and land cover maps showing a detailed land use classification - into a
graph representation. Nodes of the graph represent pixels within the Legal Amazon
region that are affected by fire. Their features indicate location and time of the fire,
combined with the land use type it occurred on. Similarly to chapter  and chapter ,
edges between nodes are created upon spatio-temporal proximity, expressing the fact
that fires at close-by locations might be related in the sense that one fire was caused
by the other through propagation. We identify spatio-temporal fire clusters as the
connected components of the graph, and generate a set of features for each of them:
the size; the lifetime; the dominant land use type; and the originating land use type(s)
of a cluster.

Based on these characteristics, we first investigate the size and lifetime distributions
of fire clusters, resolved with respect to their different dominant land use types. Then,
we inspect the originating land use types for the different types of clusters. Finally,
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we derive probabilistic classifiers of fire clusters into dominant land use types, based
on different combinations of their features. These classifiers also provide for insightful
visualizations of the burning characteristics for the different kinds of clusters.

.. The Active Fire and Land Use Type Data

... Fire

The Moderate Resolution Imaging Spectroradiometer (MODIS) on board the polar-
orbiting Terra and Aqua satellites maps fire-affected areas since . We employ the
MODIS collection  global fire location product (MCDML) developed by Giglio
et al. () in the Legal Amazon area, for the years  and  (for other years,
no land use type data is available). Every  km spatial resolution active fire (AF)
observation holds information about the location and time when it was detected by
the sensors.
Fire detection is performed using a contextual algorithm that exploits the strong

emission of mid-infrared radiation from fires. The algorithm examines each pixel
of the MODIS swath, and ultimately assigns one of the following classes to each of
them: missing data, cloud, water, non-fire, fire, or unknown. In this thesis, we are
only considering pixels classified as fire with a confidence larger than 60%.

... Land Use Type

Land cover maps of the Legal Amazon were produced by the TerraClass project
showing a very detailed land use classification at m resolution with data generated
from the interpretation of Landsat Thematic Mapper  images (Almeida et al., ).

The maps include  disjoint land use classes in  and  in  (a reforestation
class was introduced). We employ the six classes listed below and aggregate the rest
to a “Others” class:

• Nonforest covers natural vegetation with characteristics of savannah-type ecosys-
tems: cerrado, campinas or campinaranas.

• Forest refers to native tree vegetation with no or little disturbance and continu-
ous canopy.

• Pasture refers to areas currently in use for grazing where there is a predominance
of herbaceous vegetation and -% grass coverage.

• Agriculture refers to large areas with predominance of annual crops that use
certified seeds, pesticides and mechanization, among others.

• Secondary vegetation refers to areas that after a total removal of the tree
vegetation are in an advanced stage of shrub and/or tree vegetation.

• Deforestation refers to deforested areas.
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• Others includes water bodies and fluvial beaches, urban areas, mines, sand bars,
rock outcrops, bare soil and unclassified areas.

.. Representing the Data as Nodes of a Graph

We process the data of the two satellite products such that each active fire measurement
with a confidence larger than 60% corresponds to a node Vi of the graph G = (V,E).
There is a total of n = 393.474 nodes, each with the same set of types of features:
spatial coordinates given by a latitude and longitude pair, the date and time of
the measurement, and the land use type the fire occurred on. These features are
summarized in Tab. .(a).

The spatial distribution of active fires in  and  along with their correspond-
ing land use types is illustrated in Fig. .. The monthly distribution of events in
 and , as well as the distribution of events across land use types is depicted
in Fig. ..





.. Representing the Data as Nodes of a Graph

a)

b)

Table ..: The features and relations of the graph G = (V,E). (a) The features of the nodes
Vi, representing active fire measurements. The type of feature ‘cluster membership’
is introduced in Sec. .. (b) The relations of the edges Eij , representing the
spatio-temporal distance between active fire measurements. An edge only exists, if
the condition stated in the table is fulfilled.

Figure ..: Spatial distribution of active fire measurements in  and . The
spatial distribution of active fire (AF) measurements for the years  and .
Every measurement of a fire corresponds to a colored pixel on the maps. The
colors indicate the land use type the fires occurred on. Orange pixels (“Missing”)
correspond to unknown land use types, either because they are outside the Legal
Amazon region (eastern Maranhao or southern Tocantins), or because there were
errors in the measurement process.
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Figure ..: Distribution of active fires across months and land use types. The distribution
of active fire measurements across months [(a)-(b)] and across land use types [(c)-
(d)] for the years  and . (a)-(b) A pronounced peak is visible for the
occurrence of fires in the dry season, centered around September each year. Almost
twice as many fires have been observed in  compared to  (. versus
., respectively), due to the extreme drought in  Lewis et al., .
(c)-(d) The numbers above the bars represent the proportion of fires occurring on
the different land use types, within each year.
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.. Partitioning into Spatio-temporal Fire Clusters

To understand the burning conditions of fires - such as typical spatial extents and
lifetimes - we need a notion of spatio-temporal clusters of fire. Here, we follow a
similar procedure as laid out in chapter , a clustering based on the spatial and
temporal proximity of active fires measured by the Terra and Aqua satellites. This
procedure is described in the following.
First, we compute the spatial and temporal distances between pairs of active fire

measurements by defining the following connector function on the set of nodes,

m(Vi, Vj) := Eij = {dtij , gcdij}, (.)

where dtij = |tj − ti| is the temporal distance, and gcdij the great-circle distance
between a pair of fire measurements. The great-circle distance is given by

gcdij = R · arccos (sinφi · sinφj + cosφi · cosφj · cos(λj − λi)) , (.)

where φx = π
360 · latx, λx = π

360 · lonx and R = 6.371 km (the average radius of earth).
The set of possible all edges is therefore given by E′ = {Eij i, j ∈ {1, 2, ..., n}}.

Next, we need to find appropriate spatial and temporal thresholds. They represent
the upper bounds on the spatio-temporal distances for which we deem two events
related, in the sense that one was caused by the other through propagation. Unfortu-
nately, the fire measurements do not come on an equidistant spatio-temporal grid,
making it more difficult to find appropriate thresholds as compared to the rainfall
data analyzed in chapter  and chapter . We first have to look at the spatial and
temporal resolutions of the satellite measurements. In Fig. .(a), the distribution
of fire measurements across the hours of the day is depicted. The Terra and Aqua
satellites each perform two measurements a day, which is clearly visible by the four
peaks in the histogram (at around : am, : am, : pm and : pm).
The temporal inhomogeneity of the measurements is also reflected in the distribution
of temporal distances of the edges, depicted in Fig. .(b). To allow all events to
link to any other event in the next satellite pass, the minimal temporal threshold
is approximately  hours, TT = 14 h. The distribution of spatial distances is
illustrated in Fig. .(c). It reveals a peak at approximately one kilometer spatial
distance, which is the stated resolution of the satellites. For the following analysis,
we choose a spatial distance threshold of two kilometers, ST = 2 km. So far, the
spatio-temporal thresholds have been validated by inspection of the later derived
cluster-size distributions, for which they provide plausible results.

Given the temporal threshold of TT = 14 hours and the spatial threshold of ST = 2
kilometers, we can compute the spatio-temporal fire clusters by identifying them as
the connected components of the graph G = (V,E), where E is given by applying
the selector

s(Eij) :=
{
Eij = {dtij , gcdij} if |dtij | ≤ TT ∧ gcdij ≤ ST ∧ i 6= j

∅ else
(.)
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Figure ..: Distribution of fire measurements across hours of the day and edge weight
distributions. (a) Histogram of the active fire measurements across the hours of
the day (all events of  and  are included). Four peaks are clearly visible,
which correspond to the two satellite passes of each the Terra and Aqua satellites.
(b) Histogram of the temporal distances between active fire measurements (only
shown for time differences up to  hours). The temporal inhomogeneity of the fire
measurements is clearly visible. (c) Histogram of the great-circle distances between
active fire measurements (only shown for distances up to  kilometers).
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Table ..: The features of the supergraph GC = (V C , EC). The features of the supernodes
V C

i , representing spatio-temporal clusters of active fire measurements. The land use
type composition, lutlist

i is a histogram counting the number of occurrences of each
land use type within a cluster V C

i . The dominant land use type, dluti, is the land
use type with the largest number of occurrences within a cluster V C

i . The first land
use types, flutset

i , is the set of land use types a given cluster V C
i has begun on. In

most cases - due to the temporal resolution - we can not determine the specific land
use type from which a fire cluster started spreading, but only the set of land use
types fires occurred on at the first satellite pass.

on all edges, such that E = {Eij i, j ∈ {1, 2, ..., n} ∧ Eij 6= ∅} leaves only edges
between nodes that are neighbours according to the thresholds.
Identifying the connected components of G results in a labelling of the nodes

according to their respective cluster membership. A total of nC = 168.784 spatio-
temporal clusters were found, and their labels are transferred as features to the nodes
ofG, Vi = {lati, loni, ti, luti, Ci}, where Ci indicates to which cluster a node Vi belongs
to. We denote the corresponding partition function by pC , hence pC(Vi) = Ci. This
labelling induces a partition of the graph G = (V,E) into nC spatio-temporal clusters
V C
i of the supergraph GC = (V C , EC), with V C

i = {Vj j ∈ {1, 2, ..., n} ∧ pC(Vj) =
Ci}.
Last, we compute partition-specific features CF ji to assign to the supernodes V C

i ,
based on the features of the nodes Vi ∈ V . These fire cluster features and their
calculation are described in Tab. .. The most important features for the statistical
characterization of fire clusters below are:

• diameter: the “size” of a cluster, given by the largest great-circle distance
between all pairs of active fire measurements within a cluster.

• lifetime: the duration of a cluster, given by the time difference between the
last and the first fire measurements within a cluster.

• dominant land use type: the land use type with the largest number of
occurrences within a cluster, given that at least % of the measurements
belong to that land use type. Otherwise, the dominant land use type “Mixed”
is assigned to the cluster.
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• first land use types: the set of land use types a given cluster has started
on. In most cases - due to the temporal resolution - we can not determine the
specific land use type from which a fire cluster started spreading, but only the
set of land use types fires occurred on at the first satellite pass.

.. Statistical Characteristics of Fire Clusters

We first look at the cluster-size distributions of the spatio-temporal fire clusters. The
distributions of cluster diameters and lifetimes for the different land use types are
depicted in Figs. .(a) and (b), respectively. Clusters with a dominant land use type
“Nonforest” clearly dominate in terms of frequency, but also in terms of largest sizes
(more than  km diameter) and longest lifetimes (more than  hours). This is
followed by the land use types “Forest”, “Pasture”, and “Agriculture”, which show a
consistent decrease in frequency and slopes. Clusters with a dominant land use type
“Secondary Vegetation” and “Deforested” are the least frequent, smallest and shortest
clusters overall. These observations are consistent with the results of Cano-Crespo
et al. (), who used a different dataset to determine the burned areas on different
land use types. A maximum-likelihood evaluation (analogously to Sec. ..) reveals
that all diameter and lifetime distributions exhibit heavy tails, i.e. none of the
distributions’ tails are exponentially bounded.
The originating land use types of the different kinds of clusters are investigated

next. As mentioned above, we can usually not determine a single land use type a
given cluster has started spreading from, due to the temporal resolution. We can,
however, determine the set of land use types fires of a given cluster occurred on at
the first satellite pass (in the following, referred to as the “first land use types” of
a cluster). With this information, we can answer questions such as the following:
“How many of all clusters have ‘Agriculture’ in their first land use types?” or “How
many of all clusters with a dominant land use type ‘Forest’, have ‘Pasture’ in their
first land use types”. These questions are of particular interest, since we know that
the majority of fires are caused by anthropogenic activities (Cochrane, ; Asner
et al., ; Laurance et al., ). Fires are used to convert natural vegetation into
pasture and agricultural fields (Morton et al., ; Armenteras and Retana, ;
Davidson et al., ), deforested areas are maintained by fires (Cochrane et al., ;
Barona et al., ), and farmers repeatedly burn pasture lands to re-new the grass
for their cattle. It has also been shown that fires escaping from managed pastures and
agricultural lands significantly contribute to forest fires (Cano-Crespo et al., ).

Our findings are summarized in Tab. .. For the interpretation of this table, it is
important to know that more than half of all clusters (.%) are comprised of one
active fire measurement only, and .% are comprised of  or less measurements.
For this reason, and because of the relatively strict condition on whether a cluster is
assigned a dominant land use type (more than % of its nodes have to be of the
respective land use type), the diagonal values are very large (close to % for all
land use types), and the off-diagonal values are very small (less than .% for all
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Figure ..: Distributions of cluster diameters and lifetimes for different land use types.
(a) The frequency distribution of fire cluster diameters (in kilometers) for the
different dominant land use types (“Mixed” and “Others” were excluded for visibility).
(b) The frequency distribution of fire cluster lifetimes (in hours) for the different
dominant land use types (“Mixed” and “Others” were excluded for visibility).

combinations). This picture changes noticeably when we restrict the computation
of the statistics to clusters with more than  or  nodes (not shown). Considering
all clusters, % have “Pasture”, % have “Agriculture”, and % have “Deforested”
in their first land use types. With regard to the class of “Mixed” clusters, which
make up % of all clusters, a remarkable % of them have “Pasture”, % have
“Agriculture”, and % have “Deforested” in their first land use types, whereas only
% have “Nonforest” in their first land use types. This observation asks for a closer
inspection of these clusters, in particular with regard to their spatial distribution over
the Legal Amazon region. The statistics in Tab. ., however, have to be confirmed
with different combinations of distance thresholds, and tested with an appropriate
null model.
Finally, we examine the “burning profiles” of the different types of fire clusters.

Given the differences between the diameter and lifetime distributions for the different
kinds of clusters (see Fig. .), the question arises whether it is possible to predict
a cluster’s dominant land use type, given solely its diameter (lifetime), or both its
diameter and lifetime in conjunction. Considering the lack of land use type data for
all years but  and , this would allow us to estimate land use types solely
based on the MODIS active fire measurements, which are available from the year
 to the present. A byproduct of the probabilistic classifiers derived below are
insightful visualizations of the burning characteristics for the different cluster types.
First, we estimate the probability sequence of all of a cluster’s possible dominant

land use types, given its diameter (lifetime). Using Bayes’ Theorem, these conditional
probability distributions can be expressed by

p(dlut | d) = p(d | dlut) · p(dlut)
p(d) (.)





Chapter . Characterizing Fire-Cluster Burning Conditions on different Land Use Types

D
o
m

in
a
n
t 

L
a
n

d
 U

s
e
 T

y
p
e

Nonforest in fluts

Forest in fluts

Pasture in fluts

Others in fluts

Sec.Veg. in fluts

Agriculture in fluts

Deforested in fluts
n_clusters

Deforested

Agriculture

Sec.Veg.

Others

Pasture
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All

0.00 0.40 0.00 0.00 0.07 0.00 99.93 1487

0.02 0.49 0.02 0.07 0.19 99.92 0.00 5890

0.00 0.08 0.03 0.05 99.97 0.03 0.00 7542

0.01 0.20 0.18 99.95 0.13 0.04 0.02 15725

0.03 0.30 99.94 0.20 0.32 0.02 0.02 18619

0.21 99.89 0.24 0.33 0.19 0.08 0.11 26264

99.98 0.32 0.04 0.06 0.03 0.01 0.00 55833

10.52 56.11 42.77 39.88 28.27 8.92 6.63 28290

36.87 26.57 19.31 17.01 9.83 5.29 2.13 159650

(18%)

(35%)

(16%)

(12%)

(10%)

(5%)

(4%)

(1%)

Table ..: Where did fire clusters start spreading? This table answers the following question:
given a set of clusters (e.g. all clusters, or only clusters with a dominant land use
type “Forest”, see rows), how many of them (in percent) started spreading with a
certain land use type in their “first land use types (fluts)” set (see columns). The last
column contains the number of clusters within each group (and their percentage of
the total number of clusters). For instance, given the set of clusters with a dominant
land use type “Pasture” (of which there are  in total), the percentage of clusters
that had “Forest” in their first land use types is .%.
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Figure ..: Probability density estimates for dominant land use types given the cluster
diameter (lifetime). (a) The probability density estimates for the different land
use types given a cluster’s diameter, p(dlut | diameter), where dlut is one of the
dominant land use types. (b) The probability density estimates for the different
land use types given a cluster’s lifetime, p(dlut | lifetime), where dlut is one of
the dominant land use types.

and

p(dlut | ∆t) = p(∆t | dlut) · p(dlut)
p(∆t) , (.)

where dlut is the dominant land use type, d the diameter, and ∆t the lifetime
of a cluster. The probability p(dlut) is simply estimated by the proportion of
clusters with a dominant land use type dlut (see last column of Tab. .). The
probability distributions p(d), p(d | dlut) and p(∆t | dlut) are approximated by a non-
parametric gaussian density estimation. The resulting density estimates p(dlut | d)
and p(dlut | ∆t) are depicted in Figs. .(a) and (b), respectively. For very small
diameters (less than one kilometer), the most likely dominant land use type of a
cluster is “Nonforest”, followed by “Forest”, “Pasture” and “Mixed”. For increasing
diameters, the probability of most land use types rapidly declines, with “Nonforest”
and “Mixed” being the exceptions. Only “Forest” sustains a noticeable probability for
diameters up to - kilometers. A similar picture arises for different lifetimes. All
land use types except “Nonforest” and “Mixed” decline for increasing lifetimes, albeit
less rapidly than for increasing diameters. Noticeably, for lifetimes around  hours,
we observe a peak in the probability of the “Forest” land use type. Overall, however,
given the hypothetical case that we solely know about a cluster’s diameter (lifetime),
the best guess for any given cluster is consistently “Nonforest” (discarding “Mixed”).

Next, we see if the separability of classes is improved by taking into account both
a cluster’s lifetime and its diameter. Again, using Bayes’ Theorem, we can express
the probability sequence of all of a cluster’s possible dominant land use types by

p(dlut | d,∆t) = p(d,∆t | dlut) · p(dlut)
p(d,∆t) . (.)
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Figure ..: Probability density estimates for dominant land use type given cluster di-
ameter and lifetime. The probability of the different land use types, given a
cluster’s diameter and lifetime. The x-axis of each subplot represents the diameter
(in kilometers), the y-axis represents the lifetime (in hours). The colors indicate the
probabilities p(dlut | diam, lifetime), where dlut is on of the land use types (see
titles). Note that each colorbar is scaled from zero to the respective maximum for
a given land use type. This scaling is chosen to improve the visualization of each
land use types’ burning profile.

The joint probabilities p(d,∆t | dlut) and p(d,∆t) are again approximated by a non-
parametric gaussian density estimation. The probability distributions, or “burning
profiles”, for the different land use types are depicted in Fig. .. Overall - for
any given diameter and lifetime combination - the most likely land use types are
“Nonforest” or “Mixed”. Between these land use types is a split along the diagonal.
Large clusters burning for short times are more likely to be “Nonforest” than “Mixed”,
which means their propagation velocity, on average, exceeds that of “Mixed” clusters.
All other cluster types are predominantly small and short-lasting. The “Forest” clusters
also exhibit long-lasting (around  hours), mid-ranged (- kilometers) instances.
Among “Pasture” clusters, there are also long-lasting (- hours), small (up to 
kilometers) instances. Clusters on “Secondary Vegetation” are exclusively small and
short-lasting. Even though we get a more detailed picture of the burning conditions
of fire clusters considering diameters and lifetimes in conjunction, the separability of
classes has not increased to a point that would improve the probabilistic classifier
dramatically. Only if we were to discard the “Mixed” class, two small islands arise
in the most-likely land use type matrix (Fig. .) that would not be classified as
“Nonforest”. In the last section, we discuss several options of how to improve the
separability further.
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Figure ..: The probabilistic classifier of fire clusters into land use types. Given a cluster’s
diameter (x-axis) and lifetime (y-axis), the color indicates the most likely dominant
land use type according to the conditional probability distribution in Eq. .. The
“Mixed” class is discarded in this case.

.. Conclusions

In this chapter, we have utilized the deep graph framework to identify spatio-temporal
fire clusters in the Legal Amazon region, and then characterized their land use specific
burning conditions.
We first combined two high-resolution satellite products - maps of fire-affected

areas and land cover maps showing a detailed land use classification - into a graph
representation, where nodes correspond to active fire measurements, and edges repre-
sent the spatio-temporal proximity between pairs of active fires. After determining
reasonable thresholds for the spatial and temporal distances, we identified spatio-
temporal fire clusters as the connected components of the graph. For each of the
spatio-temporal fire clusters, we calculated a set of features: the diameter, given by
the largest great-circle distance between all pairs of active fire measurements within
the cluster; the lifetime, given by the time difference between the last and the first
fire measurement; the dominant land use type, given by the most frequent land use
type within the cluster (given that the land use type makes up at least % of the
cluster, otherwise the cluster is assigned to a “Mixed” class); and the “first land use
types”, given by the set of land use types fires of a given cluster occurred on at the
first satellite pass.
The distributions of diameters and lifetimes for the different cluster types are

dominated by “Nonforest” clusters in terms of frequency, but also largest sizes (more
than  km diameter) and longest lifetimes (more than  hours). This is followed
by the land use types “Forest”, “Pasture”, and “Agriculture”, which show a consistent
decrease in frequency and slopes. The least frequent, smallest and shortest clusters are
“Secondary Vegetation” and “Deforested” clusters. According to a maximum-likelihood
evaluation, all distributions exhibit heavy tails, i.e. their tails are not exponentially
bounded.
Investigating the originating land use types of the different kinds of clusters, we

found that % have of all clusters have “Pasture”, % have “Agriculture”, and %
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have “Deforested” in their first land use types. In the subset of “Mixed” clusters
- which make up % of all clusters - a remarkable % have “Pasture”, % have
“Agriculture”, and % have “Deforested” in their first land use types.

Finally, we derived probabilistic classifiers of fire clusters into dominant land use
types, based on either their diameter, their lifetime, or both in conjunction. These
classifiers also provided for insightful visualizations of the burning characteristics for
the different cluster types. Considering either diameters or lifetimes separately, the
probability of most land use types rapidly declines, with “Nonforest” and “Mixed”
being the exceptions. “Forest” clusters sustain a noticeable probability for diameters
up to - kilometers, and show a peak for lifetimes around  hours. Overall, given
the case we would solely know about a cluster’s diameter (lifetime), the best guess
for any given cluster is consistently “Nonforest” (discarding “Mixed”). We then tried
to increase the separability of classes by taking into account both a cluster’s lifetime
and its diameter. We found that large clusters burning for short times are more likely
to be “Nonforest” than “Mixed”, which means their propagation velocity, on average,
exceeds that of “Mixed” clusters. The other cluster types are predominantly small
and short-lasting, while “Forest” clusters also exhibit long-lasting (around  hours),
mid-ranged (- kilometers) instances, and “Pasture” clusters also show long-lasting
(- hours), small (up to  kilometers) instances. Even though the separability of
cluster classes has not improved dramatically, the decision matrix (Fig. .) shows
two small islands. One where “Pasture” is more likely than “Nonforest” and one where
“Forest” is more likely than “Nonforest”.

.. Outlook

Although our graph-based approach to study the land use specific characteristics of
fire clusters is novel and preliminary results seem promising, some work is still left to
be conducted, and a few ideas are worth incorporating into the analysis in the future.
Most importantly, we need to fine-tune the spatio-temporal distance thresholds.

This could be accomplished, for instance, by comparing the diameter and lifetime
distributions with other datasets, such as the burned-area distributions analyzed
by Cano-Crespo et al. ().

The observation that a large proportion of “Mixed” clusters originate from “Pasture”,
“Agriculture” and “Deforested” fields supports the findings of Cano-Crespo et al. (),
stating that fires from these fields often escape and burn further areas. Studying
these particular clusters with respect to their temporal and spatial distribution over
the Legal Amazon area could lead to further insights.
With regard to the probabilistic classifier, a number of considerations to improve

its predictive power come to mind. We could, for instance, look for differences in
the burning profiles of the different cluster types in the dry and wet seasons. The
recurrence rate of fires on a given spatial location could help us identify pasture fields,
since farmers often burn their fields repeatedly to re-new the grass for their cattle.
A very promising extension of the analysis would be to incorporate high-resolution
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lightning data (Lay et al., ), match it with the fire clusters and thereby improve
our estimation whether a fire was caused by anthropogenic activities or natural causes.







Chapter .

Synchronizability in Noisy Complex
Networks

.. Summary

The effects of white noise and global coupling strength on the maximum degree of
synchronization in complex networks are explored. We perform numerical simulations
of generic oscillator models with both linear and non-linear coupling functions on a
broad spectrum of network topologies. The oscillator models include the Fitzhugh-
Nagumo model, the Izhikevich model and the Kuramoto phase oscillator model.
The network topologies range from regular, random and highly modular networks
to scale-free and small-world networks, with both directed and undirected edges.
We then study the dependency of the maximum degree of synchronization on the
global coupling strength and the noise intensity. We find a general scaling of the
synchronizability, and quantify its validity by fitting a regression model to the
numerical data. This chapter is based on the associated publication P, and the
following sections will closely follow this publication.

.. Introduction

The emergence of collective and synchronous dynamics in large ensembles of coupled
units is an ubiquitous phenomenon in nature and engineering. Its study has attracted
much attention in a variety of fields, such as neuroscience, biology, physics, chemistry
or social sciences (Kuramoto, ; Pikovsky et al., ). For instance, there are
proliferating indications that strong synchronization on large scales is related to
pathological conditions of the human brain, e.g., epileptic seizures and Parkinson
disease (Stam, ). Subject of current research includes the comprehension of
common properties of network synchronization in dependence on the individual node
dynamics, the network topology, internode coupling types and the influence of various
types of noise (Barahona and Pecora, ; Nishikawa et al., ; Motter et al., ;
Bag et al., ). In the context of physiological networks and network medicine, for
instance, a strong relationship between the topology of physiological networks and
their physiological functions has recently been observed (Bashan et al., ; Ivanov
and Bartsch, ; Bartsch and Ivanov, ).
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The focus of this study is the influence of uncorrelated white noise on the maximum
degree of synchronization. While many studies investigated the phase transition
associated with the onset of macroscopic synchronization (Sakaguchi, ; Son-
nenschein and Schimansky-Geier, ), here we are particularly interested in the
synchronizability in the aftermath of the phase transition. The effect of noise on
the phase-synchronization of non-linear oscillators has for example been studied
by Xu et al. (), and it is known that white noise prohibits the capability of a
system to achieve full synchronization by decreasing the maximum degree of syn-
chronization (Bag et al., ). It is not clear, however, how this decrease of the
synchronizability relates to the noise intensity. Furthermore, it has been shown that
the network topology has a great influence on the time-evolution of local patterns of
synchronization on the path towards global coherence (Gómez-Gardeñes et al., ).
The question, though, whether the topology of the network has an influence on the
maximum degree of synchronization, has not been answered yet.
In order to answer these questions, we develop a numerical simulation framework

and study the dependency of the maximum degree of synchronization on the global
coupling strength and the noise intensity. The framework incorporates three basic
types of well known oscillators, namely the Fitzhugh-Nagumo model, the Izhikevich
model and the Kuramoto phase oscillator. The oscillators are coupled by both
linear and non-linear coupling functions. The coupling topologies include regular,
random, small-world, scale-free and highly modular networks, with both directed and
undirected edges.

We find a general scaling of the maximum degree of synchronization, and quantify
its validity by fitting a regression model to the numerical data.

.. The Models

In the following, we will introduce three different oscillator models used in our
simulations. The models are widely known and were chosen such that we obtain a
diverse set of oscillator models. The Kuramoto model is an ubiquitous phase oscillator
model, simple enough to be mathematically tractable, yet sufficiently complex to
display a large diversity of synchronization patterns. It is flexible enough to be adapted
to many different contexts (e.g. biological models, associative memory models and
laser arrays (Acebrón et al., )). The Fitzhugh-Nagumo model provides a simple
yet basic representation of firing dynamics and has been broadly used as a model for
cardiac cells and spiking neurons (Koch, ; Glass et al., ). The Izhikevich
model is a biologically plausible neuron model, capable of reproducing spiking and
bursting behaviour of known types of neocortical and thalamic neurons (Izhikevich,
). The parameters of the Izhikevich model were chosen such that it reproduces
a bursting behaviour, in order to set its dynamics further apart from the Fitzhugh-
Nagumo model and thus expanding the diversity of the oscillator models included in
this study.
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... Kuramoto Model

The stochastic Kuramoto model (Kuramoto, ) for N coupled and identical phase
oscillators (i = 1, ..., N) is described by:

d

dt
θi(t) = ω + ξi + g

〈k〉

N∑
i=1

Mji sin(θj − θi) (.)

where θi is the phase of the i-th oscillator, ω = 2π is its associated natural frequency,
g the global coupling strength, 〈k〉 the average graph connectivity (〈k〉 ≡ 2L

N , with L
denoting the total number of (weighted) links). ξi stands for Gaussian uncorrelated
white noise sources with expectation

E(ξini (t)) = 0 (.)

and covariance

cov(ξini (s), ξinj (t)) = 2Dinδijδ(s− t) , (.)

where Din will be referred to as the noise level. Mij is the (weighted and/or directed)
adjacency matrix of the simulated network. A weighted link is a link associated
with a scalar value, quantifying properties as for instance the frequency of contact
between actors in social networks, or the number of synapses connecting a pair of
neurons in neural networks. Additionally, one distinguishes between directed and
undirected graphs, that is, by whether the edges possess directional information or
not, respectively.

... Izhikevich Model

The Izhikevich model (Izhikevich, ) for N coupled oscillators (i = 1, ..., N) is
described by the ordinary differential equations:

d

dt
vi(t) = 0.04v2

i + 5vi + 140− ui + I0 + Ii (.)

d

dt
ui(t) = a(bvi − ui) + ξini (.)

with an after-spike resetting:

if vi ≥ 30, then vi is set to c and ui is set to ui + d (.)

According to Izhikevich (), vi represents the membrane potential and ui a
membrane recovery variable. ξini (t) are white noise sources as in Eqs. (.) and (.),
where the noise level Din represents the intrinsic noise of an isolated neuron (e.g.
ionic conductance noise, ionic pump noise). Synaptic currents are delivered via the
variable Ii, stated below under coupling functions. After a spike reaches its maximum
(v = +30), both variables are reset according to Equation (.). By assigning different
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Figure ..: Phase space portrait of a single Izhikevich neuron and corresponding time-
series and low-pass filtered time-series of the membrane potential v(t). (a)
The two dimensional phase space trajectory of an uncoupled Izhikevich neuron,
subject to Gaussian noise as given in Eqs. (.) and (.) with a noise intensity of
Din = 0.05 is drawn in red. The two nullclines are drawn in green and blue. (b)
The corresponding time-series of the membrane potential v(t) of the uncoupled
Izhikevich neuron is drawn in green, the dashed black line represents the low-pass
filtered time-series x(t) of the membrane potential (see Equation (.)).

values to the parameters (a, b, c, d), the model can reproduce spiking and bursting
behaviour of various known types of neocortical and thalamic neurons (Izhikevich,
). The parameters a = 0.02, b = 0.2, c = −50.0, d = 2.0 and I0 = 10.0 are chosen
such that the model generates a bursting signal, as depicted in Fig. ..

... Fitzhugh-Nagumo Model

The second neurological model we consider is the Fitzhugh-Nagumo model (Fitzhugh,
) for N coupled oscillators (i = 1, ..., N ). It is composed of the following differential
equations:

d

dt
vi(t) = vi −

v3
i

3 − ui + I0 + Ii + ξini (.)

d

dt
ui(t) = vi − a− bui

τ
(.)

The variable vi represents the membrane potential and ui the recovery variable for
the neuron membrane potential. Again, synaptic currents are transmitted via Ii and
ξini stands for Gaussian white noise sources as in Eqs. (.) and (.). The constants
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Figure ..: Phase space portrait of a single Fitzhugh-Nagumo neuron and corresponding
time-series and low-pass filtered time-series of the membrane potential v(t).
(a) The two dimensional phase space trajectory of an uncoupled Fitzhugh-Nagumo
neuron, subject to Gaussian noise as given in Eqs. (.) and (.) with a noise
intensity of Din = 0.05 is drawn in red. The two nullclines are drawn in green
and blue. (b) The corresponding time-series of the membrane potential v(t) of
the uncoupled Fitzhugh-Nagumo neuron is drawn in green, the dashed black line
represents the low-pass filtered time-series x(t) of the membrane potential (see
Eq. (.)).

a = −0.7, b = 0.8, τ = 12.5 and I0 = 0.328 are chosen such that the neuron is spiking
continuously, as illustrated in Fig. ..

... Coupling Functions

For the Izhikevich and the Fitzhugh-Nagumo model, simulations are performed with
both electrical and chemical coupling functions. Hence, Ii in Eqs. (.) and (.)
takes the form:

Ii = ξexi + Iel,i + Ichem,i (.)

where ξexi stands again for Gaussian uncorrelated white noise sources with expectation

E(ξexi (t)) = 0 (.)

and covariance

cov(ξexi (s), ξexj (t)) = 2Dexδijδ(s− t) , (.)
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but here it is accounting for extrinsic noise sources like gap junctions and chemical
synapses (e.g. synaptic release noise).

Electrical Coupling

The electrical transmission, Iel,i in Eq. (.) can be realized with a linear function of
the form (Pinto et al., ):

Iel,i(vi,v) = gel
N

N∑
j=1

Mji(vj − vi) (.)

where gel represents the global electrical coupling strength, vi and vj stand for the
membrane potentials of the post-synaptic and the pre-synaptic neurons respectively,
and N is the number of neurons in the network. The local coupling strength between
two connected neurons is obtained by the weighted adjacency matrix M of the
simulated network.

Chemical Coupling

There are several ways of modelling chemical synapses. Pinto et al. (), for example,
use the approach of adding a first order dynamic for each synapse. A computational
more effective implementation which still conserves the crucial properties is given by
the following function (Belykh et al., ):

Ichem,i(vi,v) = gch
N

(Vs − vi)
N∑
j

MjiΓ(vj −Θ) (.)

with

Γ(x) = (1 + exp[−λx])−1 (.)

where gch is the global coupling strength for chemical synapses. The local coupling
strengths Mij , N , vi and vj are as described for the electrical coupling. The sigmoidal
function Γ represents the thresholding behaviour of the synapse, with λ being the
control parameter of the steepness. The multiplier (Vs − vi) reduces the input, if the
post-synaptic neuron itself is already depolarized. The parameters for the Izhikevich
model are Vs = 30.0, λ = 0.41 and Θ = −50.0, and for the Fitzhugh-Nagumo model
Vs = 1.75, λ = 11.58 and Θ = −0.5 respectively. Although taking into account
several aspects of chemical synapses, some properties like transmission-delay are
neglected in this model.
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.. The Networks

We have chosen six different networks from a broad spectrum of topologies, ranging
from all-to-all connectivity over regular, scale-free, small-world and modular networks
to a random topology, including directed and undirected edges. We did so in order to
thoroughly investigate the influence of the network topology on the maximal degree
of synchronization and to test the generality of the scaling as introduced below.
a) An unweighted and undirected all-to-all network A, consisting of 256 nodes

where every node is connected with any other node (global-coupling topology), as
depicted in Fig. .(a).
b) An Erdös-Rény random graph (Erdős and Rényi, ) R, consisting of 256

nodes connected by 1015 undirected and unweighted edges, illustrated in Fig. .(b).
c) Figure .(c) shows a computer-generated graph with two hierarchical levels of

communities, as proposed by Arenas et al. (). The undirected and unweighted
network H consists of  nodes and is structured into two predefined hierarchical
community levels. The inner communities consist of  nodes each and the outer
communities consist of  nodes each. Each node has  links within its inner
community, four links within its outer community and one more link with any other
randomly chosen node in the network, adding up to a total of  links in the entire
network.
d) Furthermore, we have selected the real-world network of the somatic nervous

system of the soil nematode C.elegans. The nervous system of C.elegans is the
only one that has been almost completely mapped down to the synaptic level, and
shares properties of small-world and scale-free networks (Varshney et al., ). The
data is based on the most complete database to date, provided by Varshney et al.
(). It is composed of two adjacency matrices. The electrical synapse network
G, undirected and weighted, connecting the 279 somatic neurons by a total of 887
(514, discarding weights) gap junctions and the chemical synapse network S, directed
and weighted, connecting the neurons by a total of 6394 (2194, discarding weights)
chemical synapses. The weight of a pair of connected neurons reflects the number of
electrical (chemical) synapses connecting it. The simulations are performed on the
combined network C = G+S, depicted in Fig. .(d) (weights have been discarded in
the Figure), which is simply the sum of the two adjacency matrices of the gap junction
and the chemical synapse network. Gap junctions are thus treated as double-sided
directed connections. This combined network consists of 279 nodes and 8168 (2990,
discarding weights) directed connections.
e) The unweighted realization of this network, as depicted in Fig. .(e), will be

referred to as U.
f) Furthermore, simulations are performed on a rewired surrogate network of the

unweighted graph of C.elegans U, where only the degree-distribution is preserved. It
is obtained by iteratively swapping randomly selected edges (Rao et al., ) of U. At
each iteration, two links are chosen at random ((n1 7→ n2) and (n3 7→ n4)) and rewired
((n1 7→ n4) and (n3 7→ n2)), unless the respective new links do not already exist or
introduce self-loops. Repeating this process often enough, all internal structure of the
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Figure ..: Adjacency matrices of simulated networks. (a) Adjacency matrix of the all-to-
all global-coupling network A. (b) Adjacency matrix of the Erdös-Rény random
graph R, consisting of 256 nodes connected by 1015 undirected and unweighted
edges. (c) Adjacency matrix H of the synthetically structured modular network.
(d) Adjacency matrix C of the directed and weighted (weights are not shown in
the Figure) real-world network of C.elegans, where gap junctions are coloured blue,
chemical synapses are coloured red and coinciding gap junctions and chemical
synapses are coloured black, respectively. (e) Adjacency matrix of the directed and
unweighted realization of C.elegans’ network U. (f) Adjacency matrix D of the
degree-matched surrogate network of C.elegans.

original network is destroyed, except the degree-distribution. The random, directed
and unweighted network, degree-matched to the unweighted combined network of
C.elegans U will be referred to as D. Its adjacency matrix is shown in Fig. .(f).

.. Numerical Simulation Setup

In order to quantify the decrease in maximum synchronization of complex networks
of oscillators due to Gaussian white noise and in dependence on the global coupling
strength, we develop a simulation framework, as described in the following.
For the Izhikevich and the Fitzhugh-Nagumo model, the stochastic differential

equations are solved by a standard first-step Euler method. Sufficient accuracy was
achieved with a step size of ∆t = 0.1. Note that, in all simulations, the intrinsic noise
Din and the extrinsic noise Dex were set to equal values, therefore the noise level will
simply be referred to as D ≡ Din = Dex. To avoid a priori synchronizations, initial
conditions are drawn randomly from a uniform distribution and 50.000 iterations are
calculated.





.. Results

For the Izhikevich model, the generated time-series mainly contain two frequencies,
a fast occurrence of spikes and a slow occurrence of bursts, as can be seen in Fig. .(b).
Since we are only interested in the synchronization of bursting activity, the following
low-pass filter was applied to the signal:

xi,t=0 := vi,t=0 (.)
xi,t = avi,t + (1− a)xi,t−dt (.)

with a = 0.90. The time-series generated with the Fitzhugh-Nagumo model were
smoothed by the low pass filter as well. To measure the synchronicity between two
time-series, xi and xj , the Pearson correlation coefficient is calculated for the low
pass filtered signal of each pair of neurons in the network. It is defined as:

Rij =
∑
t(xi,t − µ(xi))(xj,t − µ(xj))

σ(xi)σ(xj)
(.)

where µ(x) is the mean value and σ(x) the standard deviation of the time-series.
Because the initial conditions are chosen randomly, they are not necessarily close

to the system’s attractor. The transient is therefore discarded, and the Pearson
correlation coefficient is calculated from the 20.000th iteration onwards. Furthermore,
to eliminate random synchronizations, for each set of parameters (network, model,
coupling method, global coupling strength and noise level) ten realizations are
calculated and the arithmetic mean of all realizations Rij = 1

10
∑10
r=1R

r
ij is taken.

To quantify the average synchronization of the entire network, the absolute mean

correlation 〈R〉 = 1
N(N−1)

N∑
i,j,i 6=j

|R̄ij | is calculated.

For the Kuramoto model, a standard first-step Euler method is implemented as
well, but sufficient accuracy was only established with a step size of ∆t = 0.01. Initial
conditions are drawn from a uniform distribution in the interval [0, 2π], and 200.000
iterations are calculated. To measure the level of synchronization for system (.), we
take the classical order parameter r(t) = 1

N |
∑N
j=1 e

iθj(t)| and average it over the last
30.000 iterations, O = 〈r(t)〉T . Again, for each set of parameters (network, global
coupling strength and noise level) we integrate ten realizations and take the arithmetic
mean, O = 1

10
∑10
r=1O

r.

.. Results

We are interested in the influence of the noise level D and the global coupling strength
g on the mean correlation 〈R〉 for the Izhikevich and the Fitzhugh-Nagumo model,
and the order parameter O for the Kuramoto model, respectively. For the sake of
convenience, the order parameter for a simulation with the Kuramoto model, O, will
be referred to as 〈R〉 as well, O ≡ 〈R〉. The following analysis of the simulations is
based on the interpretation of the mean correlation as a function of the noise level
and the global coupling strength: 〈R〉 = 〈R〉 (g,D)
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Model Network Coupling
Method

Nr. of Simu-
lations

NRMSD
(linear)

NRMSD

Izhikevich H electrical  .% .%
chemical  .% .%

C electrical  .% .%
chemical  .% .%

Fitzhugh-
Nagumo

H electrical  .% .%

chemical  .% .%
C electrical  .% .%

chemical  .% .%
R electrical  .% .%
A electrical  .% .%
U electrical  .% .%
D electrical  .% .%

Kuramoto H sinusoidal  .% .%
C sinusoidal  .% .%
R sinusoidal  .% .%
A sinusoidal  .% .%
D sinusoidal  .% .%

 .% ± .% .% ± .%

Table ..: Division of all numerical simulations. The first column states the model of the
simulations, followed by the underlying network, the coupling method and the number
of simulations. The fifth column quotes the normalized root-mean-square deviation
(NRMSD) of a fit to the linear model R?,lin

(g,D,wl) as described in Eq. (.), and

the last column quotes the NRMSD of a fit to the non-linear model R?,nonlin
(g,D,wnl) as

described in Eq. (.). In the bottom row, the total number of simulations is stated,
followed by the mean NRMSD over all simulation setups (± one standard deviation)
for the linear model and the non-linear model.

In total, 3064 simulations were performed, each corresponding to a specific model,
coupling method, network, global coupling strength and noise level. They are divided
into 17 subsets of data as shown in Tab. ..
In Figs. .(a) and .(b), the dependency of the average synchronization 〈R〉 on

the coupling strength g and the noise level D is shown for the all-to-all network A of
electrically coupled Fitzhugh-Nagumo neurons and for the degree-matched random
network of C.elegans, D, of Kuramoto phase oscillators, respectively. The result is a
two-dimensional surface in three-dimensional euclidean space, where every grid point
on the surface represents the mean of ten realizations of a simulation and is associated
with the corresponding mean correlation 〈R〉. Lines of constant noise level D are
projected on the (g〈R〉)-plane (green lines), lines of constant coupling strength g are
projected on the (D〈R〉)-plane (red lines) and lines of constant mean correlation 〈R〉
are projected on the (gD)-plane (blue lines).
Comparing the shape of the surfaces described by the correlation function 〈R〉 =
〈R〉 (g,D), it becomes apparent that they closely resemble each other (note that the
input data, the global coupling strength g and the noise level D were rescaled to
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Figure ..: Average synchronization 〈R〉 in dependence of the noise level D and the
coupling strength gel for the numerical simulations (a)-(b) and the regression
models (c)-(f). (a)-(b) The results of numerical simulations for the network A
of electrically coupled Fitzhugh-Nagumo neurons and the network D of Kuramoto
phase oscillators respectively. Lines of constant noise level D are drawn in green,
lines of constant coupling strength g are drawn in red and lines of constant mean
correlation 〈R〉 are drawn in blue. (c)-(d) Fit to the numerical data with the
non-linear regression model R?,nonlin

(g,D,wnl) as described in Eq. (.), for the Fitzhugh-
Nagumo model and the Kuramoto model respectively. (e)-(f) Fit to the numerical
data with the linear regression model R?,lin

(g,D,wl) as described in Eq. (.), for the
Fitzhugh-Nagumo model and the Kuramoto model respectively.
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the range ]0, 1]). For constant noise levels D the mean correlation 〈R〉 resembles a
sigmoid function, where the steepness of these curves declines with an increasing noise
level, and the inflection point moves towards larger values of g. The lines of constant
coupling strength (red lines) resemble sigmoid curves as well, and for increasing values
of the coupling strength, the steepness of the sigmoids declines, and the inflection
point moves towards higher values of D. The blue lines, representing intersection
lines of different (gD)-planes with the surface described by the correlation function,
show how the coupling strength scales with the noise for fixed values of the mean
correlation. The scaling seems to be of the form g ∼ Dβ, with β ≈ 1 or slightly
larger.

Remarkably, the same behaviour is observed independently of the models, coupling
methods and networks numerical simulations were conducted with (not all Figures
shown). In order to quantify the deviation of the numerical data from the observed
functional dependency, we now introduce two regression models, which will be fit to
the numerical data by a least squares method, and the normalized root-mean-square
deviation (NRMSD) will serve as a measure for the difference between the observed
values of 〈R〉 and the values implied by the regression models. The NRMSD is
defined as the square root of the mean square error (MSE) normalized by the range
of observed values:

MSE = 1
p

p∑
n=1

(R?(g(n),D(n),w) − 〈R〉
(n))2 (.)

NRMSD =
√
MSE

〈R〉max − 〈R〉min
(.)

where the sum in Eq. (.) is taken over all data points of a simulation setup,
and R?(g(n),D(n),w) is the model output for a given g(n) and D(n). The optimal model
parameters are given by the vector w, which is retrieved by a gradient descent method.

The first regression model is of rather low complexity, based only on the observation
that the dependency of the coupling strength on the noise level for fixed values of 〈R〉
is close to linear, and the sigmoidal dependencies of 〈R〉 on g (D) for fixed values of
D (g). It is a two-dimensional sigmoid function, given by:

R?,lin(g,D,wl) = 1
1 + ew

l
1g+wl2D+wl3

(.)

where wl = (wl1, wl2, wl3) are the model parameters, which were fit separately for
each simulation setup (given by the oscillator model, coupling method and network
topology).
The second regression model is of much higher complexity, and supposedly has

the capability of fitting the data very well. It serves to give a lower bound on the
NRMSD, in order to classify to goodness of the fit of the linear regression model. It
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is given by the function:

R?,nonlin(g,D,wnl) = 1

1 + ew
nl
1 (g+wnl4 )w

nl
6 +wnl2 (D+wnl5 )w

nl
7 +wnl3

(.)

where wnl = (wnl1 , w
nl
2 , w

nl
3 , w

nl
4 , w

nl
5 , w

nl
6 ) are the model parameters, which again

were fit separately for each simulation setup.
In Tab. ., the NRMSDs for both regression models and all simulation setups are

summarized. The average NRMSD of all setups for the non-linear regression model
has, as expected, a very low value of NRMSDnonlin = 4.8%± 1.3% and is therefore
capable of fitting the data very well. With a value of NRMSDlin = 7.6%± 1.8%, the
average NRMSD for the linear model is about 1.6 times larger, but considering the
simplicity of the model, its capability of fitting the data is surprisingly good.

.. Discussion and Conclusion

In summary, we performed numerical simulations on a variety of oscillator models in a
broad spectrum of network topologies, coupled by both linear and non-linear coupling
functions. The models range from the Fitzhugh-Nagumo model in a continuously
spiking state, over the Izhikevich model in a periodically bursting state to the
Kuramoto model of identical phase oscillators. The network topologies include scale-
free, small-world, regular, random and highly modular networks, with both directed
and undirected edges.

We were interested in the maximum degree of synchronization, in dependence on the
global coupling strength g and the intensity of the white noise sources D. We found
common characteristics independent of the oscillator model, network and coupling
type. For fixed values of the noise intensity, we found a sigmoidal dependency of the
synchronizability on the global coupling strength, and for fixed values of the global
coupling strength, the dependency of the synchronizability on the noise intensity
seems to be sigmoidal too. Furthermore, the scaling of the noise intensity with the
global coupling strength for fixed values of the average synchronization of a network
seems to be close to linear.

Introducing a regression model of the form R?,lin(g,D,wl) = (1+ewl1g+wl2D+wl3)−1 allowed
us to quantify the deviation between the numerical results and the proposed sigmoidal
dependency for each simulation setup in terms of the normalized root-mean-square
deviation (NRMSD), as stated in Eq.(.). Given the simplicity of the regression
model, and the diversity of oscillator models, networks and coupling methods, the
consistently small NRMSDs (NRMSDlin = 7.6% ± 1.8%, see Tab. .) throughout
all setups are rather unexpected.
The considerably more complex regression model given by R?,nonlin(g,D,wnl) = (1 +

ew
nl
1 (g+wnl4 )w

nl
6 +wnl2 (D+wnl5 )w

nl
7 +wnl3 )−1, capable of reproducing a non-linear relationship

between noise intensity and coupling strength for fixed values of the mean correlation





Chapter . Synchronizability in Noisy Complex Networks

as well as a rising slope of that relation for increasing values of the mean correlation,
only diminishes the average NRMSD to NRMSDnonlin = 4.8%± 1.3%.

We have thus shown that the maximum degree of synchronization can be approxi-
mated quite adequately by a simple -dimensional sigmoidal function with a linear
relation between noise intensity and global coupling strength for a given synchro-
nizability, reminiscent of the known linear relation between the noise intensity and
the critical coupling strength εc = 2(D + λ) (as in our study we consider identical
oscillators, we have λ = 0) for the mean-field Kuramoto model in the thermodynamic
limit (Bag et al., ).
It is left to future work to assess whether this approximation can be derived

analytically, at least for the mean-field Kuramoto model, and if it holds true in
the case of non-identical oscillator models. Other issues to explore would be the
influence of the oscillator model, the coupling method and the network topology on
the parameters of the regression model.
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Conclusion

.. Contributions of this Thesis

This dissertation’s primary focus is of a theoretical nature: a network-based framework
capable of representing heterogeneous complex systems across scales. In combination
with the accompanying software package, this framework, deep graphs, constitutes an
important contribution to the field of complex systems, and possibly to data analytics
in general. First, because of the explicit association of potentially unstructured,
diverse information with the different (super)nodes and (super)edges, and second,
because - in contrast to previous frameworks in the scientific literature - the properties
of groups of objects (supernodes) and their respective interrelations and interactions
(superedges) are incorporated into a self-contained network representation. For these
reasons, our framework bridges the gap between (big) data and its modelling, and
is capable of acting as a go-between, joining a unified and generalized network
representation of systems with the tools and methods of fields such as multivariate
statistics, probability theory and statistical physics, as well as the rising field of
machine learning.

We presented a number of applications, demonstrating benefits of the deep graph
framework: In an explorative analysis of global extreme rainfall measurements, we
constructed a deep graph to track and categorize the formation of spatio-temporal
rainfall clusters. We found propagation patterns over subtropical South America that
were just recently discovered using rather complicated statistical methods, as well as
extreme rainfall clusters over tropical South America that have not yet been identified
and analyzed in the meteorological literature. Based on the constructed rainfall
deep graph, we could also provide statistical evidence that the spatio-temporally
integrated size distribution of extreme rainfall clusters does not - as previously
suggested - follow a powerlaw. Instead, we found that the size distribution over the
oceans is best approximated by an exponentially truncated powerlaw. Arguing with
a generative storm-track model, we found that the exponential truncation of the
observed distribution could be caused by the presence of land masses. In another
application of the deep graph framework, we combined two high-resolution satellite
products in order to identify spatio-temporal clusters of fire-affected areas in the
Brazilian Amazon and characterize their land use specific burning conditions. By
means of the revealed statistical characteristics, we took the first steps towards a
probabilistic classifier of fire clusters into land use types with the ultimate goal of
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predicting whether a measured fire cluster was caused by anthropogenic activities or
natural causes. Finally, we investigated the effects of white noise and global coupling
strength on the maximum degree of synchronization for a variety of oscillator models
in a broad spectrum of network topologies. We found a general sigmoidal scaling and
validated it with a suitable regression model.

More detailed conclusions are drawn in the following.

Deep Graphs

We have introduced a collection of definitions resulting in deep graphs, a network-based
framework enabling a mathematically accurate description of any given system in a
self-contained manner. Our framework unifies existing network representations and
generalizes them by fulfilling two essential objectives: a comprehensive treatment
of groups of objects (supernodes) and their respective interrelations (superdeges),
and an explicit association of information with the (super)nodes and (super)edges
of a graph. The latter objective is implemented by specifying the (super)nodes and
(super)edges of a (super)graph as sets of their respective properties. The former
objective is implemented by transferring the mathematical concept of partition lattices
to our graph representation. A deep graph, by our definition, is the set of all possible
partitions of a graph, i.e. the partition lattice of a graph. The partition lattice of
the edge set of a given graph is generally not covered entirely by the lattice of the
graph, and can be queried on its own to gain insightful information (see Sec. ..).
Together, the implemented objectives make it possible to aggregate, compute and
allocate information on and between arbitrary groups of nodes. This information can
then be stored on the lattices of a graph, allowing us to express and study properties,
relations and interactions on all scales of the represented system(s).
In addition to its descriptive benefits, we were able to show how deep graphs

establish an interface between graph theory, traditional data analysis and modelling
tools, and machine learning methods. Furthermore, we introduced additional tools to
support a comprehensive data analysis. The auxiliary connector and selector functions
(see Sec. .) make it easy to create and filter (super)edges, thereby allowing us to
forge the topology of a deep graph. We have demonstrated how the properties of the
nodes of a given graph induce a certain subset of the graph’s partition lattice. When
limiting ourselves to the representation of a multilayer network, this subset of the
partition lattice corresponds to the different representations of the multilayer network,
from its supra-graph representation to a tensor-like representation (see Appendix D).
The concept of intersection partitions (see Sec. ..) allows us to calculate similarity
measures between partitions of a graph (see Appendix A), and to express elaborate
queries on the information contained in a deep graph.
To utilize the benefits of our framework, we provide a software implementation

(the DeepGraph Python Package) that integrates seamlessly into the PyData Ecosys-
tem, making it accessible to a large number of computational scientist.
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Associated publication: Traxl et al., Chaos (, P).

Tracking and Clustering of Extreme Rainfall

Employing the deep graphs framework, we conducted an explorative analysis of
extreme rainfall events derived from a global, high-resolution satellite product. We
first represented extreme rainfall events as nodes of a graph, whose features indicate
their location, time and rainfall rate. We created edges between nodes reflecting the
spatio-temporal proximity of the events, and then identified cohesive rainfall clusters
as the connected components of the graph. This allowed us to track and visualize the
clusters’ temporal resolution, and calculate a number of characterizing features: their
lifetime, their spatial coverage, and the total volume of water they precipitated. We
further coarse-grained rainfall clusters into regional families, based on a measure of
spatial overlap between them. We have discussed climatological characteristics of two
of these families over the South American continent. The first family, concentrated
over the subtropics, was just recently discovered using a rather complicated statistical
methodology. The second, concentrated over tropical South America, has to our
knowledge not yet been identified and analyzed in the meteorological literature.

Based on this explorative analysis, we could furthermore provide evidence that the
spatio-temporally integrated size distribution of extreme rainfall clusters does not - as
previously suggested - follow a powerlaw. Instead, we found that the distribution of
rainfall clusters over the oceans is best approximated by an exponentially truncated
powerlaw. Motivated by the fact that the conditions for strong cyclogenesis are
typically not met over land, we hypothesized that the distribution could, in princi-
ple, follow a scale-free distribution on a planet without land masses, and that the
exponential truncation is caused by the presence of land masses. To test this hypoth-
esis, we proposed a generative model of synthetic storms with powerlaw-distributed
lifetimes, evolving in a finite spatial area with absorbing boundaries. This simple
model reproduces the exponentially truncated powerlaw observed for extreme rainfall
clusters over the oceans, indicating that the proposed hypothesis suffices to explain
the distributional characteristics discovered here.

Associated publications: Traxl et al., Chaos (, P), Traxl et al., Geophysi-
cal Research Letters (accepted, P).

Fire-Cluster Burning Conditions in the Amazonian Ecosystem

We advanced the understanding to what extent different land use types influence
fire occurrence in the Amazonian ecosystem, which is particularly relevant for its
conservation. We first combined two high-resolution satellite products - maps of
fire-affected areas and land cover maps showing a detailed land use classification -
into a graph representation, where nodes correspond to active fire measurements, and
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edges represent the spatio-temporal proximity between pairs of active fires. Similar
to the analysis of rainfall measurements, we identified cohesive spatio-temporal fire
clusters as the connected components of the graph, and calculated a set of features for
each of them: their diameter; their lifetime; their “type”, given by the predominant
land use type a cluster occurred on; and their “first land use types”, given by the set
of land use types fires of a given cluster occurred on at the first satellite pass.
Investigating the distributions of diameters and lifetimes for the different cluster

types, we found that savannah-type clusters dominate in terms of frequency, but
also largest sizes (more than  km diameter) and longest lifetimes (more than 
hours), followed by the land use types “Forest”, “Pasture”, “Agriculture”, “Secondary
Vegetation” and “Deforested”, which show a consistent decrease in frequency and
slopes. According to a maximum-likelihood evaluation, all distributions exhibit heavy
tails, i.e. their tails are not exponentially bounded.
Regarding the originating land use types of “Mixed” clusters (i.e., clusters that

propagated along various land use types and thus can not be assigned a dominant
land use type), we found that % have “Pasture”, % have “Agriculture”, and %
have “Deforested” in their first land use types. This indicates an overrepresentation
of these land use types with respect to their overall proportions, which is particularly
relevant in view of the fact that fires on these land use types are frequently caused
by anthropogenic activities.

Finally, we derived a probabilistic classifier of fire clusters into dominant land use
types, based on the clusters’ diameters and lifetimes. We found that large clusters
burning for short times are more likely to be savanna-type than “Mixed”, which
means their propagation velocity, on average, exceeds that of “Mixed” clusters. The
other cluster types are predominantly small and short-lasting. Overall, the best
guess for any given diameter/lifetime combination is either savannah-type or “Mixed”.
Discarding “Mixed” clusters, however, two small islands arise in the decision matrix
(Fig. .), showing that for some diameter/lifetime combinations, “Pasture” is more
likely than savannah-type and for other combinations, “Forest” is more likely than
savannah-type. The statistical significance of these islands, however, has yet to be
determined.

Associated publication: Traxl et al., in preparation (P)

Synchronizability in Noisy Complex Networks

We performed numerical simulations of a variety of oscillator models (Fitzhugh-
Nagumo, Izhikevich and Kuramoto) coupled by both linear and non-linear coupling
functions according to a broad spectrum of network topologies (scale-free, small-world,
regular, random and highly modular). We were interested in the maximum degree
of synchronization in dependence on the global coupling strength and the intensity
of the white noise sources, and found common characteristics independent of the
oscillator model, network and coupling type.
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We have shown that the maximum degree of synchronization can be approximated
quite adequately by a simple two-dimensional sigmoidal function with a linear relation
between noise intensity and global coupling strength for a given synchronizability,
reminiscent of the known linear relation between the noise intensity and the critical
coupling strength εc = 2(D + λ) for the mean-field Kuramoto model in the thermo-
dynamic limit.

Associated publication: Traxl et al., New Journal of Physics (, P)

.. Outlook

Although the deep graph framework proposed in this dissertation will likely result in
important applications in different areas of complex networks, we hope that it also
initiates attempts to generalize existing network-specific measures and to develop
new ones. Of particular interest would be measures related to the heterogeneity
of a system’s components and their interactions on different scales. In the context
of multilayer networks, generalizations of network measures have already led to
significant new insights, and we expect the same to become true for deep graphs.
Considering the explorative analysis of extreme rainfall events (see chapter ), so

far we have only investigated two regional families of rainfall clusters. It would not
be surprising if a number of yet unknown propagation patterns are found in other
families, given further inspection. An interesting extension of the study would be to
measure the temporal similarities between families to investigate potential large-scale
synchronizations between them.

Despite the fact that our approach to investigate fire cluster burning conditions (see
chapter ) is novel and preliminary results seem promising, some work is still left to
be conducted and a few ideas are worth incorporating into the analysis in the future.
Primarily, we need to fine-tune the spatio-temporal distance thresholds and validate
them with the help of additional information. We could, for instance, compare the
diameter and lifetime distributions with other datasets, such as the burned-area
distributions analyzed by Cano-Crespo et al. (). Regarding the probabilistic
classifier of fire clusters into land use types, a number of considerations to improve
its predictive power come to mind. We could, for instance, look for differences in
the burning profiles of the different cluster types in the dry and wet seasons. The
recurrence rate of fires on a given spatial location could help us identify pasture fields,
since farmers often burn their fields repeatedly to re-new the grass for their cattle.
The study can also easily be extended to other regions on the planet.

Ultimately, a very promising project would be to combine different climatological
data (such as the rainfall, fire and land use type data, together with lightning data)
into one deep graph representation. This could allow us, for instance, to match
fire clusters with rainfall and lightning data, and thereby improve our probabilistic
classifier of fire clusters into land use types.
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Appendix A.

Measuring the Similarity of
(Intersection) Partitions

We demonstrate how the construction of intersection partitions provides us with
the elements of a so-called confusion matrix (or contingency table). These are
necessary to compute similarity measures between partitions, such as, e.g.: the
Jaccard index (Jaccard, ); the normalized mutual information (Strehl and Ghosh,
); or the normalized variation of information metric (Meilă, ). First, we show
how to compute the similarity of two “normal” partitions, and then how to compute
the similarity of two intersection partitions.

Assume we are given a graph G = (V,E) comprised of n nodes, and two partitions
of the node set, V p = {V p

i i = 1, 2, ..., np} and V p′ = {V p′

i′ i′ = 1, 2, ..., np′}. The
number of nodes in supernode V p

i (V p′

i′ ) is then given by np,i (np′,i′), and the number
of nodes in supernode V p·p′

i·i′ of the intersection partition V p·p′ is given by np·p′,i·i′ [see
Eqs. (.)-(.)]. With these numbers, we can calculate the normalized variation of
information metric by

NVI = −1
log n

∑
i

∑
i′

np·p
′,i·i′

n
log (np·p′,i·i′)2

np,inp′,i′
. (A.)

Analogously, we can compute other similarity measures, such as the Jaccard index
or the normalized mutual information index (see Eqs. () and () in Granell et al.
()).

More generally, we can compute the similarity of two intersection partitions. Assume
we are given a graph G = (V,E) comprised of n nodes, and set of K partitions of
V , induced by a set of functions vp = {vpk k ∈ IK}, where IK = {1, 2, ...,K} is the
partition index set. From this set of available partitions, we choose two collections,
g ⊆ IK and g′ ⊆ IK , whose corresponding intersection partitions we want to compare.
The number of nodes in supernode V

p

i (V
p′

i′ ) is given by np,i (np
′,i′), and the number

of nodes in supernode V
p·p′

i·i′ of the intersection partition V p·p′
is given by np·p

′,i·i′

(where p = (pk)k∈g, i = (ik)k∈g, p′ = (pk)k∈g′ , i′ = (ik)k∈g′ , and ik ∈ {1, 2, ..., npk}).
Using these numbers in Eq. (A.), we can compute the similarity of two different
intersection partitions.
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Equivalently, we can use the numbers m,mp,ij,r,mp′,i′j′,r′
and mpp′,ii′jj′,rr′

(see
Tab. .) to calculate similarity measures between (intersection) partitions of the
edge set. Furthermore, we can use a pair of (intersection) partitions of the node set,
in order to compute the similarity of their corresponding edge set partitions.





Appendix B.

Expressing Supernodes (Superedges)
by Features (Relations)

We explicitly demonstrate how the information contained in a given graph G = (V,E)
is conserved when creating partitions, by expressing supernodes and superedges in
terms of features and relations, respectively. Given a partition V p of V induced by p
[see Eqs. (.)-(.)], the set of features contained in supernode V

p

i is given by

F
p

i = {Fmj j ∈ {1, 2, ..., n} ∧m ∈ {1, 2, ..., fj} ∧ ∀k ∈ g : vpk(Vj) = vSkik}. (B.)

To keep track of a features’ original node index, and to guarantee uniqueness of every
single feature, we technically would have to write (j, Fmj ) for every feature. Yet, for
ease of notation, we refrain from doing so. Next, we map each feature Fmj in F

p

i onto
its respective type,

t
p

i : F pi → T
p

i = {1, 2, ..., np,itypes}, Fmj 7→ t
p

i (F
m
j ) := T

p

i,t ∈ T
p

i , (B.)

such that t
p

i (F lj) = t
p

i (Fmk ) for all pairs of features in F
p

i that share the same type.

We denote the number of distinct types of features in supernode V
p

i by n
p,i

types. Note

that 0 ≤ n
p,i

types ≤ |F
p

i |, where n
p,i

types = 0 either because the supernode V
p

i does not
exist, np,i = 0, or because all the nodes it contains have no features, np,i ≥ 1 and
Vj = {j} for all Vj ∈ V

p

i . If no pair of nodes in V
p

i shares any type of feature, then

n
p,i

types = |F pi |. The function t
p

i induces a partition F
p,T

i of F
p

i into features of common

type F
p,T

i,t , given by

F
p,T

i,t = {Fmj j ∈ {1, 2, ..., n} ∧m ∈ {1, 2, ..., fj}∧

∀k ∈ g : vpk(Vj) = vSkik ∧ t
p

i (F
m
j ) = T

p

i,t},
(B.)

and F
p,T

i = {F p,Ti,t t ∈ {1, 2, ..., np,itypes}}. We denote the number of features of type t

in supernode V
p

i by n
p,i

t := |F p,Ti,t |. Hence, we can express a supernode V
p

i as a set
of sets of features of common type (and its index, to guarantee uniqueness of the
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supernodes),

V
p

i = {i} ∪ {F p,Ti,t }t∈{1,2,...,np,itypes}
. (B.)

Analogously, we can express superedges in terms of their edges’ constituent relations.
Given a partition Ep of E induced by p [see Eqs. (.)-(.)], the set of relations
contained in superedge E

p

ij,r is given by

R
p

ij,r = {Rmuv Φe(u, v) ∧ Φv
gs(u) ∧ Φv

gt(v) ∧ Φe
gr(u, v) ∧m ∈ {1, 2, ..., ruv}}. (B.)

Again, to keep track of a relations’ original indices and to guarantee uniqueness, we
technically have to write ((u, v), Rmuv) for every relation, which we omit for notational
clarity. Next, we map every relation Rmuv in R

p

ij,r onto its respective type,

t
p

ij,r : Rpij,r → T
p

ij,r = {1, 2, ...,mp,ij,r

types}, Rmuv 7→ t
p

ij,r(R
m
uv) := T

p

ij,r,t ∈ T
p

ij,r, (B.)

such that t
p

ij,r(Rmij ) = t
p

ij,r(Rnkl) for all pairs of relations in R
p

ij,r that share the same

type. We denote the number of distinct types of relations in superedge E
p

ij,r by

m
p,ij,r

types. Again, 0 ≤ m
p,ij,r

types ≤ |R
p

ij |, where m
p,ij,r

types = |Rpij | only if no pair of edges in

E
p

ij,r shares any type of relation. The partition R
p,T

ij,r of R
p

ij,r into relations of common

type R
p,T

ij,r,t is therefore induced by the function t
p

ij,r, where

R
p,T

ij,r,t = {Rmuv Φe(u, v) ∧ Φv
gs(u) ∧ Φv

gt(v) ∧ Φe
gr(u, v)∧

m ∈ {1, 2, ..., ruv} ∧ t
p

ij,r(R
m
uv) = T

p

ij,r,t},
(B.)

and R
p,T

ij,r = {Rp,Tij,r,t t ∈ {1, 2, ...,mp,ij,r

types}}. We denote the number of relations of

type t in superedge E
p

ij,r by m
p,ij,r

t := |Rp,Tij,r,t|. Therefore, a superedge E
p

ij,r can be
expressed as a set of sets of relations of common type (and its index, to guarantee
uniqueness of the superedges),

E
p

ij,r = {(i, j, r)} ∪ {Rp,Tij,r,t}t∈{1,2,...,mp,ij,rtypes }
. (B.)
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Summary of the Multilayer Network
Representation

We summarize the representations of a multilayer network (MLN), as defined by Kivelä
et al. (), and refer to the original paper for a more detailed description. A
multilayer network (MLN) is defined by a quadruplet M = (VM , EM , V N ,L), where
the set of N nodes is given by V N = {1, 2, ..., N}. The multidimensional layer
structure is given by a sequence of sets of elementary layers, L = {La}da=1, where
each of the d sets of elementary layers La corresponds to an ‘aspect’ a of the MLN
(e.g., L1 = {facebook, twitter, ...} could be a set of categories of connections, and
L2 = {, , ...} could be a set of time stamps, at which edges are present). A
layer in the structure given by L is then a combination of elementary layers from all
aspects, or in other words: an element of the set of all layers given by the Cartesian
product L1 × · · · × Ld. Each node can belong to any subset of the layers, and the
set of all existing node-layer tuples (in short: node-layers) (u,α), where u ∈ V N and
α ∈ L1× · · · ×Ld, is denoted VM ⊆ V N ×L1 · · · ×Ld. Edges are allowed between all
such existing node-layers, hence the set of edges is given by EM ⊆ VM × VM .

The pair GM = (VM , EM ), referred to as the ‘supra-graph’ of M , is a graph on its
own, where nodes are, as the authors say, “labelled in a certain way”. The adjacency
matrix of GM is referred to as the ‘supra-adjacency matrix’ representation of M , and
constitutes one possible representation of a MLN. Defining weights for edges of M on
the underlying graph GM (by some function w : EM → R) yields a weighted MLN.
Another representation of a MLN can be achieved by adjacency tensors (De

Domenico et al., ). Given a MLN M = (VM , EM , V N ,L) with d aspects, one
can represent it by an order-2(d+ 1) adjacency tensor Auvαβ = Auvα1β1...αdβd , where
an element Auvαβ has a value of 1, if and only if ((u,α), (v,β)) ∈ EM , and a value
of 0 otherwise. As Kivelä et al. () explain, the representation of a MLN by an
adjacency tensor is technically only valid for node-aligned MLNs, where all layers
contain all nodes, VM = V N × L1 × · · · × Ld. Yet, many tensor-based methods
on MLNs have been successfully applied by filling layers with ‘empty’ node-layers
(node-layers that are not adjacent to any other node-layer), yielding an artificial node-
aligned structure of the MLN. However, one has to be very cautious in the calculation
and interpretation of tensor-based measures, and account for the presence of empty
node-layers in an appropriate way (Kivelä et al., ). In the tensor-representation
of MLNs, weights can be introduced by defining a weighted adjacency tensor Wuvαβ,
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where the value of each element determines the weight of an edge (for non-existing
edges, the value is 0 by convention).





Appendix D.

Discussion of Multilayer Networks

We first demonstrate the alternative representation of a multilayer network (MLN)
by our framework, which is given by placing the additional information attributed
to the layered structure of a MLN M in the edges of G = (V,E). Then, we show
the advantages of the representation stated in the main text. For that matter, we
create the subset of the partition lattice GL of G =̂ M that is induced by the types
of features of its constituent nodes, and show that it incorporates not only the
alternative representation shown here, but several others, including a tensor-like
representation. Lastly, we discuss the constraints imposed on our framework in order
to represent a MLN, and explain how our framework solves the issues encountered in
the representation of MLNs.
The alternative representation of M = (VM , EM , V N ,L) by G = (V,E) is given

by identifying each node Vi = {i} ∈ V = {V1, V2, ..., VN} with a node V N
i ∈ V N ,

Vi =̂ V N
i . Denoting the weight of an edge of a MLN by w

(
((V N

i ,α), (V N
j ,β))

)
∈ R,

an edge Eij ∈ E′ = {E11, E12, ..., ENN} is given by

Eij = {w
(
((V N

i ,α), (V N
j ,β))

)
((V N

i ,α), (V N
j ,β)) ∈ EM}

=: {Rkij k ∈ {1, 2, ..., rij}},
(D.)

where |Eij | = rij is the number of types of relations from node Vi to node Vj . Hence,
the edge set E corresponding to EM is given by E = {Eij i, j ∈ {1, 2, ..., N} ∧Eij 6=
∅}. By this representation, we can clearly see that a tuple (α,β) defines the type of
relation of an edge in EM ,

t
(
((V N

i ,α), (V N
j ,β))

)
= t

(
((V N

k ,γ), (V N
l , δ))

)
←→ (α,β) = (γ, δ), (D.)

for all V N
i , V N

j , V N
k , V N

l ∈ V N , where t is a function mapping an edge to its cor-
responding type, t : EM → T = {1, 2, ...,mtypes}, with mtypes = (

∏d
a=1 |La|)2.

Therefore, the number of types of relations between any pair of nodes in a MLN is
bounded by rij ≤ mtypes.

Next, we partition the graph G = (V,E) =̂ (VM , EM ) described by Eqs. (.) and
(.). For notational uniformity, we rewrite the features of the nodes in V as outputs
of partition functions p = {pN , p1, p2, ..., pd}, where

pN : V → V N , Vi 7→ pN (Vi) = V N
i , (D.)





Appendix D. Discussion of Multilayer Networks

pa : V → La, Vi 7→ pa(Vi) = La,i, a = 1, 2, ..., d. (D.)

Based on the (1 + d) partitions induced by p, we can redistribute the information
contained in the graph G on a subset of the lattice GLf ⊆ GL. This redistribution
allows for several representations of the graph G, some of which we will demonstrate
in the following. Let us denote the partition index set of p by IK = {N, 1, 2, ..., d}.
Then we can select a total of I(K) = 2(1+d) distinct collections g ⊆ IK , resulting
in |GLf | ≤ I(K) supergraphs Gp = (V p, Ep) ∈ GLf , where GLf = {Gp g ∈ P(IK)}
and p = (pk)k∈g.
Choosing g = {N} leads to the supergraph Gp

N = (V pN , Ep
N ), where each

supernode V pN

i ∈ V pN corresponds to a node of the MLN, V pN

i =̂ V N
i . Superedges

Ep
N

ij ∈ Ep
N with i = j correspond to the coupling edges of a MLN. The one to one

correspondence of the supergraph GpN to the above, edge-based choice of G justifies
the statement that the representation G of M given in the main text is the preferred
one, since it fully entails the above choice.

Choosing the group g = {1, 2, ..., d} leads to the supergraphGp1···pd = (V p1···pd , Ep
1···pd),

where every supernode V p1···pd
i1···id ∈ V

p1···pd corresponds to a distinct layer of M , en-

compassing all its respective nodes. Superedges Ep
1···pd
i1···id,j1···jd ∈ E

p1···pd with either
(ia)da=1 = (ja)da=1 or (ia)da=1 6= (ja)da=1 correspond to collections of intra- and inter-
layer edges of a MLN, respectively.

The last supergraph we want to exemplify is given by choosing g = {N, 1, 2, ..., d} =
IK , resulting in the supergraph GpN ·p1···pd = (V pN ·p1···pd , Ep

N ·p1···pd). This supergraph
corresponds one to one to the graph G = (V,E), and therefore to the ‘supra-graph’
representation ofM , given by the tuple (VM , EM ). The only difference is the indexing.
The graph G has an adjacency matrix-like representation, given by Eij ∈ E′. We say
‘like’, since E′ is not a matrix, formally. An element of E′ is either a real number,
corresponding to the weight of the corresponding edge in EM , or an empty set,
meaning the edge does not exist. GpN ·p1···pd , on the other hand, has a tensor-like
representation, given by Ep

N ·p1···pd
iN ·i1···id,jN ·j1···jd ∈ E

pN ·p1···pd . Again, formally, EpN ·p1···pd

is not a tensor. An element of EpN ·p1···pd is either a real number, corresponding to
the weight of the corresponding edge in EM , or an empty set, if the edge does not
exist. As mentioned in Sec. .., we can distinguish between a superedge that does
not exist because at least one of the supernodes does not exist, npN ·p1···pd,iN ·i1···id or
np

N ·p1···pd,jN ·j1···jd = 0, or because there is no superedge between existing supernodes,
np

N ·p1···pd,iN ·i1···id and npN ·p1···pd,jN ·j1···jd = 1.
From the perspective of our framework, all representations Gp ∈ GL are equivalent,

in the sense that the information contained in G is conserved under partitioning.
There is no need to “flatten” the MLN represented by GpN ·p1···pd to obtain its supra-
adjacency matrix representation G, and there is no loss of information about the
aspects, as – according to Kivelä et al. () – it is the case for MLNs represented
by M = (VM , EM , V N ,L).





Let us now summarize the constraints we imposed on our framework, in order to
represent a MLN. First, we had to restrict ourselves to the representation of one
element of a deep graph. Allocating information on and between groups of nodes,
as described in Sec. .., is not intended within the framework of MLNs. Then, we
have to decide whether to put to information attributed to the layered structure of
M into the nodes of G, or the edges of G. There is no genuine separation of features
and relations in a MLN. Furthermore, the weights of the edges of a MLN need to
be restricted to real numbers (or possibly complex numbers). This poses several
limitations. First, it is problematic to distinguish between edges with a weight of 0
(e.g. an edge representing a time difference of 0) and non-existing edges, since edges
with weight 0 do not exist by convention in MLNs. Yet, more importantly, we can not
assign distributions of values to nodes or edges, let alone more complex mathematical
objects. Another complication arises, when dealing with nodes that have more or less
than d aspects, or more generally speaking: when dealing with heterogeneous kinds
of nodes. Although it is possible to represent nodes with different types of features by
filling layers with ‘empty’ node-layers, the procedure is rather counter-intuitive and
leads to a cluttered representation. In contrast, our framework provides the means to
represent heterogeneous objects and their relations in a sparse and intuitive manner.
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