932 research outputs found

    On the interaction of a small number of transverse and longitudinal modes in a plasma

    Get PDF
    Equations for interaction of large amplitude transverse and longitudinal waves in Vlasov plasm

    Collisions and nonlinear effects in plasmas

    Get PDF
    Investigation of nonlinear and collision effects in behavior of plasmas for electron gas embedded in neutralizing uniformly smeared-out background of positive charg

    Astrophysical SS factor for the 15N(p,γ)16O{}^{15}{\rm N}(p,\gamma){}^{16}{\rm O} reaction from RR-matrix analysis and asymptotic normalization coefficient for 16O15N+p{}^{16}{\rm O} \to {}^{15}{\rm N} + p. Is any fit acceptable?

    Get PDF
    The 15N(p,γ)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction provides a path from the CN cycle to the CNO bi-cycle and CNO tri-cycle. The measured astrophysical factor for this reaction is dominated by resonant capture through two strong Jπ=1J^{\pi}=1^{-} resonances at ER=312E_{R}= 312 and 962 keV and direct capture to the ground state. Recently, a new measurement of the astrophysical factor for the 15N(p,γ)16O^{15}{\rm N}(p,\gamma)^{16}{\rm O} reaction has been published [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. The analysis has been done using the RR-matrix approach with unconstrained variation of all parameters including the asymptotic normalization coefficient (ANC). The best fit has been obtained for the square of the ANC C2=539.2C^{2}= 539.2 fm1{}^{-1}, which exceeds the previously measured value by a factor of 3\approx 3. Here we present a new RR-matrix analysis of the Notre Dame-LUNA data with the fixed within the experimental uncertainties square of the ANC C2=200.34C^{2}=200.34 fm1{}^{-1}. Rather than varying the ANC we add the contribution from a background resonance that effectively takes into account contributions from higher levels. Altogether we present 8 fits, five unconstrained and three constrained. In all the fits the ANC is fixed at the previously determined experimental value C2=200.34C^{2}=200.34 fm1{}^{-1}. For the unconstrained fit with the boundary condition Bc=Sc(E2)B_{c}=S_{c}(E_{2}), where E2E_{2} is the energy of the second level, we get S(0)=39.0±1.1S(0)=39.0 \pm 1.1 keVb and normalized χ~2=1.84{\tilde \chi}^{2}=1.84, i.e. the result which is similar to [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. From all our fits we get the range 33.1S(0)40.133.1 \leq S(0) \leq 40.1 keVb which overlaps with the result of [P. J. LeBlanc {\it et al.}, Phys. Rev. {\bf C 82}, 055804 (2010)]. We address also physical interpretation of the fitting parameters.Comment: Submitted to PR

    Coulomb renormalization and ratio of proton and neutron asymptotic normalization coefficients for mirror nuclei

    Full text link
    Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing important role in nuclear reactions, nuclear structure and nuclear astrophysics. In this paper the physical reasons of the Coulomb renormalization of the ANC are addressed. Using Pinkston-Satchler equation the ratio for the proton and neutron ANCs of mirror nuclei is obtained in terms of the Wronskians from the radial overlap functions and regular solutions of the two-body Schr\"odinger equation with the short-range interaction excluded. This ratio allows one to use microscopic overlap functions for mirror nuclei in the internal region, where they are the most accurate, to correctly predict the ratio of the ANCs for mirror nuclei, which determine the amplitudes of the tails of the overlap functions. Calculations presented for different nuclei demonstrate the Coulomb renormalization effects and independence of the ratio of the nucleon ANCs for mirror nuclei on the channel radius. This ratio is valid both for bound states and resonances. One of the goals of this paper is to draw attention on the possibility to use the Coulomb renormalized ANCs rather than the standard ones especially when the standard ANCs are too large.Comment: 20 pages, 14 figure

    Theory of deuteron stripping. From surface integrals to generalized RR-matrix approach

    Get PDF
    There are two main reasons for absence of the practical theory of stripping to resonance states which could be used by experimental groups: numerical problem of the convergence of the DWBA matrix element when the full transition operator is included and it is unclear what spectroscopic information can be extracted from the analysis of transfer reactions populating the resonance states. The purpose of this paper is to address both questions. The theory of the deuteron stripping is developed, which is based on the post continuum discretized coupled channels (CDCC) formalism going beyond of the DWBA and surface integral formulation of the reaction theory [A. S. Kadyrov et al., Ann. Phys. {\bf 324}, 1516 (2009)]. First, the formalism is developed for the DWBA and then extended to the CDCC formalism, which is ultimate goal of this work. The CDCC wave function takes into account not only the initial elastic d+Ad+ A channel but also its coupling to the deuteron breakup channel p+n+Ap + n + A missing in the DWBA. Stripping to both bound states and resonances are included. The convergence problem for stripping to resonance states is solved in the post CDCC formalism. The reaction amplitude is parametrized in terms of the reduced width amplitudes (ANCs), inverse level matrix, boundary condition and channel radius, that is the same parameters which are used in the conventional RR-matrix method. For stripping to resonance states many-level, one and two-channel cases are considered. The theory provides a consistent tool to analyze both binary resonant reactions and deuteron stripping in terms of the same parameters.Comment: 37 page

    Bound, virtual and resonance SS-matrix poles from the Schr\"odinger equation

    Get PDF
    A general method, which we call the potential SS-matrix pole method, is developed for obtaining the SS-matrix pole parameters for bound, virtual and resonant states based on numerical solutions of the Schr\"odinger equation. This method is well-known for bound states. In this work we generalize it for resonant and virtual states, although the corresponding solutions increase exponentially when rr\to\infty. Concrete calculations are performed for the 1+1^+ ground and the 0+0^+ first excited states of 14N^{14}\rm{N}, the resonance 15F^{15}\rm{F} states (1/2+1/2^+, 5/2+5/2^+), low-lying states of 11Be^{11}\rm{Be} and 11N^{11}\rm{N}, and the subthreshold resonances in the proton-proton system. We also demonstrate that in the case the broad resonances their energy and width can be found from the fitting of the experimental phase shifts using the analytical expression for the elastic scattering SS-matrix. We compare the SS-matrix pole and the RR-matrix for broad s1/2s_{1/2} resonance in 15F{}^{15}{\rm F}Comment: 14 pages, 5 figures (figures 3 and 4 consist of two figures each) and 4 table

    Coherent η\eta-photoproduction on 4^4He and 12^{12}C in the near-threshold region

    Get PDF
    Coherent η\eta meson photoproduction on 4^4He and 12^{12}C is considered in the near-threshold region. The elementary η\eta photoproduction operator includes contributions from the S11(1535)S_{11}(1535) and D13(1520)D_{13}(1520) resonances as well as tt-channel vector meson exchange and the nucleon pole terms. Due to the suppression of the dominant S11(1535)S_{11}(1535) resonance for spin and isospin saturated nuclei, the reaction is mainly governed by ω\omega exchange. Furthermore, the influence of Fermi motion and of different prescriptions for the choice of the invariant reaction energy WγNW_{\gamma N} in the elementary amplitude is studied.Comment: 27 pages revtex including 9 postscript figure

    New high order relations between physical observables in perturbative QCD

    Get PDF
    We exploit the fact that within massless perturbative QCD the same Green's function determines the hadronic contribution to the τ\tau decay width and the moments of the e+ee^+e^- cross section. This allows one to obtain relations between physical observables in the two processes up to an unprecedented high order of perturbative QCD. A precision measurement of the τ\tau decay width allows one then to predict the first few moments of the spectral density in e+ee^+e^- annihilations integrated up to smτ2s\sim m_\tau^2 with high accuracy. The proposed tests are in reach of present experimental capabilities.Comment: 7 pages, Latex, no figure

    Rho primes in analyzing e+e- annihilation, MARK III, LASS and ARGUS data

    Get PDF
    The results of an analysis are presented of some recent data on the reactions e+eπ+ππ+πe^+e^-\to\pi^+\pi^-\pi^+\pi^-, e+eπ+ππ0π0e^+e^-\to\pi^+\pi^-\pi^0\pi^0 with the subtracted ωπ0\omega\pi^0 events, e+eωπ0e^+e^-\to\omega\pi^0, e+eηπ+πe^+e^-\to\eta \pi^+\pi^-, e+eπ+πe^+e^-\to\pi^+\pi^-, Kpπ+πΛK^-p\to\pi^+\pi^-\Lambda, the decays J/ψπ+ππ0J/\psi\to\pi^+\pi^-\pi^0, tauνtauπ+πππ0tau^-\to\nu_tau\pi^+\pi^-\pi^-\pi^0 tauντωπtau^-\to\nu_\tau\omega\pi^-, upon taking into account both the strong energy dependence of the partial widths on energy and the previously neglected mixing of the ρ\rho type resonances. The above effects are shown to exert an essential influence on the specific values of masses and coupling constants of heavy resonances and hence are necessary to be accounted for in establishing their true nature.Comment: 20 pages, ReVTeX, 9 Postscript figures As compared to hep-ph/9607398, new material concerning the analysis of the ARGUS data on the tau decays into four pion hadronic states is adde
    corecore