18 research outputs found

    Metabolic control of tumor growth by mitochondrial A-KINASE anchor protein 1 (AKAP1)

    Get PDF
    Mitochondria are powerhouses present in all eukaryotic cells that play a fundamental role in energy production, survival and metabolism. In cancer cells, mitochondria provide the building blocks for the biogenesis of cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for cancer growth and spreading in vivo. AKAP1 is a scaffold protein that integrates and focus cAMP and src signaling on mitochondria, regulating protein synthesis, organelle biogenesis, oxidative metabolism and cell survival. During my thesis, I analyzed the mechanisms controlling the expression of AKAP1 in cancer cells and the role of this anchor protein in the control of metabolic pathways and cancer growth. I found that transcription and accumulation of AKAP1 are induced by the Myc proto-oncogene and by steroid hormones. I detected high levels of AKAP1 in a wide variety of high-grade human cancer tissues and cells, including prostate cancer, breast cancer and glioblastoma (GBM). I demonstrated that AKAP1 is required for mTOR pathway, oxidative metabolism and cancer growth, both in vitro and in vivo. Interestingly, I discovered a link between DNA damage pathways and AKAP1. In particular, I found that, in course of DNA damage, AKAP1 is phosphorylated by ATM/ATR kinase at its PKA binding domain. Phosphorylation of AKAP1 by ATM inhibits PKA targeting to mitochondria and downregulates oxidative metabolism. These data disclose a previously unrecognized role of AKAP1 in mTOR pathway and cancer growth AKAP1 and identify AKAP1 as a novel biologically relevant target of the DNA damage pathways

    The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells

    Get PDF
    Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology

    nuclear encoded ncx3 and akap121 two novel modulators of mitochondrial calcium efflux in normoxic and hypoxic neurons

    Get PDF
    Abstract Mitochondria are highly dynamic organelles extremely important for cell survival. Their structure resembles that of prokaryotic cells since they are composed with two membranes, the inner (IMM) and the outer mitochondrial membrane (OMM) delimitating the intermembrane space (IMS) and the matrix which contains mitochondrial DNA (mtDNA). This structure is strictly related to mitochondrial function since they produce the most of the cellular ATP through the oxidative phosphorylation which generate the electrochemical gradient at the two sides of the inner mitochondrial membrane an essential requirement for mitochondrial function. Cells of highly metabolic demand like those composing muscle, liver and brain, are particularly dependent on mitochondria for their activities. Mitochondria undergo to continual changes in morphology since, they fuse and divide, branch and fragment, swell and extend. Importantly, they move throughout the cell to deliver ATP and other metabolites where they are mostly required. Along with the capability to control energy metabolism, mitochondria play a critical role in the regulation of many physiological processes such as programmed cell death, autophagy, redox signalling, and stem cells reprogramming. All these phenomena are regulated by Ca2+ ions within this organelle. This review will discuss the molecular mechanisms regulating mitochondrial calcium cycling in physiological and pathological conditions with particular regard to their impact on mitochondrial dynamics and function during ischemia. Particular emphasis will be devoted to the role played by NCX3 and AKAP121 as new molecular targets for mitochondrial function and dysfunction

    Akap1 deficiency promotes mitochondrial aberrations and exacerbates cardiac injury following permanent coronary ligation via enhanced mitophagy and apoptosis

    Get PDF
    A-kinase anchoring proteins (AKAPs) transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS) production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2). In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1(-/-)), Siah2 knockout mice (Siah2(-/-)) or their wild-type (wt) littermates underwent myocardial infarction (MI) by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham). Twenty-four hours after coronary ligation, Akap1(-/-) mice displayed larger infarct size compared to Siah2(-/-) or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1(-/-) mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1(-/-) mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets

    Ncx3-Induced Mitochondrial Dysfunction in Midbrain Leads to Neuroinflammation in Striatum of A53t-α-Synuclein Transgenic Old Mice

    No full text
    The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson’s disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging

    Ubiquitylation of BBSome is required for ciliary assembly and signaling

    No full text
    Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1 K143R) affects the trafficking of G-proteincoupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1 K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model

    Mitochondrial AKAP1 supports mTOR pathway and tumor growth

    No full text
    Mitochondria are the powerhouses of energy production and the sites where metabolic pathway and survival signals integrate and focus, promoting adaptive responses to hormone stimulation and nutrient availability. Increasing evidence suggests that mitochondrial bioenergetics, metabolism and signaling are linked to tumorigenesis. AKAP1 scaffolding protein integrates cAMP and src signaling on mitochondria, regulating organelle biogenesis, oxidative metabolism and cell survival. Here, we provide evidence that AKAP1 is a transcriptional target of Myc and supports the growth of cancer cells. We identify Sestrin2, a leucine sensor and inhibitor of the mammalian target of rapamycin (mTOR), as a novel component of the complex assembled by AKAP1 on mitochondria. Downregulation of AKAP1 impaired mTOR pathway and inhibited glioblastoma growth. Both effects were reversed by concomitant depletion of AKAP1 and sestrin2. High levels of AKAP1 were found in a wide variety of high-grade cancer tissues. In lung cancer, AKAP1 expression correlates with high levels of Myc, mTOR phosphorylation and reduced patient survival. Collectively, these data disclose a previously unrecognized role of AKAP1 in mTOR pathway regulation and cancer growth. AKAP1/mTOR signal integration on mitochondria may provide a new target for cancer therapy

    Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth

    No full text
    Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth
    corecore