39 research outputs found

    Tracking and supporting student learning in practical laboratory exercises spread over several days

    Get PDF

    Tackling Salinity in Sustainable Agriculture—What Developing Countries May Learn from Approaches of the Developed World

    Get PDF
    Soil salinity is a common problem of the developing world as well as the developed world. However, the pace to reduce salinity is much slower in the developing world. The application of short-term approaches with an unsustainable supply of funds are the major reasons of low success. In contrast, the developed world has focused on long-term and sustainable techniques, and considerable funds per unit area have been allocated to reduce soil salinity. Here, we review the existing approaches in both worlds. Approaches like engineering and nutrient use were proven to be unsustainable, while limited breeding and biosaline approaches had little success in the developing countries. In contrast, advanced breeding and genetics tools were implemented in the developed countries to improve the salinity tolerance of different crops with more success. Resultantly, developed countries not only reduced the area for soil salinity at a higher rate, but more sustainable and cheaper ways to resolve the issue were implemented at the farmers’ field. Similarly, plant microbial approaches and the application of fertigation through drip irrigation have great potential for both worlds, and farmer participatory approaches are required to obtain fruitful outcomes. In this regard, a challenging issue is the transition of sustainable approaches from developed countries to developing ones, and possible methods for this are discussed

    UV-B Exposure of Black Carrot (<i>Daucus carota</i> ssp. <i>sativus</i> var. <i>atrorubens</i>) Plants Promotes Growth, Accumulation of Anthocyanin, and Phenolic Compounds

    Get PDF
    © The Author(s).Black carrot (Daucus carota L. ssp. sativus var. atroburens) is a root vegetable with anthocyanins as major phenolic compounds. The accumulation of phenolic compounds is a common response to UV-B exposure, acting as protective compounds and as antioxidants. In the present study, black carrot plants grown under a 12-h photoperiod were supplemented with UV-B radiation (21.6 kj m−2 day−1) during the last two weeks of growth. Carrot taproots and tops were harvested separately, and the effect of the UV-B irradiance was evaluated in terms of size (biomass and length), total monomeric anthocyanin content (TMC), total phenolic content (TPC), and phytohormones levels. The results showed that UV-B irradiance promoted plant growth, as shown by the elevated root (30%) and top (24%) biomass, the increased TMC and TPC in the root (over 10%), and the increased TPC of the top (9%). A hormone analysis revealed that, in response to UV-B irradiance, the levels of abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) decreased in tops while the level of the cytokinins cis-zeatin (cZ) and trans-zeatinriboside (tZR) increased in roots, which correlated with an amplified growth and the accumulation of anthocyanins and phenolic compounds. Beyond the practical implications that this work may have, it contributes to the understanding of UV-B responses in black carrotThis research was funded by the Danish Ministry of Science, Innovation, and Education grant number 6111-00240B and “Fundación Séneca” of the Agency of Science and Technology of the Region of Murcia grant number 20405/SF/17.Peer reviewe

    The Phenotyping Dilemma—The Challenges of a Diversified Phenotyping Community

    Get PDF
    In the past decade, large investments have been made for plant phenotyping in terms of funding, research hours, and high-tech installations in Europe, Australia, North America and Asia. The number of actors in phenotyping has increased rapidly and the focus has gradually shifted from basic to strategic crop research linked to classic agricultural traits. During the recent years, community-wide surveys have pinpointed focus areas, challenges, and bottlenecks in plant phenotyping. Increasing efforts addressing abiotic and biotic stresses associated with the effects of global climate change in mind are developing. Crop wild relatives (CWRs) are important sources for genes for both biotic and abiotic stress tolerance since diversity lost during domestication is vast. Within the last decade, large-scale phenotyping research platforms have been set up and are organized within national phenotyping facilities with a range of high-tech applications in climate rooms, greenhouses and in the field

    Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    Get PDF
    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of metabolic and hormonal inter-regulation of local sink processes in controlling tomato fruit sink activity, growth, and yield under salinity

    Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    Get PDF
    Drought stress conditions modify source–sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.España Ministerio de Ciencia e Innovación AT2009-0038 and AGL2011-2799

    Metabolic control of tobacco pollination by sugars and invertases

    Get PDF
    Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates.Peer Reviewe

    The potential of integrative phenomics to harness underutilized crops for improving stress resilience

    Get PDF
    The current agricultural and food system faces diverse and increasing challenges. These include feeding an ever-growing human population, expected to reach about 10 billion by 2050 combined with societal disruption, and the need to cope with the impact of climate change (FAO, 2022). Given that future environmental conditions will limit crop productivity (Zhao et al., 2017; Cooper et al., 2021) and the limited potential to continually increase the performance of staple crops by conventional breeding (Hickey et al., 2019), there is an urgent need to transform agricultural systems
    corecore