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Abstract
The effects of white noise and global coupling strength on the maximum degree
of synchronization in complex networks are explored. We perform numerical
simulations of generic oscillator models with both linear and non-linear coupling
functions on a broad spectrum of network topologies. The oscillator models
include the Fitzhugh–Nagumo model, the Izhikevich model and the Kuramoto
phase oscillator model. The network topologies range from regular, random and
highly modular networks to scale-free and small-world networks, with both
directed and undirected edges. We then study the dependency of the maximum
degree of synchronization on the global coupling strength and the noise inten-
sity. We find a general scaling of the synchronizability, and quantify its validity
by fitting a regression model to the numerical data.
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1. Introduction

The emergence of collective and synchronous dynamics in large ensembles of coupled units is a
ubiquitous phenomenon in nature and engineering. Its study has attracted much attention in a
variety of fields, such as neuroscience, biology, physics, chemistry and social sciences [16, 19].
For instance, there are proliferating indications that strong synchronization on large scales is
related to pathological conditions of the human brain, e.g. epileptic seizures and Parkinsonʼs
disease [24]. Subjects of current research include the comprehension of common properties of
network synchronization in dependence on the individual node dynamics, the network
topology, internode coupling types and the influence of various types of noise [3, 4, 17, 18]. In
the context of physiological networks and network medicine, for instance, a strong relationship
between the topology of physiological networks and their physiological functions has recently
been observed [5, 6, 12].

The focus of this study is the influence of uncorrelated white noise on the maximum
degree of synchronization. While many studies investigated the phase transition associated with
the onset of macroscopic synchronization [22, 23], here we are particularly interested in the
synchronizability in the aftermath of the phase transition. The effect of noise on the phase-
synchronization of non-linear oscillators has for example been studied in [26], and it is known
that white noise prohibits the capability of a system to achieve full synchronization by
decreasing the maximum degree of synchronization [3]. It is not clear, however, how this
decrease of synchronizability relates to noise intensity. Furthermore, it has been shown that the
network topology has a great influence on the time-evolution of local patterns of
synchronization on the path towards global coherence [11]. The question, though, whether
the topology of the network has an influence on the maximum degree of synchronization, has
not been answered yet.

In order to answer these questions, we develop a numerical simulation framework and
study the dependency of the maximum degree of synchronization on the global coupling
strength and the noise intensity. The framework incorporates three basic types of well known
oscillators, namely the Fitzhugh–Nagumo model, the Izhikevich model and the Kuramoto phase
oscillator. The oscillators are coupled by both linear and non-linear coupling functions. The
coupling topologies include regular, random, small-world, scale-free and highly modular
networks, with both directed and undirected edges.

We find a general scaling of the maximum degree of synchronization, and quantify its
validity by fitting a regression model to the numerical data.

The paper is organized as follows. The models and coupling functions will be introduced
in section 2, followed by a description of the network topologies in section 3. In section 4 the
numerical simulation setup will be explained, and the measures for synchronization will be
presented. The results are stated in section 5, and the concluding remarks are given in section 6.

2. The models

In the following, we will introduce three different oscillator models used in our simulations. The
models are widely known and were chosen such that we would obtain a diverse set of oscillator
models. The Kuramoto model is a ubiquitous phase oscillator model, simple enough to be
mathematically tractable, yet sufficiently complex to display a large diversity of
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synchronization patterns. It is flexible enough to be adapted to many different contexts (e.g.
biological models, associative memory models and laser arrays) [1]. The Fitzhugh–Nagumo
model provides a simple yet basic representation of firing dynamics and has been broadly used
as a model for cardiac cells and spiking neurons [10, 15]. The Izhikevich model is a biologically
plausible neuron model, capable of reproducing spiking and bursting behaviour of known types
of neocortical and thalamic neurons [13]. The parameters of the Izhikevich model were chosen
such that the model would reproduce a bursting behaviour, in order to further distinguish itself
from the Fitzhugh–Nagumo model, thus expanding the diversity of the oscillator models
included in this study.

2.1. Kuramoto model

The stochastic Kuramoto model [16] for N coupled and identical phase oscillators ( =i N1 ,..., )
is described by

∑θ ω ξ θ θ= + + −
=

( )d

dt
t

g

k
M( ) sin (1)i i

i

N

ji j i

1

where θi is the phase of the ith oscillator, ω π= 2 is its associated natural frequency, g the
global coupling strength, 〈 〉k the average graph connectivity (〈 〉 ≡k L

N

2 , with L denoting the total
number of (weighted) links). ξi stands for Gaussian uncorrelated white noise sources with
expectation

 ξ =( )t( ) 0 (2)i
in

and covariance

ξ ξ δ δ= −( )cov s t D s t( ), ( ) 2 ( ), (3)i
in

j
in in

ij

where Din will be referred to as the noise level, and Mij is the (weighted and/or directed)
adjacency matrix of the simulated network. A weighted link is a link associated with a scalar
value, quantifying properties as for instance the frequency of contact between actors in social
networks, or the number of synapses connecting a pair of neurons in neural networks.
Additionally, one distinguishes between directed and undirected graphs by whether the edges
possess directional information or not, respectively.

2.2. Izhikevich model

The Izhikevich model [13] for N coupled oscillators ( =i N1 ,..., ) is described by the ordinary
differential equations

= + + − + +
t
v t v v u I I

d
d

( ) 0.04 5 140 (4)i i i i i
2

0

ξ= − +( )
t
u t a bv u

d
d

( ) (5)i i i i
in

with an after-spike resetting:

⩾ +v v c u uif 30, then is set to and is set to d (6)i i i i
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According to [14], vi represents the membrane potential and ui a membrane recovery variable.
ξ t( )i

in are white noise sources as in equations (2) and (3), where the noise level Din represents
the intrinsic noise of an isolated neuron (e.g. ionic conductance noise, ionic pump noise).
Synaptic currents are delivered via the variable Ii, stated below under coupling functions. After
a spike reaches its maximum ( =+v 30), both variables are reset according to equation (6). By
assigning different values to the parameters (a b c d, , , ), the model can reproduce spiking and
bursting behaviour of various known types of neocortical and thalamic neurons [13]. The
parameters = = = − = =a b c d I0.02, 0.2, 50.0, 2.0 and 10.00 are chosen such that the
model generates a bursting signal, as depicted in figure 1.

2.3. Fitzhugh–Nagumo model

The second neurological model we consider is the Fitzhugh–Nagumo model [9] for N coupled
oscillators ( =i N1 ,..., ). It is composed of the following differential equations:

ξ= − − + + +
t
v t v

v
u I I

d
d

( )
3

(7)i i
i

i i i
in

3

0

τ
=

− −
t
u t

v a bud
d

( ) (8)i
i i

The variable vi represents the membrane potential and ui the recovery variable for the neuron
membrane potential. Again, synaptic currents are transmitted via Ii and ξi

in stands for Gaussian
white noise sources as in equation (2) and (3). The constants τ= − = =a b0.7, 0.8, 12.5 and

=I 0.3280 are chosen such that the neuron is spiking continuously, as illustrated in figure 2.

Figure 1. Phase space portrait of a single Izhikevich neuron and corresponding time-
series and low-pass filtered time-series of the membrane potential v(t). (a) The two
dimensional phase space trajectory of an uncoupled Izhikevich neuron, subject to
Gaussian noise as given in equations (2) and (3) with a noise intensity of =D 0.05in is
drawn in red. The two nullclines are drawn in green and blue. (b) The corresponding
time-series of the membrane potential v(t) of the uncoupled Izhikevich neuron is drawn
in green, the dashed black line represents the low-pass filtered time-series x(t) of the
membrane potential (see equation (15)).
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2.4. Coupling functions

For the Izhikevich and the Fitzhugh–Nagumo models, simulations are performed with both
electrical and chemical coupling functions. Hence, Ii in equation (4) and (7) takes the form:

ξ= + +I I I (9)i i
ex

el i chem i, ,

where ξi
ex stands again for Gaussian uncorrelated white noise sources with expectation

 ξ =( )t( ) 0 (10)i
ex

and covariance

ξ ξ δ δ= −( )cov s t D s t( ), ( ) 2 ( ), (11)i
ex

j
ex ex

ij

but here it is accounting for extrinsic noise sources such as gap junctions and chemical synapses
(e.g. synaptic release noise).

2.4.1. Electrical coupling. The electrical transmission, Iel i, in equation (9), can be realized with
a linear function of the form [20]:

∑= −
=

I v
g

N
M v vv( , ) ( ) (12)el i i

el

j

N

ji j i,

1

where gel represents the global electrical coupling strength, vi and vj stand for the membrane
potentials of the post-synaptic and the pre-synaptic neurons respectively, and N is the number of
neurons in the network. The local coupling strength between two connected neurons is obtained
by the weighted adjacency matrix M of the simulated network.

Figure 2. Phase space portrait of a single Fitzhugh–Nagumo neuron and corresponding
time-series and low-pass filtered time-series of the membrane potential v(t). (a) The two
dimensional phase space trajectory of an uncoupled Fitzhugh–Nagumo neuron, subject
to Gaussian noise as given in equations (2) and (3) with a noise intensity of =D 0.05in

is drawn in red. The two nullclines are drawn in green and blue. (b) The corresponding
time-series of the membrane potential v(t) of the uncoupled Fitzhugh–Nagumo neuron
is drawn in green, the dashed black line represents the low-pass filtered time-series x(t)
of the membrane potential (see equation (15)).
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2.4.2. Chemical coupling. There are several ways of modelling chemical synapses. In [20] for
example, the authors use the approach of adding a first order dynamic for each synapse. A more
effective computational implementation which still conserves the crucial properties is given by
the following function [7]

∑ Γ Θ= − −( )( )I v
g

N
V v M vv( , ) (13)chem i i

ch
s i

j

N

ji j,

with

Γ λ= + − −x x( ) (1 exp[ ]) (14)1

where gch is the global coupling strength for chemical synapses. The local coupling strengths
Mij, N, vi and vj are as described for the electrical coupling. The sigmoidal function Γ represents
the thresholding behaviour of the synapse, with λ being the control parameter of the steepness.
The multiplier −V v( )s i reduces the input, if the post-synaptic neuron itself is already
depolarized. The parameters for the Izhikevich model are Vs = 30.0, λ = 0.41 and Θ = −50.0,
and for the Fitzhugh–Nagumo model Vs = 1.75, λ = 11.58 and Θ = −0.5 respectively.
Although taking into account several aspects of chemical synapses, some properties such as
transmission delay are neglected in this model.

3. The networks

We have chosen six different networks from a broad spectrum of topologies, ranging from all-
to-all connectivity over regular, scale-free, small-world and modular networks to a random
topology, including directed and undirected edges. We did so in order to thoroughly investigate
the influence of the network topology on the maximal degree of synchronization and to test the
generality of the scaling introduced below.

(a) An unweighted and undirected all-to-all network A, consisting of 256 nodes where
every node is connected with any other node (global-coupling topology), as depicted in
figure 3(a).

(b) An Erdös–Rény random graph [8] R, consisting of 256 nodes connected by 1015
undirected and unweighted edges, illustrated in figure 3(b).

(c) figure 3(c) shows a computer-generated graph with two hierarchical levels of
communities, as proposed in [2]. The undirected and unweighted network H consists of 256
nodes and is structured into two predefined hierarchical community levels. The inner
communities consist of 16 nodes each and the outer communities consist of 64 nodes each.
Each node has 13 links within its inner community, four links within its outer community and
one more link with any other randomly chosen node in the network, adding up to a total of 1015
links in the entire network.

Furthermore, we have selected the real-world network of the somatic nervous system of
the soil nematode C.elegans. The nervous system of C.elegans is the only one that has been
almost completely mapped down to the synaptic level, and shares properties of small-world and
scale-free networks [25]. The data is based on the most complete database to date, provided by
[25]. It is composed of two adjacency matrices. The electrical synapse network G, undirected
and weighted, connecting the 279 somatic neurons by a total of 887 (514, discarding weights)
gap junctions and the chemical synapse network S, directed and weighted, connecting the
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neurons by a total of 6394 (2194, discarding weights) chemical synapses. The weight of a pair
of connected neurons reflects the number of electrical (chemical) synapses connecting it.

(d) The simulations are performed on the combined network = +C G S, depicted in
figure 3(d) (weights have been discarded in the Figure), which is simply the sum of the two
adjacency matrices of the gap junction and the chemical synapse network. Gap junctions are
thus treated as double-sided directed connections. This combined network consists of 279 nodes
and 8168 (2990, discarding weights) directed connections.

(e) The unweighted realization of this network, as depicted in figure 3(e), will be referred
to as U.

Furthermore, simulations are performed on a rewired surrogate network of the unweighted
graph of C.elegans U, where only the degree-distribution is preserved. It is obtained by
iteratively swapping randomly selected edges [21] of U. At each iteration, two links are chosen
at random (( ↦n n1 2) and ( ↦n n3 4)) and rewired (( ↦n n1 4) and ( ↦n n3 2)), unless the
respective new links do not already exist or introduce self-loops. Repeating this process often

Figure 3. Adjacency matrices of simulated networks. (a) Adjacency matrix of the all-to-
all global-coupling network A. (b) Adjacency matrix of the Erdös–Rény random
graph R, consisting of 256 nodes connected by 1015 undirected and unweighted edges.
(c) Adjacency matrix H of the synthetically structured modular network. (d) Adjacency
matrix C of the directed and weighted (weights are not shown in the figure) real-world
network of C.elegans, where gap junctions are coloured blue, chemical synapses are
coloured red and coinciding gap junctions and chemical synapses are coloured black,
respectively. (e) Adjacency matrix of the directed and unweighted realization of C.
elegans’ network U. (f) Adjacency matrix D of the degree-matched surrogate network
of C.elegans.
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enough, the entire internal structure of the original network is destroyed, except the degree
distribution.

(f) The random, directed and unweighted network, degree-matched to the unweighted
combined network of C.elegans U, will be referred to as D. Its adjacency matrix is shown in
figure 3(f).

4. Numerical simulation setup

In order to quantify the decrease in maximum synchronization of complex networks of
oscillators due to Gaussian white noise and in dependence on the global coupling strength, we
develop a simulation framework, as described in the following.

For the Izhikevich and the Fitzhugh-Nagumo model, the stochastic differential equations
are solved by a standard first-step Euler method. Sufficient accuracy was achieved with a step
size of Δ =t 0.1. Note that in all simulations, the intrinsic noise Din and the extrinsic noise Dex

were set to equal values, therefore the noise level will simply be referred to as ≡ =D D Din ex.
To avoid a priori synchronizations, initial conditions are drawn randomly from a uniform
distribution and 50,000 iterations are calculated.

For the Izhikevich model, the generated time-series mainly contain two frequencies, a fast
occurrence of spikes and a slow occurrence of bursts, as can be seen in figure 1(b). Since we are
only interested in the synchronization of bursting activity, the following low-pass filter was
applied to the signal

== =x v: (15)i t i t, 0 , 0

= + − −x av a x(1 ) (16)i t i t i t dt, , ,

with a = 0.90. The time-series generated with the Fitzhugh–Nagumo model were smoothed by
the low pass filter as well. To measure the synchronicity between two time-series, xi and xj, the
Pearson correlation coefficient is calculated for the low pass filtered signal of each pair of
neurons in the network. It is defined as

μ μ

σ σ
=

∑ − −( )( )
R

x x x x

x x

( ) ( )

( ) ( )
(17)ij

t i t i j t j

i j

, ,

where μ x( ) is the mean value and σ x( ) the standard deviation of the time-series.
Because the initial conditions are chosen randomly, they are not necessarily close to the

systemʼs attractor. The transient is therefore discarded, and the Pearson correlation coefficient is
calculated from the th20.000 iteration onwards. Furthermore, to eliminate random
synchronizations, for each set of parameters (network, model, coupling method, global
coupling strength and noise level) ten realizations are calculated and the arithmetic mean of all
realizations = ∑ =R Rij r ij

r1

10 1
10 is taken. To quantify the average synchronization of the entire

network, the absolute mean correlation 〈 〉 = ∑
− ≠ RR | ¯ |

N N i j i j
N

ij
1

( 1) , , is calculated.
For the Kuramoto model, a standard first-step Euler method is implemented as well, but

sufficient accuracy was only established with a step size of Δ =t 0.01. Initial conditions are
drawn from a uniform distribution in the interval π[0, 2 ], and 200.000 iterations are calculated.
To measure the level of synchronization for system (1), we take the classical order parameter

= ∑ θ
=r t e( ) | |

N j
N i t1

1
( )j and average it over the last 30.000 iterations, = 〈 〉O r t( ) T . Again, for
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each set of parameters (network, global coupling strength and noise level) we integrate ten
realizations and take the arithmetic mean, = ∑ =O Or

r1

10 1
10 .

5. Results

We are interested in the influence of the noise level D and the global coupling strength g on the
mean correlation 〈 〉R for the Izhikevich and the Fitzhugh–Nagumo model, and the order
parameter O for the Kuramoto model, respectively. For the sake of convenience, the order
parameter for a simulation with the Kuramoto model, O , will be referred to as 〈 〉R as well,

≡ 〈 〉O R . The following analysis of the simulations is based on the interpretation of the mean
correlation as a function of the noise level and the global coupling strength: 〈 〉 = 〈 〉 g DR R ( , ).

In total, 3064 simulations were performed, each corresponding to a specific model,
coupling method, network, global coupling strength and noise level. They are divided into 17
subsets of data as shown in table 1.

In figures 4(a) and 4(b), the dependency of the average synchronization 〈 〉R on the
coupling strength g and the noise level D is shown for the all-to-all network A of electrically
coupled Fitzhugh–Nagumo neurons and for the degree-matched random network of C.elegans,
D, of Kuramoto phase oscillators, respectively. The result is a two-dimensional surface in three-
dimensional euclidean space, where every grid point on the surface represents the mean of ten
realizations of a simulation and is associated with the corresponding mean correlation 〈 〉R .
Lines of constant noise level D are projected on the ( 〈 〉g R )-plane (green lines), lines of constant
coupling strength g are projected on the ( 〈 〉D R )-plane (red lines) and lines of constant mean
correlation 〈 〉R are projected on the (gD)-plane (blue lines).

Comparing the shape of the surfaces described by the correlation function
〈 〉 = 〈 〉 g DR R ( , ), it becomes apparent that they closely resemble each other (note that the
input data, the global coupling strength g and the noise level D were rescaled to the range [0,1]).
For constant noise levels D the mean correlation 〈 〉R resembles a sigmoid function, where the
steepness of these curves declines with an increasing noise level, and the inflection point moves
towards larger values of g. The lines of constant coupling strength (red lines) resemble sigmoid
curves as well, and for increasing values of the coupling strength, the steepness of the sigmoids
declines, and the inflection point moves towards higher values of D. The blue lines,
representing intersection lines of different (gD)-planes with the surface described by the
correlation function, show how the coupling strength scales with the noise for fixed values of
the mean correlation. The scaling seems to be of the form ∼ βg D , with β ≈ 1 or slightly larger.

Remarkably, the same behaviour is observed independently of the models, coupling
methods and networks that the numerical simulations were conducted with (not all figures
shown). In order to quantify the deviation of the numerical data from the observed functional
dependency, we now introduce two regression models, which will be fit to the numerical data
by a least squares method, and the normalized root-mean-square deviation (NRMSD) will serve
as a measure for the difference between the observed values of 〈 〉R and the values implied by
the regression models. The NRMSD is defined as the square root of the mean square error
(MSE) normalized by the range of observed values
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∑= −
=

⋆( )p
R RMSE

1
(18)

n

p

g D
n

w
1

( , , )

( )
2

n n( ) ( )

=
−R R

NRMSD
MSE

(19)
max min

where the sum in (18) is taken over all data points of a simulation setup, and ⋆R
g D w( , , )n n( ) ( ) is the

model output for a given g n( ) and D n( ). The optimal model parameters are given by the vector w,
which is retrieved by a gradient descent method.

The first regression model is of rather low complexity, based only on the observation that
the dependency of the coupling strength on the noise level for fixed values of 〈 〉R is close to

Table 1. Division of all numerical simulations. The first column states the model of the
simulations, followed by the underlying network, the coupling method and the number
of simulations. The fifth column quotes the normalized root-mean-square deviation
(NRMSD) of a fit to the linear model ⋆R

g D
lin

w( , , )
,

l as described in equation (20), and the

last column quotes the NRMSD of a fit to the non-linear model ⋆R
g D

nonlin
w( , , )

,
nl as described

in equation (21). In the bottom row, the total number of simulations is stated, followed
by the mean NRMSD over all simulation setups (±one standard deviation) for the linear
model and the non-linear model.

Model Network
Coupling
Method

Nr. of
Simulations

NRMSD
(linear) NRMSD

Izhikevich H electrical 261 8.0% 5.2%

chemical 195 9.0% 5.8%

C electrical 300 10.6% 6.4%

chemical 360 11.9% 7.9%
Fitzhugh-
Nagumo

H electrical 171 7.9% 5.8%

chemical 171 7.7% 5.7%

C electrical 153 7.5% 3.8%

chemical 81 7.7% 3.9%

R electrical 390 6.7% 4.9%

A electrical 320 7.5% 5.0%

U electrical 126 4.4% 3.2%

D electrical 126 4.4% 4.0%

Kuramoto H sinusoidal 70 7.7% 5.5%

C sinusoidal 112 6.6% 2.5%

R sinusoidal 70 7.3% 4.7%

A sinusoidal 70 7.8% 4.6%

D sinusoidal 88 6.2% 3.5%

3064 7.6%
± 1.8%

4.8%
± 1.3%
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linear, and the sigmoidal dependencies of 〈 〉R on g (D) for fixed values of D (g). It is a two-
dimensional sigmoid function, given by

=
+

⋆
+ +

R
e

1

1
(20)

g D
lin

w g w D ww( , , )
,

l l l l
1 2 3

where = w w ww ( , , )l l l l
1 2 3 are the model parameters, which were fit separately for each

simulation setup (given by the oscillator model, coupling method and network topology).
The second regression model is of much higher complexity, and supposedly has the

capability of fitting the data very well. It serves to give a lower bound on the NRMSD, in order
to classify the goodness of the fit of the linear regression model. It is given by the function

Figure 4. Average synchronization 〈 〉R in dependence of the noise level D and the
coupling strength gel for the numerical simulations (a)-(b) and the regression models
(c)–(f). (a)–(b) The results of numerical simulations for the network A of electrically
coupled Fitzhugh–Nagumo neurons and the network D of Kuramoto phase oscillators
respectively. Lines of constant noise level D are drawn in green, lines of constant
coupling strength g are drawn in red and lines of constant mean correlation 〈 〉R are
drawn in blue. (c)–(d) Fit to the numerical data with the non-linear regression model

⋆R
g D

nonlin
w( , , )

,
nl as described in equation (21), for the Fitzhugh–Nagumo model and the

Kuramoto model respectively. (e)–(f) Fit to the numerical data with the linear regression
model ⋆R

g D
lin

w( , , )
,

l as described in equation (20), for the Fitzhugh–Nagumo model and the

Kuramoto model respectively.
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=
+

⋆

+ + + +
R

e

1

1
(21)

g D
nonlin

w g w w D w w
w( , , )

,

( ) ( )
nl

nl nl w nl nl w nl
1 4 2 5 3

nl nl
6 7

where = w w w w w ww ( , , , , , )nl nl nl nl nl nl nl
1 2 3 4 5 6 are the model parameters, which again were fit

separately for each simulation setup.
In table 1, the NRMSDs for both regression models and all simulation setups are

summarized. The average NRMSD of all setups for the non-linear regression model has, as
expected, a very low value of = ±NRMSD 4.8% 1.3%nonlin and is therefore capable of fitting
the data very well. With a value of = ±NRMSD 7.6% 1.8%lin , the average NRMSD for the
linear model is about 1.6 times larger, but considering the simplicity of the model, its capability
of fitting the data is surprisingly good.

6. Discussion

In summary, we performed numerical simulations on a variety of oscillator models in a broad
spectrum of network topologies, coupled by both linear and non-linear coupling functions. The
models range from the Fitzhugh–Nagumo model in a continuously spiking state, over the
Izhikevich model in a periodically bursting state to the Kuramoto model of identical phase
oscillators. The network topologies include scale-free, small-world, regular, random and highly
modular networks, with both directed and undirected edges.

We were interested in the maximum degree of synchronization, in dependence on the
global coupling strength g and the intensity of the white noise sources D. We found common
characteristics independent of the oscillator model, network and coupling type. For fixed values
of the noise intensity, we found a sigmoidal dependency of the synchronizability on the global
coupling strength, and for fixed values of the global coupling strength, the dependency of the
synchronizability on the noise intensity seems to be sigmoidal too. Furthermore, the scaling of
the noise intensity with the global coupling strength for fixed values of the average
synchronization of a network seems to be close to linear.

Introducing a regression model of the form =⋆
+ + +

R
g D

lin

ew( , , )
, 1

1
l

w g w l D w l
2 3

l
1

allowed us to quantify

the deviation between the numerical results and the proposed sigmoidal dependency for each
simulation setup in terms of the normalized root-mean-square deviation (NRMSD), as stated in
equation (19). Given the simplicity of the regression model, and the diversity of oscillator
models, networks and coupling methods, the consistently small NRMSDs
( = ±NRMSD 7.6% 1.8%lin ; see table 1) throughout all setups are rather unexpected.

The considerably more complex regression model given by
=⋆

+ + + + +
R

g D
nonlin

e
w( , , )

, 1

1
nl

w g w nl w w nl D w nl w w nl( 4 ) 2 ( 5 ) 3
nl nl nl

1 6 7

, capable of reproducing a non-linear relationship between

noise intensity and coupling strength for fixed values of the mean correlation as well as a rising
slope of that relation for increasing values of the mean correlation, only diminishes the average
NRMSD to = ±NRMSD 4.8% 1.3%nonlin .

We have thus shown that the maximum degree of synchronization can be approximated
quite adequately by a simple 2-dimensional sigmoidal function with a linear relation between
noise intensity and global coupling strength for a given synchronizability, reminiscent of the
known linear relation between the noise intensity and the critical coupling strength
ϵ λ= +D2( )c (as in our study we consider identical oscillators, we have λ = 0) for the
mean-field Kuramoto model in the thermodynamic limit [3].
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It is left to future work to assess whether this approximation can be derived analytically, at
least for the mean-field Kuramoto model, and if it holds true in the case of non-identical
oscillator models. Other issues to explore would be the influence of the oscillator model, the
coupling method and the network topology on the parameters of the regression model.
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