9 research outputs found
Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis.
Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis.This work was supported by grants from Ministerio de Economía y Competitividad (SAF2012-40107), Generalitat Valenciana (Programa ACOMP2014-258) and Fundación BBVA to SRF and grants from the MRC, Wellcome Trust and EU FP7 Ingenium Training Network to AFS. AW and TRM were supported by the Association for International Cancer Research and Medical Research Council, UK.SRF was a recipient of a Herchel-Smith fellowship and currently is a Ramón y Cajal investigator. ADM is funded by a Spanish FPU fellowship program of the Ministerio de Educación, Cultura y Deporte. AR was from the Erasmus Placement Program.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms926
The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization
During preimplantation development, contractile forces generated at the apical cortex segregate cells into inner and outer positions of the embryo, establishing the inner cell mass (ICM) and trophectoderm. To which extent these forces influence ICM-trophectoderm fate remains unresolved. Here, we found that the nuclear lamina is coupled to the cortex via an F-actin meshwork in mouse and human embryos. Actomyosin contractility increases during development, upregulating Lamin-A levels, but upon internalization cells lose their apical cortex and downregulate Lamin-A. Low Lamin-A shifts the localization of actin nucleators from nucleus to cytoplasm increasing cytoplasmic F-actin abundance. This results in stabilization of Amot, Yap phosphorylation and acquisition of ICM over trophectoderm fate. By contrast, in outer cells, Lamin-A levels increase with contractility. This prevents Yap phosphorylation enabling Cdx2 to specify the trophectoderm. Thus, forces transmitted to the nuclear lamina control actin organization to differentially regulate the factors specifying lineage identity
The atypical CDK activator RingoA/Spy1 regulates exit from quiescence in neural stem cells
In the adult mammalian brain, most neural stem cells (NSCs) are held in a reversible state of quiescence, which is essential to avoid NSC exhaustion and determine the appropriate neurogenesis rate. NSCs of the mouse adult subependymal niche provide neurons for olfactory circuits and can be found at different depths of quiescence, but very little is known on how their quiescence-to-activation transition is controlled. Here, we identify the atypical cyclin-dependent kinase (CDK) activator RingoA as a regulator of this process. We show that the expression of RingoA increases the levels of CDK activity and facilitates cell cycle entry of a subset of NSCs that divide slowly. Accordingly, RingoA-deficient mice exhibit reduced olfactory neurogenesis with an accumulation of quiescent NSCs. Our results indicate that RingoA plays an important role in setting the threshold of CDK activity required for adult NSCs to exit quiescence and may represent a dormancy regulator in adult mammalian tissues.© 2023 The Author(s)
Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis
Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller.© 2023. The Author(s)
Pre-exposure prophylaxis with hydroxychloroquine for COVID-19 : a double-blind, placebo-controlled randomized clinical trial
Background: Pre-exposure prophylaxis (PrEP) is a promising strategy to break COVID-19 transmission. Although hydroxychloroquine was evaluated for treatment and post-exposure prophylaxis, it is not evaluated for COVID-19 PrEP yet. The aim of this study was to evaluate the efficacy and safety of PrEP with hydroxychloroquine against placebo in healthcare workers at high risk of SARS-CoV-2 infection during an epidemic period. Methods: We conducted a double-blind placebo-controlled randomized clinical trial in three hospitals in Barcelona, Spain. From 350 adult healthcare workers screened, we included 269 participants with no active or past SARS-CoV-2 infection (determined by a negative nasopharyngeal SARS-CoV-2 PCR and a negative serology against SARS-CoV-2). Participants allocated in the intervention arm (PrEP) received 400 mg of hydroxychloroquine daily for the first four consecutive days and subsequently, 400 mg weekly during the study period. Participants in the control group followed the same treatment schedule with placebo tablets. Results: 52.8% (142/269) of participants were in the hydroxychloroquine arm and 47.2% (127/269) in the placebo arm. Given the national epidemic incidence decay, only one participant in each group was diagnosed with COVID-19. The trial was stopped due to futility and our study design was deemed underpowered to evaluate any benefit regarding PrEP efficacy. Both groups showed a similar proportion of participants experiencing at least one adverse event (AE) (p=0.548). No serious AEs were reported. Almost all AEs (96.4%, 106/110) were mild. Only mild gastrointestinal symptoms were significantly higher in the hydroxychloroquine arm compared to the placebo arm (27.4% (39/142) vs 15.7% (20/127), p=0.041). Conclusions: Although the efficacy of PrEP with hydroxychloroquine for preventing COVID-19 could not be evaluated, our study showed that PrEP with hydroxychloroquine at low doses is safe. Trial registration: ClinicalTrials.govNCT04331834. Registered on April 2, 2020
Recommended from our members
Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis.
Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis
The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization
Abstract During preimplantation development, contractile forces generated at the apical cortex segregate cells into inner and outer positions of the embryo, establishing the inner cell mass (ICM) and trophectoderm. To which extent these forces influence ICM-trophectoderm fate remains unresolved. Here, we found that the nuclear lamina is coupled to the cortex via an F-actin meshwork in mouse and human embryos. Actomyosin contractility increases during development, upregulating Lamin-A levels, but upon internalization cells lose their apical cortex and downregulate Lamin-A. Low Lamin-A shifts the localization of actin nucleators from nucleus to cytoplasm increasing cytoplasmic F-actin abundance. This results in stabilization of Amot, Yap phosphorylation and acquisition of ICM over trophectoderm fate. By contrast, in outer cells, Lamin-A levels increase with contractility. This prevents Yap phosphorylation enabling Cdx2 to specify the trophectoderm. Thus, forces transmitted to the nuclear lamina control actin organization to differentially regulate the factors specifying lineage identity
Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis
Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller