723 research outputs found
Lipidomics signature in post-COVID patient sera and its influence on the prolonged inflammatory response
Background: The ongoing issues with post-COVID conditions (PCC), where symptoms persist long after the initial infection, highlight the need for research into blood lipid changes in these patients. While most studies focus on the acute phase of COVID-19, there's a significant lack of information on the lipidomic changes that occur in the later stages of the disease. Addressing this knowledge gap is critical for understanding the long-term effects of COVID-19 and could be key to developing personalized treatments for those suffering from PCC. Methods: We employed untargeted lipidomics to analyze plasma samples from 147 PCC patients, assessing nearly 400 polar lipids. Data mining (DM) and machine learning (ML) tools were utilized to decode the results and ascertain significant lipidomic patterns. Results: The study uncovered substantial changes in various lipid subclasses, presenting a detailed profile of the polar lipid fraction in PCC patients. These alterations correlated with ongoing inflammation and immune response. Notably, there were elevated levels of lysophosphatidylglycerols (LPGs) and phosphatidylethanolamines (PEs), and reduced levels of lysophosphatidylcholines (LPCs), suggesting these as potential lipid biomarkers for PCC. The lipidomic signatures indicated specific anionic lipid changes, implicating antimicrobial peptides (AMPs) in inflammation. Associations between particular medications and symptoms were also suggested. Classification models, such as multinomial regression (MR) and random forest (RF), successfully differentiated between symptomatic and asymptomatic PCC groups using lipidomic profiles. Conclusions: The study's groundbreaking discovery of specific lipidomic disruptions in PCC patients marks a significant stride in the quest to comprehend and combat this condition. The identified lipid biomarkers not only pave the way for novel diagnostic tools but also hold the promise to tailor individualized therapeutic strategies, potentially revolutionizing the clinical approach to managing PCC and improving patient care
SMS-Builder: An adaptive software tool for building systematic mapping studies
A Systematic Mapping Study is an instrument frequently used to carry out a search process, identification,
and classification of studies in different fields. Researchers in front of this type of process have
a challenge while managing the data about these studies. This paper presents a software tool that
has been created to help those who need to build a systematic mapping study. In addition, this work
follows the evidence-based software engineering approach and extends it through a software tool by
including different ways of adapting this process
Study-based Systematic Mapping Analysis of Cloud Technologies for Leveraging IT Resource and Service Management: The Case Study of the Science Gateway Approach
Currently, there is a proliferation of technological tools with a Science Gateway approach. For IT administrators manage these kinds of tools is not a trivial activity, although there is a significant volume of related studies. This situation represents a latent challenge to IT administrators in TERS (Technology Ecosystem for Research Support). This paper analyzes and classifies studies related to IT resources and services management applicable to this type of technology ecosystem. Methodologically we used an adaptation of guidelines aimed at the construction of a SMS (Systematic Mapping Study). Additionally, we performed an analysis of the papers to recognize inferences and trends in them, which allowed us to claim that cloud computing technology plays a predominant role. We consider it good practice for implementations that support research processes. In this sense, we recommend to those interested in this topic to prioritize cloud technologies to achieve an adequate management of the set of IT resources and services used to support Science Gateway environments
Mental Health Disturbance after a Major Earthquake in Northern Peru: A Preliminary, Cross-Sectional Study
Little has been studied in Peru on the mental health repercussions after a major earthquake.We aimed to explore the factors associated with depressive and anxiety symptoms in people whoexperienced a 6.1 magnitude earthquake in Piura, Peru, on 30 July 2021. A preliminary cross-sectional study was conducted in the general population between AugustâSeptember 2021. An onlinequestionnaire was provided using PHQ-9, GAD-7, and other relevant measures. Generalized linearmodels were applied. Of the 177 participants, the median age was 22 years, the majority were female(56%), and many experienced depressive (52%) or anxiety symptoms (52%). Presence of depressivesymptoms was associated with a personal history of mental disorder, moderate housing damage,social/material support from politicians, moderate food insecurity, and insomnia. Presence of anxietysymptoms was associated with physical injury caused by the earthquake, mild food insecurity, andinsomnia. The development of depressive and anxiety symptoms following the 2021 earthquakeexperienced in Piura depended on multiple individual and socioeconomic factors. Additional studiesshould reinforce the factors identified here given the methodological limitations, such as the studydesign, sampling method, and sample size. This would lead to effective intervention measures tomitigate the impact of earthquakes on mental health
Cardiac dysfunction and remodeling regulated by anti-angiogenic environment in patients with preeclampsia : the ANGIOCOR prospective cohort study protocol
Background: Cardiovascular diseases (CVD) are cause of increased morbidity and mortality in spite of advances for diagnosis and treatment. Changes during pregnancy affect importantly the maternal CV system. Pregnant women that develop preeclampsia (PE) have higher risk (up to 4 times) of clinical CVD in the short- and long-term. Predominance of an anti-angiogenic environment during pregnancy is known as main cause of PE, but its relationship with CV complications is still under research. We hypothesize that angiogenic factors are associated to maternal cardiac dysfunction/remodeling and that these may be detected by new cardiac biomarkers and maternal echocardiography. Methods: Prospective cohort study of pregnant women with high-risk of PE in first trimester screening, established diagnosis of PE during gestation, and healthy pregnant women (total intended sample size n = 440). Placental biochemical and biophysical cardiovascular markers will be assessed in the first and third trimesters of pregnancy, along with maternal echocardiographic parameters. Fetal cardiac function at third trimester of pregnancy will be also evaluated and correlated with maternal variables. Maternal cardiac function assessment will be determined 12 months after delivery, and correlation with CV and PE risk variables obtained during pregnancy will be evaluated. Discussion: The study will contribute to characterize the relationship between anti-angiogenic environment and maternal CV dysfunction/remodeling, during and after pregnancy, as well as its impact on future CVD risk in patients with PE. The ultimate goal is to improve CV health of women with high-risk or previous PE, and thus, reduce the burden of the disease. Trial registration: NCT04162236
Population genomics applications for conservation: the case of the tropical dry forest dweller Peromyscus melanophrys
Recent advances in genomic sequencing have opened new horizons in the study of population genetics and evolution in non-model organisms. However, very few population genomic studies have been performed on wild mammals to understand how the landscape affects the genetic structure of populations, useful information for the conservation of biodiversity. Here, we applied a genomic approach to evaluate the relationship between habitat features and genetic patterns at spatial and temporal scales in an endangered ecosystem, the Tropical Dry Forest (TDF). We studied populations of the Plateau deer mouse Peromyscus melanophrys to analyse its genomic diversity and structure in a TDF protected area in the Huautla Mountain Range (HMR), Mexico based on 8,209 SNPs obtained through Genotyping-by-Sequencing. At a spatial scale, we found a significant signature of isolation-by-distance, few significant differences in genetic diversity indices among study sites, and no significant differences between habitats with different levels of human perturbation. At a temporal scale, while genetic diversity levels fluctuated significantly over time, neither seasonality nor disturbance levels had a significant effect. Also, outlier analysis revealed loci potentially under selection. Our results suggest that the population genetics of P. melanophrys may be little impacted by anthropogenic disturbances, or by natural spatial and temporal habitat heterogeneity in our study area. The genome-wide approach adopted here provides data of value for conservation planning, and a baseline to be used as a reference for future studies on the effects of habitat fragmentation and seasonality in the HMR and in TDF
Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes
Context. QSO B0218+357 is a gravitationally lensed blazar located at a
redshift of 0.944. The gravitational lensing splits the emitted radiation into
two components, spatially indistinguishable by gamma-ray instruments, but
separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a
violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes.
Aims. The spectral energy distribution of QSO B0218+357 can give information on
the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the
gamma-ray emission can also be used as a probe of the extragalactic background
light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during
the expected arrival time of the delayed component of the emission. The MAGIC
and Fermi-LAT observations were accompanied by quasi-simultaneous optical data
from the KVA telescope and X-ray observations by Swift-XRT. We construct a
multiwavelength spectral energy distribution of QSO B0218+357 and use it to
model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC,
are used to set constraints on the extragalactic background light. Results.
Very high energy gamma-ray emission was detected from the direction of QSO
B0218+357 by the MAGIC telescopes during the expected time of arrival of the
trailing component of the flare, making it the farthest very high energy
gamma-ray sources detected to date. The observed emission spans the energy
range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy
distribution of QSO B0218+357 is consistent with current extragalactic
background light models. The broad band emission can be modeled in the
framework of a two zone external Compton scenario, where the GeV emission comes
from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&
Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009
We study the multi-band variability and correlations of the TeV blazar Mrk
421 on year time scales, which can bring additional insight on the processes
responsible for its broadband emission. We observed Mrk 421 in the very high
energy (VHE) gamma-ray range with the Cherenkov telescope MAGIC-I from March
2007 to June 2009 for a total of 96 hours of effective time after quality cuts.
The VHE flux variability is quantified with several methods, including the
Bayesian Block algorithm, which is applied to data from Cherenkov telescopes
for the first time. The 2.3 year long MAGIC light curve is complemented with
data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO,
and Mets\"ahovi telescopes from February 2007 to July 2009, allowing for an
excellent characterisation of the multi-band variability and correlations over
year time scales. Mrk 421 was found in different gamma-ray emission states
during the 2.3 year long observation period. Flares and different levels of
variability in the gamma-ray light curve could be identified with the Bayesian
Block algorithm. The same behaviour of a quiet and active emission was found in
the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct
correlation in time. The behaviour of the optical light curve of GASP-WEBT and
the radio light curves by OVRO and Mets\"ahovi are different as they show no
coincident features with the higher energetic light curves and a less variable
emission. The fractional variability is overall increasing with energy. The
comparable variability in the X-ray and VHE bands and their direct correlation
during both high- and low-activity periods spanning many months show that the
electron populations radiating the X-ray and gamma-ray photons are either the
same, as expected in the Synchrotron-Self-Compton mechanism, or at least
strongly correlated, as expected in electromagnetic cascades.Comment: Corresponding authors: Ann-Kristin Overkemping
([email protected]), Marina Manganaro
([email protected]), Diego Tescaro ([email protected]), To be published
in Astronomy&Astrophysics (A&A), 12 pages, 9 figure
Investigating the peculiar emission from the new VHE gamma-ray source H1722+119
The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed
the BL Lac object H1722+119 (redshift unknown) for six consecutive nights
between 2013 May 17 and 22, for a total of 12.5 h. The observations were
triggered by high activity in the optical band measured by the KVA (Kungliga
Vetenskapsakademien) telescope. The source was for the first time detected in
the very high energy (VHE, GeV) -ray band with a statistical
significance of 5.9 . The integral flux above 150 GeV is estimated to
be per cent of the Crab Nebula flux. We used contemporaneous
high energy (HE, 100 MeV GeV) -ray observations from
Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within
the framework of the current extragalactic background light models, we estimate
the redshift to be . Additionally, we used contemporaneous
X-ray to radio data collected by the instruments on board the Swift satellite,
the KVA, and the OVRO (Owens Valley Radio Observatory) telescope to study
multifrequency characteristics of the source. We found no significant temporal
variability of the flux in the HE and VHE bands. The flux in the optical and
radio wavebands, on the other hand, did vary with different patterns. The
spectral energy distribution (SED) of H1722+119 shows surprising behaviour in
the Hz frequency range. It can be modelled
using an inhomogeneous helical jet synchrotron self-Compton model.Comment: 12 pages, 5 figures, 2 table
- âŠ