827 research outputs found
âThis Is Public Health: Recycling Counts!â Description of a Pilot Health Communications Campaign
This paper describes the development, implementation, and evaluation of a pilot recycling campaign. The goal of the campaign was to increase peopleâs awareness and knowledge about recycling and the link between a healthy environment and the publicâs health. A total of 258 individuals attended campaign week events and completed an initial survey. Results identified inconvenience of recycling facility locations as a key barrier to recycling. Post-campaign survey results revealed increased recycling of paper, plastic, glass, and cans (p < 0.05). The majority of participants âagreedâ or âstrongly agreedâ that as a result of campaign messages they had greater awareness about recycling (88.4%) and their recycling efforts increased (61.6%)
Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57
The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives
Superfluid Helium Tanker (SFHT) study
Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997
Impact of the 2015 wildfires on Malaysian air quality and exposure: a comparative study of observed and modeled data
In September and October 2015, Equatorial Asia experienced the most intense biomass burning episodes over the past two decades. These events, mostly enhanced by the extremely dry weather associated with the occurrence of strong El Niño conditions, resulted in the transnational transport of hazardous pollutants from the originating sources in Indonesian Borneo and Sumatra to the highly populated Malaysian Peninsula. Quantifying the population exposure form this event is a major challenge, and only two model-based studies have been performed to date, with limited evaluation against measurements. This manuscript presents a new data set of 49 monitoring stations across Peninsular Malaysia and Malaysian Borneo active during the 2015 haze event, and performs the first comparative study of PM10 (particulate matter with diameter < 10 ”m) and carbon monoxide (CO) against the output of a state-of-the-art regional model (WRF-Chem). WRF-Chem presents high skills in describing the spatio-temporal patterns of both PM10 and CO and thus was applied to estimate the impact of the 2015 wildfires on population exposure. This study showed that more than 60% of the population living in the highly populated region of the Greater Klang Valley was systematically exposed to unhealthy/hazardous air quality conditions associated with the increased pollutant concentrations from wildfires and that almost 40% of the Malaysian population was on average exposed to PM10 concentrations higher than 100 ”g mâ3 during September and October 2015
On the Particle Data Group evaluation of Psi' and chi_c Branching Ratios
I propose a new evaluation of and branching ratios
which avoids the correlations affecting the current Particle Data Group
evaluation.
These correlations explain the apparent technique-dependent discrepancies
between the available determinations of the
and under the hypotesis that the current
values of the branching ratios are
overestimated.
In the process I also noticed that Particle Data Group has not restated many
of the older measurements, when necessary, for the new value of , which significantly affects the evaluation of some
relevant and exclusive branching ratios.Comment: 13 pages. Revised version. Submitted to Phys. Rev.
Fragmentation production of doubly heavy baryons
Baryons with a single heavy quark are being studied experimentally at
present. Baryons with two units of heavy flavor will be abundantly produced not
only at future colliders, but also at existing facilities. In this paper we
study the production via heavy quark fragmentation of baryons containing two
heavy quarks at the Tevatron, the LHC, HERA, and the NLC. The production rate
is woefully small at HERA and at the NLC, but significant at and
machines. We present distributions in various kinematical variables
in addition to the integrated cross sections at hadron colliders.Comment: 13 pages, macro package epsfig needed, 6 .eps figure files in a
separate uuencoded, compressed and tarred file; complete paper available at
http://www.physics.carleton.ca/~mad/papers/paper.p
Optimal Renormalization Scale and Scheme for Exclusive Processes
We use the BLM method to fix the renormalization scale of the QCD coupling in
exclusive hadronic amplitudes such as the pion form factor and the
photon-to-pion transition form factor at large momentum transfer.
Renormalization-scheme-independent commensurate scale relations are established
which connect the hard scattering subprocess amplitudes that control exclusive
processes to other QCD observables such as the heavy quark potential and the
electron-positron annihilation cross section. The commensurate scale relation
connecting the heavy quark potential, as determined from lattice gauge theory,
to the photon-to-pion transition form factor is in excellent agreement with
data assuming that the pion distribution amplitude is
close to its asymptotic form . We also reproduce the
scaling and normalization of the data at large
momentum transfer. Because the renormalization scale is small, we argue that
the effective coupling is nearly constant, thus accounting for the nominal
scaling behavior of the data. However, the normalization of the space-like pion
form factor obtained from electroproduction experiments is
somewhat higher than that predicted by the corresponding commensurate scale
relation. This discrepancy may be due to systematic errors introduced by the
extrapolation of the electroproduction data to the
pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added,
discussion of scale fixing revised for clarity. Final version to appear in
Phys. Rev.
Charmed quark component of the photon wave function
We determine the c-anti-c component of the photon wave function on the basis
of (i) the data on the transitions e+ e- -> J/psi(3096), psi(3686), psi(4040),
psi(4415), (ii) partial widths of the two-photon decays eta_{c0}(2979),
chi_{c0}(3415), chi_{c2}(3556) -> gamma-gamma, and (iii) wave functions of the
charmonium states obtained by solving the Bethe-Salpeter equation for the
c-anti-c system. Using the obtained c-anti-c component of the photon wave
function we calculate the gamma-gamma decay partial widths for radial
excitation 2S state, eta_{c0}(3594) -> gamma-gamma, and 2P states
chi_{c0}(3849), chi_{c2}(3950) -> gamma-gamma.Comment: 20 pages, 8 figure
Importance of clarifying patients\u27 desired role in shared decision making to match their level of engagement with their preferences
Analysis and support of clinical decision makin
Who and when should we screen for prostate cancer? Interviews with key opinion leaders
Prostate cancer screening using prostate-specific antigen (PSA) is highly controversial. In this Q & A, Guest Editors for BMC Medicine's 'Spotlight on Prostate Cancer' article collection, Sigrid Carlsson and Andrew Vickers, invite some of the world's key opinion leaders to discuss who, and when, to screen for prostate cancer. In response to the points of view from the invited experts, the Guest Editors summarize the experts' views and give their own personal opinions on PSA screening
- âŠ