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There are two main reasons for absence of the practical theory of stripping to resonance states
which could be used by experimental groups: numerical problem of the convergence of the DWBA
matrix element when the full transition operator is included and it is unclear what spectroscopic
information can be extracted from the analysis of transfer reactions populating the resonance states.
The purpose of this paper is to address both questions. The theory of the deuteron stripping is
developed, which is based on the post continuum discretized coupled channels (CDCC) formalism
going beyond of the DWBA and surface integral formulation of the reaction theory [A. S. Kadyrov
et al., Ann. Phys. 324, 1516 (2009)]. First, the formalism is developed for the DWBA and
then extended to the CDCC formalism, which is ultimate goal of this work. The CDCC wave
function takes into account not only the initial elastic d + A channel but also its coupling to the
deuteron breakup channel p + n + A missing in the DWBA. Stripping to both bound states and
resonances are included. The convergence problem for stripping to resonance states is solved in
the post CDCC formalism. The reaction amplitude is parametrized in terms of the reduced width
amplitudes (ANCs), inverse level matrix, boundary condition and channel radius, that is the same
parameters which are used in the conventional R-matrix method. For stripping to resonance states
many-level, one and two-channel cases are considered. The theory provides a consistent tool to
analyze both binary resonant reactions and deuteron stripping in terms of the same parameters.
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I. INTRODUCTION

Production of unstable nuclei close to proton and neu-
tron drip lines has become possible in recent years, mak-
ing deuteron stripping reactions (d, p) and (d, n) on these
nuclei (in inverse kinematics) not only more and more
feasible as beam intensity increasing but also a unique
tool to study unstable nuclei and astrophysical (n, v),
(p,7v) and (p, o) processes. The deuteron stripping re-
actions populating resonance states of final nuclei are
important and most challenging part of reactions on un-
statble nuclei. If for nucleon transfer reactions popu-
lating bound states for about fifty years experimental-
ists used the standard distorted waves Born approxima-
tion (DWBA), an adequate theory for transfer reactions
to resonance states yet to be developed. By standard
DWBA I mean the approach in which the one-step trans-
fer matrix element is evaluated with incoming and out-
going distorted waves calculated by fitting the deuteron
and proton elastic scattering with local optical potentials.
The transition operator contains finite range effects as
well as the full complex remnant term. The main idea
of the DWBA is that the transition matrix element is so
small that one can use the first order perturbation theory.
Since the nuclear potential is quite large by itself (~ 100
MeV), the smallness of the transition operator can be
fulfilled only if the reaction is peripheral enough, so that
the non-diagonal matrix element, representing the trans-
fer reaction amplitude, becomes small. However, since
the resonance wave function is large in the nuclear inte-
rior and different channels are coupled in the nuclear in-
terior, the character of the stripping to resonances can be

quite different from the stripping to bound states. Nowa-
days the standard DWBA is gradually being replaced
by more advanced approaches like continuum dicretized
coupled channels (CDCC) [1H3], adiabatic distorted wave
(ADWA) [4], coupled reaction channels (CRC) and the
coupled channels in Born approximation (CCBA) avail-
able in FRESCO code [5]. There are two main reasons for
absence of the practical theory of stripping to resonance
states which could be used by experimental groups. First
one is the numerical problem of the convergence of the
DWBA matrix element when the full transition operator
is included. However, it is only a technical problem. The
second pure scientific unsolved problem is what spectro-
scopic information can be extracted from the analysis of
transfer reactions populating the resonance states. Be-
sides, since the standard DWBA is deficient to more ad-
vanced methods like CDCC or ADWA, a new approach
should go beyond of the DWBA.

Majority of theoretical works devoted to the develop-
ment of the theory of single-nucleon stripping into un-
bound states of the residual nucleus have been published
in 1970-s ﬂa—lﬂ] Great interest in these reactions at that
time stemmed primarily from the fact that they allow one
to extract reliable information on the properties of nu-
clear resonant states by means of the combined analysis
of the data on stripping and elastic resonant scattering
of nucleons from the target nucleus B, 13, [15, ] In
most of the cited works the theory of stripping into reso-
nant states was developed within the standard DWBA
by analogy with usual stripping to bound states. In
this case the expression for the reaction amplitude ob-
tained instead of the bound-state wave function for the
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captured nucleon (form factor) contained a continuum
wave function which leads to slow convergence of the ra-
dial integrals or even to their divergence depending on
the choice of this wave function. In Refs. [6, 19, [11] the
form factor was taken to be a scattering wave function,
which described the resonant scattering of the nucleon
from the target nucleus. This wave function was calcu-
lated using a single-particle potential whose parameters
were adjusted to give a resonance with the correspond-
ing properties. The Gamov decaying-state wave function
and the Weinberg wave function which are regular at
the origin and purely outgoing at infinity were used in
Refs. [10] and [14], respectively. Various methods were
suggested to calculate radial integrals practically with
the above-mentioned form factors: (i) the introduction of
the convergence factor exp(—ar) into the integrand [6];
the integral obtained was calculated for various a > 0
and then its values were extrapolated numerically to the
limit of @ = 0; (ii) the method of contour integration
in the complex r-plane (complex scaling) [9]; (iii) the
method based on the correct account of the boundary
conditions in the three-body scattering problem [11]; (iv)
the Zeldowich-Berggren method [20] of the regularization
of integrals containing the Gamov function in which the
convergence factor exp(—ar?) was introduced [10]; (v)
the pseudo-bound-states method [14]. The methods (ii)
and (iii) were most convenient for numerical calculations.
Although the above methods allow one to avoid formal
difficulties, nevertheless all the methods are rather com-
plicated because of cumbersome numerical calculations
and carry on the shortcomings of the standard DWBA
for stripping to bound states.

Even if we put aside the technical problem of conver-
gence of the matrix element for stripping to resonance
states, there is more important question remains: the
spectroscopic information which can be extracted from
analysis of deuteron stripping reactions (and other trans-
fer reactions) into resonant states. This is really a crucial
question because the answer determines the reason why
we measure nuclear reactions. For more than 50 years
transfer reactions to bound states, and deuteron strip-
ping in particular, have been used to determine the spec-
troscopic factors, which measure the weight of the single-
particle state in the overlap function of the initial and fi-
nal nuclei. That is why there was always a temptation to
develop a theory of stripping into resonant states which is
fully similar to stripping to bound states. For example, in
[13] it was assumed that the spectroscopic factor could be
extracted from deuteron stripping into resonance states.
In this case the spectroscopic factor is the ratio of the
observable and single-particle resonance widths. How-
ever, the spectroscopic factor is not observable and de-
pends on the single-particle potential used to calculate
the single-particle width. In [22] it has been shown that
spectroscopic factors are not invariant under finite-range
unitary transformations and, hence, in exact approach
nuclear reactions cannot be a tool to determine spectro-
scopic factors. In [22] it was called separation of nuclear

reactions and spectroscopic factors. However, there is a
model-independent information, which can be extracted
from deuteron stripping reactions. I mean the asymp-
totic normalization coefficients (ANCs), which are the
amplitudes of the tails of the overlap functions [23] and
are invariant under finite range unitary transformations.
The most model-independent definition of the ANC is
that it determines the residue of the elastic scattering
S matrix in the pole corresponding to bound, virtual or
resonance states. For the resonance state the ANC and
partial resonance widths are related [24, 25]:
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Here [ and j are the orbital and total angular momentum
of particle = in the resonance state F' = (Ax), piz 4 is the
reduced mass of x and A, k; 4(0);; is the real part of the
resonance relative momentum of z and A, ¢;;(kza) is the
non-resonant scattering phase shift, Ci jl and I'; 4 j; are
the ANC and partial resonance width in the channel z4+ A
with the quantum numbers [ and j. Eq. () stands for
narrow resonance, i.e. for k1 << kza(0)j1, where
kya(ryji is the imaginary part of the resonance momen-
tum kyaryj1 = kza)j1 — P kzan;i, which determines
the location of the resonance pole in the momentum
plane. Due to relation (), the resonance width is also
invariant under finite-range unitary transformations and
can be determined from the experiment.

Nowadays, it is quite well understood that the ANCs
can be determined from peripheral transfer reactions,
see [26-31] and references therein. However, the ANC
method has been applied only for transfer reactions pop-
ulating bound states. It is well known that from bi-
nary resonance scattering and reactions using the con-
ventional R-matrix approach one can determine the res-
onance partial widths, which, as we have underscored are
related to the ANCs. R-matrix method is one of the most
popular tools among the experimental groups worldwide
because the approach is comparatively simple even for
many-body, many-channel cases and deals with the for-
mal partial resonance widths determined from the fit to
the experimental data. These formal widths can be eas-
ily related with the observable partial widths. Using the
R-matrix approach one can fit simultaneously data for
all available channels. It allows one to control the consis-
tency of the obtained physical parameters. The question
is whether the theory of stripping to resonance states can
be formulated in terms of the same parameters which are
used in the R-matrix analysis of the binary resonance re-
actions.

It is the purpose of this paper to address a theory of
the deuteron stripping, which will solve all the above
mentioned problems for the deuteron stripping into res-
onant states. The delivered theory is based on the post
CDCC formalism going beyond of the DWBA and sur-
face integral formulation of the reaction theory. The
CDCC wave function takes into account not only the
initial elastic d + A channel but also its coupling to the



deuteron breakup channel p+n-+ A missing in the DWBA.
The convergence problem is also resolved in this formal-
ism. The reaction amplitude is parametrized in terms of
the reduced width amplitudes (ANCs), inverse level ma-
trix, boundary condition and channel radius, that is the
same parameters which are used in the R-matrix method.
Thus the theory provides a consistent tool to analyze
both binary resonant reactions and deuteron stripping in
terms of the same parameters.

The theory is based on the surface-integral formula-
tion of nuclear reactions and valid for stripping to both
bound and resonance states. First, just for demonstra-
tion of the formalism, the transformation of the DWBA
amplitude for stripping to the bound state is presented.
The reaction matrix element is split into two parts: inter-
nal (over the relative coordinate between the transferred
nucleon and target) and external. The idea of such sep-
aration is based on the fact that in the post formalism
the main contribution to the stripping amplitude comes
from the nuclear exterior while the prior form amplitude
is dominated by the internal region. It will be shown
that the dominant external post (internal prior) ampli-
tude using the Green’s theorem can be written as the
dominant surface integral encircling the internal volume
plus small addition from the prior external (post internal)
part. Thus, both post and prior forms lead to the same
reaction amplitude given by the sum of small internal
post form, small external prior form and the dominant
surface integral. The contribution of the post internal
part can be minimized by a proper choice of the final-
state optical potential, and the other two amplitudes are
parameterized in terms of the reduced widths amplitudes
(ANCs). After that the theory is extended to the CDCC
formalism. Then the theory is applied for stripping to
resonance states. First it is developed for the standard
DWBA and then the post CDCC formalism based on the
surface integrals is developed. Omne of the most impor-
tant results of this paper is that the post CDCC form
for stripping into resonant states can be written as the
sum of the small internal (over the coordinate r,4) post
form and the dominant surface part. The absence of the
diverging (or poor converging) external part solves the
problem of convergence of the matrix element for strip-
ping to resonance state.

In the developed approach the information about the
resonance subprocess is contained in the scattering wave
function of the fragments formed by resonance decay.
This wave function is written in a standard R-matrix
form using its separation into the internal and external
parts. It allows us to generalize the R-matrix method
for binary reactions to stripping reactions. Since the
deuteron stripping into resonant states is 2 — 3 parti-
cles reaction, the excitation of the resonance occurs in
the subsystem, while the third particle causes the distor-
tion. The extracted partial resonance widths can be used
for calculation of the (n,~y) processes. If the cross section
for (n, ) resonant capture is available, the simultaneous
fit to the deuteron stripping and (n, 7) resonance cap-

ture can be done. The method can be also applied for
analysis of the Trojan Horse reactions [32]. Concrete cal-
culations and the application of the theory for deuteron
stripping and Trojan Horse reactions will be presented
in the following up papers. In what follows we use the
system of units in which 2 = ¢ = 1. We also neglect the
spins of the particles if not specified otherwise.

II. SURFACE INTEGRAL FORMULATION FOR
DEUTERON STRIPPING TO BOUND STATE.

Before the theory of the deuteron stripping to reso-
nant states will be outlined I will present a surface in-
tegral formulation of the theory for stripping populating
bound states. First, just for demonstration, I consider
the DWBA and then extend it by including the CDCC
wave functions. As it has been explained in Introduction,
the transfer reaction matrix element will be split into two
parts in the subspace determining the relative motion of
the transferred nucleon and target: internal and external
parts. After that replacing the potentials in the transi-
tion operators by the kinetic energy operators and using
the Green’s theorem the matrix element in terms of the
surface integral will be obtained.

A. Stripping to bound state. Post form of DWBA.

In this section we consider the post form DWBA am-
plitude, which we split into the internal and external part
in the subspace over the relative coordinate between the
transferred n and A. Due to the choice of the transition
operator in the post form, the internal part turns out to
be small. The external part, which is parameterized in
terms of the ANC, will be transformed into the dominant
surface integral encircling the internal volume and small
external prior DWBA amplitude.

We start consideration from the exact reaction ampli-
tude for the deuteron stripping to bound states

d+A—p+F 2)

where F' = (An) is the bound state. The post form of
the exact reaction amplitude

M@ (kyp, kga) =< | AVp[WY > (3)

where \IJEJF) is the exact scattering wave function in the
initial state with the two-body incident wave d + A,

<I>§f ) = x;}) ¢} is the channel function in the exit state
p+ F, ¢; is the bound-state wave function of nucleus
i, Xz(j) = Xl((-:_j) (r;;) is the distorted wave describing the
relative motion of particles ¢ and j with the relative mo-
mentum k;;; AV,r = Vpa + Vpr, — Upr is the transition
operator in the post form, V;; is the microscopic interac-
tion potential between nuclei 7 and j, U;; is the optical
potential between nuclei ¢ and j; r;; is the radius-vector



connecting the center of mass of particles i and j. I

remind that the exact wave function \I/Z(-'H is fully anti-

symmetrized but the channel wave function 34 is not
antisymmetrized with respect to exchange of the exiting
proton and nucleons in F. However, the internal wave
function of F' ¢p in <I>(f_) is fully antisymmetrized. The
reason why we can drop the antisymmetrization in the
channel wave function is the presence of the fully anti-
symmetrized exact wave function in the initial state and
fully symmetric transition operator what can be seen be-
low when the transition operator is expressed in terms of
the kinetic energy operators.

To obtain the post form of the DWBA from Eq. (3)
( (+ _

we replace \IJZ-+) by the channel wave function ®;

YdPpa X&Z) in the initial d 4+ A state:

P9 (k,p, kga) =< 5[ AVp[@T) > (4)
Then we use approximation
pr = I} pa, (5)

where T4 (r,4) is the overlap function of the bound state
wave functions of nuclei F' and A:

Ii(rna) = (pal or). (6)

Note that the integration in Eq. (@) is taken over all the
internal coordinates of nucleus A. Then the transition
operator in Eq. (@) takes the form < @4|AVpp|pa >=
< oalVpalpa > +Vpn — Upp. Potential < @a|Vpalpa >
is replaced by the optical potential U,4 and we obtain a
standard post form of the DWBA amplitude:

MDW(post) (ka, de) —< (I)(f_)| AV;DF|®E+) >, (7)

where AV ,r = Upa + Vpy, — Upr. Now we will transform
this volume integral into the surface one. First, we adopt
rpa and r,r as Jacobian variables and split the configura-
tion space over r, 4 into the internal and external regions,
while the integral over the second Jacobian variable, r,r,
is taken over all the coordinate space. Splitting the reac-
tion amplitude into internal and external amplitudes we
get
MDW(post) (ka, de) _ MDW(ZDOSt) (ka7 de)

nt

+ M " (e, k), (8)
where the internal amplitude M.} (Post) is given by
MY ey, kya)
=<xr [ AVpeloaxid > | ()

Correspondingly, the external amplitude is given by

MDW(post) (ka , de)

exrt

=< X\ IL AV pleax(y >

(10)

TnA>RnaA

Here, R, is the channel radius similar to the one in-
troduced in the R-matrix approach, which separates the
internal and external regions.

The splitting of the amplitude into the internal a nd
external parts in the subspace over the Jacobian variable
r, 4 is natural and evident. The overlap function I g (rna)
is the only object in the reaction amplitude which pro-
vides spectroscopic and structure information. In the ex-
ternal region the overlap function has a standard radial
shape given by the spherical Hankel function (for neu-
trons) with the amplitude called the ANC (see below).
To determine the behavior of the overlap function in the
nuclear interior, which bring one of the main uncertain-
ties in the analysis of the deuteron stripping, microscopic
calculations are required [33]. In a standard approach the
internal part of the overlap function is approximated by
the single-particle bound state wave function calculated
in the adopted mean field. The proportionality coeffi-
cient is the square root of the spectroscopic factor. Due
to the structure of the transition operator the external

matrix element 121" P* in the post form is dominant

compared to a small contribution coming from the inter-
nal part Ml-lzfv(po“)

the following.

. This simple observation stems from

In the internal matrix element, r,4 < Rj,a, due ab-
sorption of the protons inside nucleus F', effective rp, ~
TpA & rpr > Rp, where Rp is the radius of nucleus
F. For the protons outside of F' and neutrons inside or
on the surface of A each nuclear interaction in the op-
erator AVPF = Upa + Vpn — Upr is small. Potential
Upr is arbitrary and often U, is chosen to compensate
for Upa so that the transition operator reduces to V.
Since the DWBA is the first order perturbation theory,
the minimization of the whole transition operator A Vp a
provides smaller higher order terms and, hence, better
serves the theory. This choice is more preferable in the
formalism presented here and we adopt Upr, which min-
imizes AV,,F =Upa + Vo — Upr at 14 < R, 4 making
the contribution from the internal matrix element small
compared to the external one.

In the external matrix element (r,4 > Rp), which is
dominant, the overlap function I4§ can be replaced by

its asymptotic tail. Although Mﬂ”p ) can be eas-
ily calculated for stripping to the bound state, here we
transform this matrix element into an alternative form,
which has clear advantage in case of stripping to reso-
nance states discussed below where convergence becomes

a main impediment.

Now we proceed to the transformation of the volume
integral defining the external matrix element in terms
of the dominant surface integral encircling the sphere at
rna = Rpa and a small, due to the structure of the tran-
sition operator in the prior form (see Eq. (7)), external
volume integral in the prior form. Note that the trans-
formation is exact within the DWBA formalism.

To transform the external volume integral to the sur-



face one, we rewrite the transition operator as

Upr = [Vpn + Uaal — [UprF]
—|—(UpA — UdA)- (11)

AV;)F = UpA —i—Vpn —

The bracketed operators are the right-hand-side opera-
tors in the Schrédinger equations for the initial and final
channel wave functions in the external region:

(B —T)ax5y = (Vpn + Uda) pa x5y (12)

and
(E—T)IExSF" = Upr IE NP (13)

To derive Eq. ([3) we took into account that at rp,4 >
Rna I satisfies the asymptotic Schrédinger equation
(ena — Tna) I§ = 0, where €;; is the binding energy of
the bound state (i j) and T;; is the kinetic energy oper-
ator of the relative motion of ¢ and j. These equations
imply the following connection between the external post
form DWBA amplitude and the matrix element MZW
containing the surface integral:

Megfv(posw (kpr, kaa) = MEY (kyr, kaa)
+M T (K, Kan),  (14)
where
MET P (e, kaa)
=< X\ AV aalpax) > . (15)
and
Msj?w(kaa kaa)
=< pr IA|? ?W’d XG> (16)
T71A>R71A

Here, the transition operator in the prior form AV 44 in
the external region, where the nuclear n — A interaction
disappears, takes the form

AVdA = UpA —Uga. (17)

The overlap function is given by

Ig(rnA> = Z

JnA MG, 4 my

< JaMy jnAmjnA|JFMF >

nA

X < Jp My lpa mlnA|j7lA My, 4 >

X Yi,a My, 4 (Fna) Ia Jnalna (rna). (18)

Here, < ji1 mq jama|jsms > is the Clebsch-Gordan co-
efficient, l,a (my,,) is the orbital angular momentum
(its projection) of the relative motion of n and A, j,a
(mj, ) is the total angular momentum (its projection)
of n in the bound state F' = (nA), J; (M;) is the spin
(its projection) of nucleus 4; I Ina jna(Tna) is the radial
overlap function, which is a real function [23], ¥}, (%) is

the spherical harmonics and ¥ = r/r is the unit vector.
We assume that only one value of [,,4 contributes to ex-
pansion ([I8). If the channel radius is taken larger than
the range of the nuclear interaction, the radial overlap
function can be replaced by its asymptotic term,

U nA> Rpa
OA l Z
Jnalna

l(nl(z KnATnA), (19)

F ln
IA JnA lna (RnA) At

X IinAh

where hl(il (i KnaTna) is the spherical Hankel function
of the first order, C¥ jualna is the ANC of the overlap
function, kna = /2 nacena is the bound state wave
number.

It is also useful to introduce the reduced-width ampli-

tude used in the R-matrix approach, which can be ex-
pressed in terms of the ANC [25]:

RnA

2 [inA A jnalna (R"A)

YnAjnalna =

R"A lnat+1 F ) .
- 2MnA A A CAjlelnA hlnA(ZH"A R”A)' (20)

Correspondingly, the reduced width is

Roa
’772”4 nalna - 2 Mn [IA Jnalna (RnA)]2
R, '
= 5 DL O st B (R a R

(21)

It is worth mentioning that, due to the presence of the
channel radius R, 4, the reduced width, in contrast to the
ANC, is model-dependent. The dependence on the chan-
nel radius becomes crucial with increase of the binding
energy. We are going to use also the boundary condi-
tion, which is the logarithmic derivative of the overlap
function at r,4 = Rpa:

1 dlroah®) (iknarna)]

BnA =
hl(il (iHnARnA) dr

TnA=RnaA

(22)

Due to Eq. ([9), the amplitude Melifv(p”or) can be
parametrized in terms of the ANC. We note that this am-
plitude is also small. In the external region, r,4 > Rp4,
the nuclear n — A interaction can be neglected. Besides
in this region the overlap function exponentially fades
away. Also, if the proton absorption is strong in the in-
ternal region of A, the dominant contribution comes from
rpa > Ra, where R4 is the radius of nucleus A. If the
adopted radius channel R, 4 is larger than the n — A nu-
clear interaction radius we can neglect n— A nuclear inter-
action in the external region. In this region each nuclear
potential szil and U é\A and their difference Upa —Ugq are

small. The Coulomb part US, —U$, = Za e® Ra/(2 RY),



where R, is the deuteron size and Z4e is the charge
of nucleus A, is also too small compared to the nuclear
potential. Thus the dominant contribution to the post

DWBA amplitude MQY"(?"“), Eq. (@), and, hence, to
the total post form DWBA amplitude MPW o5t comes

from the surface integral M LW . Here and in what follows

all the amplitudes with the transition operator ? —
are assigned the subscript S, which is abbreviation of
?surface”, because the volume matrix elements of these
amplitudes can be transformed into the surface ones in
the subspace over variable r,, 4 while over the second Ja-
cobian variable r,r we always keep the volume integral.

Now we express M SD W in terms of the surface integral
over variable r,4 and the same technique will be used
throughout the paper. The kinetic energy operator can
be written as T' = Tpr + Tra. Tpr is a Hermitian oper-
ator in the subspace spanned by the bra and ket states
in Eq. ([I@). It can be proved if we take into account
that at r,r — oo the integrand in this equation van-
ishes exponentially due to the presence of the bound state
wave function ¢4(r,,) and the overlap function I (r,,4).
Hence, integrating by parts twice the integral over r,p
we obtain

<X I T o = Torleaxy) > e
=< X;;“) I ?pF - ?pF| d Xt(;l) > e aSBaa 0.
(23)
Then MPW reduces to
MEWY (kpp, kaa)
~< X I Toa = Taalpaxi® >| o (@9

MEY (kpp, kaa) = _MSDRVL/A (kpr, kga)

1
2 HnA

Here we took into account that xf:)*(r) = X(j() (r). In-

voking Eqs. (I8) and (IJ) we can rewrite MW in the
form explicitly showing parametrization in terms of the

R%A / dryp X(_JQPF (rpr) / dQy,, [@d(Tpn) Xf:;l

We apply now Green’s theorem to transform the vol-
ume integral into the surface one, which encircles the
inner volume over the coordinate r:

/ ar ) [T - 7] o)

r<R
1
o ji ds [g(r) Vi f(x) — £(r) Vs g(r)]
1, af(r) Og(r)
g @ faon o G~ B
(25)

Here, dS = R?dQ+, where  is the solid angle. Note
that the unit vector f is the normal vector to the sphere
directed outside of the restricted by the surface volume.
The integration in Eq. (24) over r,4 is taken over the
external volume restricted by two spherical surfaces: the
inner surface with the radius R,,4 and the external sur-
face with the radius R;A — 00, that is

MEY (kpr, kaa) = —M§," (kpr, kaa)

+MEW (kyr, kaa).  (26)
The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rna = Ry while the second term is the surface integral
taken at o4 = R;A — 00. A negative sign in front of
the first term appears because the normal to the surface
is directed inward to the center of the volume, i.e. op-
posite to the normal to the external surface (at infinitely
large radius). The second term vanishes because of the
presence of the overlap function g , which decreases ex-
ponentially at 7,4 — oco. Then for M SD W we get

Fp * P Tpn (+) r
(raa) W — [I5 (rna)]® pal a);::m)( dA)}
(27)

reduced width amplitude (ANC) and boundray condi-
tion, the quantities used in the R-matrix approach:



1
5 ilnA—i_ ! KnA RnA h/[(i)A ('L KnA RnA)

MDW
5 2 HnA

(kpr, kaa) =

D

< JaMy jnAmjnA|JFMF >

JnAa Mg, 4 mu, , My

X < I My bnamu, [ jnamg, o > < Jp My Jo MylJg Mg > CY ;1|

x / dryr X% () / A%, s Yy (Fna) [sodvpn)xfa(rm) (Bpa— 1) = Rua

9 @a(rpn) Xgi)(rdA)]

a"”nA

(28)
o RnA . .
— 5 Z <JAMA]nAmjnA|JFMF><JnMn lnAmlnA|jnAmjnA>

HnA g amy, mi, , M
X < Jp My Jn My |Ja Ma > Ynaj,at.a / dr,r x %) (rpr) / A, Y0, (Fna)
0 a(rpn) Xk ) ) (xaa)
% [alron) Xl (£44) (Bua = 1) = R ———rs a2 . (29)
TnA TnA=Rna

Finally, the total post form DWBA amplitude is given
by

M PW (post) (ka, de) _ MDW(:DOSt) (ka7 de)

int

+MOY P (K, Kaa) + MEW (Kyr, Kaa).  (30)
Taking into account that MPW = MPWEest _

MDW(prior)

ot we can rewrite Eq. (B0) in a different form:

MDW(post) (ka7 de) — Mi[n)ZV(POSt) (ka, de)
Y

+ [Megfv(pm) (Kpr, kaa) — MO P70 (K, kaa)| .
(31)

Thus, the main result of this section is that the post

form of the DWBA amplitude can be written as the sum
MDW(prior) + MSDW

of the peripheral parts, M_,,
internal term MZZZV (Post) " The peripheral part itself con-
sists of the dominant surface amplitude M SD W and small
external prior form Mjif”p 7o) The peripheral part is
parametrized in terms of the ANC (reduced width ampli-
tude), channel radius R, 4 and the logarithmic boundary
condition, that is in terms of the parameters used in the
R-matrix fitting. The model dependence of these two pe-
ripheral amplitudes is caused by the ambiguity of the op-

tical potentials and channel radius R, 4. The strongest

model dependence comes from Ml]ZtW (P OSt), because, in
addition to the ambiguity of the optical potentials, to
calculate it one needs to know the behavior of the overlap

function in the internal region. For peripheral reactions

DW (post)

contribution of M, ,

, and small

can be neglected.

B. Prior form of DWBA. Stripping to bound state.

In subsection A the post form of the DWBA amplitude
has been considered. However, all the results hold also
for the prior form

MDW(pMOT) (kPF7 de) =< X;(D;) I£| AVdA| Pd X((i—;) >
_ MDW(prior) (ka, de) + MeDW(prior) (ka, de)

int xt

(32)
where
M (e, Teaa)
=< K IAValgax@y > | (33)
and
MY (e, Teaa)
=< K 1AVasleax@d > | o (39
with the transition operator
AVgs =Upsa +Vypa — Uga. (35)

The n— A interaction potential V,,4 =< 04 |Vialpa > is
the mean field real potential supporting the bound state
(n A). The splitting of the amplitude into the internal
and external terms in the subspace over the coordinate
r, 4 helps us to further transform the prior DWBA ampli-
tude. Due to the structure of the transition operator the

external matrix element M, j;f”p ") in the prior form is
small (see the discussion in subsection [T'A]) and the main

contribution in the prior form comes from the internal

part MZZZV (Prier) " Since the internal part is given by the

volume integral, its calculation requires the knowledge of

TnA=RnaA



the overlap function in the internal region. The model
dependence of the overlap function in the nuclear inte-
rior (rpa < Ry,a) brings one of the main problems and
main uncertainty in the calculation of the internal matrix
element. However, using the surface integral we can re-
distribute the internal contribution in terms of dominant
the surface term (over variable ry4) plus small internal
part written in terms of the volume integral in the post
form. With reasonable choice of the channel radius R, 4
the contribution from the internal volume integral in the
post form can be significantly decreased compared the
surface matrix element. The latter can be expressed in
terms of the R-matrix parameters - the observable re-
duced width amplitude (ANC), boundary condition and

. DW (prior) .
channel radius. To transform M, (Prier) into the sur-
face integral in the subspace over variable r,, 4 we rewrite

the transition operator in the internal region as

AVys =Upa+ Vs — Uga

= [Vna +Upr| + (Upa + Von — Upr) — [Von + Uaal.
(36)

The bracketed transition operators are the potential op-
erators in the Schrodinger equations for the initial and
final channel wave functions. Hence, for the internal prior
form of the DWBA we obtain
M P (e, Kaa)
DW DW (pri
= MO (e, aa) + MG (e, de)(’ )
37

where

MEY (kpp, kaa) = — < X;}) Iy T - ?| <PdX,(;;) >

=—-< XZ(,;') I£| ?nA - ?nA| Pd X(d:) >
=-Mg5)" (kyr, kaa). (38)

Note that here M SDRWA is the surface integral encircling

the border of the internal volume at 7,4 = R, 4 with the
normal directed outward. Thus we have demonstrated,
what should be expected from the very beginning, that
MPWprior) — prPW(post) - Hence all the equations ob-
tained in the previous subsection [[TA] are also valid in
the prior formalism.

It is worth mentioning that in the post formalism, in
contrast to the prior one, we have obtained two surface
integrals (in the subspace over r, 4) with the radii r,,4 =
R,a and rpa = R;A — 00 and then proved that the
second integral is zero. From the equality of the post
and prior DWBA amplitudes we could conclude that the
surface matrix element over infinitely large sphere 7,4 =
R;1 4 — 00, which appears only in the post formalism,
vanishes.

There is another interesting point to discuss which ex-
plains the advantage of the above outlined formulation
of the stripping. As we have discussed, due to differ-
ent structure of the transition operators in the post and

prior forms, the main contribution to the post (prior)
form comes from the external (internal) part (in the sub-
space over variable r,, 4). Since both forms give identical
amplitudes, that is, describe the same reaction mecha-
nism and the same physics, such redistribution of the
main contribution is possible only if the main contribu-
tion to each form comes from the border between external
and internal parts. In the post (prior) form this border
attributed to the external (internal) form and can be ex-
pressed in term of the surface integral. Let us rewrite
equality MPW(prior) — \fPW(post) i the following form:
MDW(pTZO’I") (ka, de) + MeDW(przor) (ka, de)

int xt
= MY (ke kaa) + MY P (K, kaa).
(39)

In this form the dominant terms are MZ-]ZZV (prior) nd

MEV @) while the rest two terms, M2 7" and

DW (post)
Mint

are smaller. From Eq. (39) we get

MDW(post) (ka7 de) _ MDW(prior) (ka7 de)

ext ext

_ MDW(prior) (ka, de) _ MDW(POst) (ka, de)

nt nt
= MEZ" (kyr, kaa) = —M3)" (kpr, kaa)- (40)
Thus the difference between the post and prior external
amplitudes (or the prior and post internal ones) is the
surface integral in the subspace over r;, 4.

There is one more point left to discuss. When deriving
the post form of the DWBA amplitude from Eq. (@) we
used approximation ¢r ~ I{ ¢4 neglecting the contri-
bution from the channels n+ A,,, n > 0, where A,, is the
excited state of A. However, I will show now that the
surface integral formulation doesn’t require this approxi-
mation. To this end let us split M (P25Y) into the internal
and external parts in the subspace over variable r, 4. In
the internal part we use a standard DWBA approxima-
tion pr ~ I{ pa to arrive to the standard internal post
DWBA amplitude. In the external part we rewrite the
transition operator as

A‘/;)F = VpA + Vpn - UpF
= —[Va +Upr] + [Von + Va + Uga] + (Vpa — Uaa).
(41)

The bracketed operators are the right-hand side opera-
tors of the Schrédinger equations

(E=T)0") = (Vpo + Va + Usa) @7 (42)

and
(E-T) 07" = (Va+ Upp) @477, (43)
Hence, the external part of M®°s9) reduces to

MPosH (kpr, kaa)

ext

= MS(emt) (ka7 de) + Még:ior) (k;DFa de)a (44)



where
Mégm)(ka, kaa)
=< <I> | Vpa — Uga |0 o (45)
TnA nA
and
MS(ext) (kpr, kaqa) = <I>( )| T_T |<I> o
TnA nA
(46)

In the matrix element A7®7%")

po we can use a standard
DWBA approximation ¢r & I§ ¢4 which leads to the
standard external prior DWBA amplitude. The matrix

element Mg(c,¢) can be rewritten as

Ms(eur) (Kpr, kaa)
=< (I)(f_)| ?nA — ?nA |‘I>l(»+)

TnA>Rna

=< X;}) oF| T s = Toa loapa x> . n
=< XpF) IA|?nA_?nA|@dXdA) > SR
- A‘JE)RIZ/A (k;DF; de); (47)

We took into account that < @gf)|?pp — ?pp + ?A —

?A|<I>1(-+) > = 0, where T4 is the internal motion kinetic
energy operator of nucleus A, and Tha 04 = ©aTha.
Thus Mg(erty can be transformed to the surface inte-
gral over variable r,4 encircling the inner volume with
the radius r,4 = R,a without invoking approximation
or ~ I ¢4. It means that, when deriving the post form

of the DWBA amplitude, the approximation pp ~ If A PA

MDW(post)

is required only to obtain two small terms, M, ,

and M2V@T) put not the dominant surface term
—-M SDRWA' In this sense the surface integral formalism

is an improvement of the DWBA.

C. Deuteron stripping to bound states. Post
CDCC formalism

In the previous sections we succeeded to parametrize
the DWBA amplitude in terms of the ANC except for a

small term, MZZtW (Post)  The most serious shortcoming
of the DWBA is that it neglects the coupling to open
reaction and breakup channels. This coupling can be
taken into account if an exact wave function in the initial
or final states is used. However, the exact wave functions
are not yet available (if they would be available in the
whole configuration space, we don’t need to calculate the
matrix element because the asymptotic terms of the exact
wave functions provide the reaction amplitudes in all the
open channels). Here we use the CDCC formalism, which
takes into account the elastic d + A and the deuteron
breakup channel p +n 4+ A in the initial state.

In this subsection the surface integral formulation of
the reaction theory will be applied to the post form of the
CDCC amplitude for deuteron stripping to bound states.
It will allow us to parametrize the stripping amplitude in
the CDCC approach in terms of the R-matrix parameters
- the reduced width amplitude, boundary condition and
the channel radius. To obtain the CDCC wave function
describing the initial state of the stripping (re)action, first
ot

the exact initial scattering wave function is replaced

by the three-body wave function \I/?B(ﬂ, which takes into

account the coupling of the initial channel d + A and the
deuteron breakup channel p +n + A [1H3] and satisfies
the Schrédinger equation (in the three-body p +n + A
model space)

UnA - ‘/;771,) \IIBB(Jr) 0 (48)

with the outgoing waves in the elastic channel d + A and
the breakup channel p +n + A. A general solution of
this equation with the d + A incident wave has outgo-
ing waves in the elastic, breakup and two rearrangement
channels, n+(p A) and p+(n A). To damp rearrangement
channels in the asymptotic behavior of the wave function

\IJ3B(+) the optical potentials Up4 and U, with strong

(E—T —Ups —

imaginary terms can be used [34]. \Ing(Jr) is given by

\I/gB(+)(

rqA, Tpn) = Pa(Tpn) Xl(:lz, (raa)

+ / ADpn U5 (Epn) Xpr oy (Tar)- (49)

Here, @q(rpn) is the deuteron bound state wave function,

wgﬂ (rpn) the p — n scattering wave function with the

iﬁi (rqa) and X(pJEi,pn)(rdA)

are the expansion coefficients, Fga —epn = P?/(2 piaa) +
p;in/ (2 fpn)-

In practical application the wave function W;
replaced by the CDCC wave function, which is a solut1on
of the projected Schrodinger equation

— V) PCCH — 0. (50)

relative momentum ppy,, X

3B(+)

(BT - UB

Here, U™ = P, Upa P, and

lmaa:

,m_z Z [ 490, Vi o)

lpn=0 Mipn =—lpn

x Y, r;n) (51)

o i (
l:l-?’ﬂ mlpn

is the projection operator, which truncates the number of
the spherical harmonics Y, m,, _(pn) in the coordinate
rpn. Application of this operator to the three-body wave
function suppresses the rearrangement channels in the
asymptotic wave function. The CDCC wave function is
taken in the form

gCDCC(+) Ppn Z 1/)

: (Tpn; Yaa) X

rdA)7

(52)



where 1#](091) (rpn) = @a(rpn) is the deuteron bound state

wave function, wl(fﬁ) (rpn), n > 1, is the n-th discretized
continuum state of the p — n pair obtained by averaging
continuous breakup states in the n-th bin, y\™ ™ (r44)
are the functions, which describe the relative motion of
the center-of-mass of the p — n pair in the n-th state and

A. Note that XEO)(JF)(rdA) asymptotically behaves as the
incident Coulomb distorted d — A plane wave plus outgo-

ing scattered wave, while Xgn)(Jr)(rdA) for n > 0 asymp-
totically do not contain any plane wave having only the

outgoing scattered wave.

To derive the post form of the CDCC amplitude from
the exact one, first we replace the initial exact scattering
wave function \IJEJF) by ©a \IJ?B(JF). Note that \I/fB(+) is
the three-body model (p +n + A) wave function which
treats nucleus A as a constituent particle leaving its inter-
nal degrees of freedom intact. That is why the wave func-

tion \IJ(JF) is approximated by the product of the bound

state wave function ¢4 and \IlsBH). Correspondingly,

the transition operator AV,r = Vpa + Vpp, — Upr is re-
placed by AV ,r = Upa + Vpn — Upp. This replacement
of the microscopic potential V4 in the exact post form
amplitude by U, 4 is evident because the p— A interaction
potential in the transition operator should be the same
as the one in the Schrodinger equation for the initial scat-
tering wave function \IlgBH) Potential V,,,, remains the
same when we approx1mate the initial exact scattering
wave function ny the three-body one. The final state
optical potential U,r is arbitrary and we discuss the op-
timal choice of this potential later on. These approxima-
tions lead to the expression for the post form stripping
amplitude in the three-body model in the initial state:

M3B(post) (ka, de)

( B(+) §

=< X or| AV, plpa ¥?

—< xpp) I | AV o U3EH) 5 (53)

Thus, even if we treat the d + A collision in the initial
channel in the three-body approach, the final state con-
tains the overlap function, which is essentually many-
body object. Eq. (B3) is impractical to use because it
requires the knowledge of the three-body wave function
\IlfB(Jr), Eq. (@9), which contains unknown expansion co-
efficients X, (ra4) and xp(p,,)(raa). In practical appli-

cations the \113 )
CDCC(+)

is approximated by the CDCC wave

function ¥, , which requires the knowledge of the
finite number of the expansion coefficients. They can be
found from the coupled equations. Correspondingly, the
transition operator AV pr = Upa+V,y —Upr in Eq. (G3)

is replaced by AVPP" = P”" + Vpn — Upp. Note that
only the potential UpA(rpA) where rpa =rga+1/2rp,

is affected by the projector Ppn. Then the expression for
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the post form of the CDCC amplitude takes the form:

MCDCC(post)(k 7 de)

CDCC(+ ‘
—< P I ATV | wEPeC) s (54)
Now we split M P into the internal and external parts
in the subspace r;, 4:

MCDCC(post) (ka, de) _ ]\4‘CDCC(;Dost)(ka7 de)

nt

+M€thDCC(post) (ka, de).

(55)

The internal amplitude MZC bOC(post) i given by

MZSLtDCC(Z)OSt) (kZDFa de)

CDCC(+)

=< XpF Iy AV Y, > e (56)
Correspondingly, the external amplitude is

MitDCC(post) (ka, de)

—< P I AT wEPeet) (57)

TnA>Rnpa

I remind that the integral over the second Jacobian vari-
able, rpF, is taken over all the coordinate space. Sim-
ilarly to the DWBA case, the internal part is small if
the channel radius R,4 is not too large. Due to the
strong absorption of the proton inside A, which is con-

trolled by the imaginary part of the optical potential
UP”" the effective distances are r,4 > Ra4. Besides,
in the internal region, 7,4 < R, 4, and large r,4, where
TpA ~ Tpn = |Tpa — Tpal, U P”” + Vpr can be well ap-
proximated by a properly chosen optical potential U,r

minimizing AV 7" and the internal matrix element. The

next step is to transform the external matrix element to
the surface one. To this end we rewrite the transition
operator in the form

Ppn

AV 2 = U 4 Vo = Upr = [~Upr] + [USF" + V).

(58)

The bracketed operators in (B8)) are the right-hand-side
potential operators in the Schroédinger equations in the
external region 7,4 > Rpja, where the nuclear n — A
interaction vanishes:

CDCC(+) CDCC(+)
(E—T)¥! (59)

= (Uy5" + Vpn) ¥
and

(B~ )X\ 15 = Upp X 15 (60)
Note that the second equation follows from

(—ena —Tpa) I5 =< @a|Vialor > . (61)



In the external region, r,4 > R,a, the source term
on the right-hand-side disappears and Eq. (60) becomes
evident. Taking into account Eqs (B9) and (60)) we get

MCDCC(post) (ka, de) = MgDCC(post) (ka7 de)

ext
=<\ IEIT - T PO

)
TnA>Rna

(62)

where T' = T),r 4+ T}, 4. Here, as in the previous section,
for the surface integral we use the subscript ”S”. Since
the CDCC wave function doesn’t propagate into the final
state (its asymptotic terms have only elastic and breakup
terms) the operator Tp,r is Hermitian, i.e.

< XSGR LI T e = Tyl 9P >

rnA>Rna
— cDhcCccC
=< X;()F) I£|?pF — ?pFl‘I’i +) > SR =0.
(63)

It can be also shown explicitly taking into account that
the volume integral over r,r can be transformed into
the surface integral over the sphere with the radius
rpr = Rpp — 00. Since the overlap function decays
exponentially at r,4 — oo, the integration over r,4 is
limited. Hence, at r,p — oo using Eqgs (Bf) we get
that rqa ~ rprp — oo and rp, ~ rprp — 00. The first
term of the CDCC wave function decays exponentially
at rpr — 00 because of the presence of the deuteron
bound state wave function. The terms with n > 1 decay

as 1/r3p [35]. The distorted wave x;})*(ppp) decays as

B 2,anA

R2 8 IF ry * *
= [ 3, ) [ a9, [0EPC i, p) DAL e 20

B 2MnA

Natural Jacobian variables for \I!Z-CDCC(JF) are rga and

rpn, but here we use another set of Jacobian variables,

R? . *
o [ ) [ a9t [0 (T, = T DU, 1)
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1/rpr, see Eq. (B16). Hence the surface integral vanishes
at R,p — 00 as R2p/Rip — 0.

Then MgDCC(pOSt) takes the form

MgDCC(post) (ka : de)

— < XD I T a = T | 9EPOCH)

= —MEPOCP N (e, ya) + MEPOCP N (e, ).
(64)

TnA>RnaA

Thus, the volume integral at r,4 > R,4 in the ma-

trix element MgDCC(pOSt) can be written as the sum of

two surface integrals encircling the external volume, the
sphere with the radius r,4 = R, and the sphere with
TnA = R;A — 00. Note that the integral over ryrp is
taken over all the coordinate space. Evidently that the
integral over the infinitely large sphere vanishes because
the overlap function I exponentially decreases. Hence,

MgDCC(pOSt) (kpr, kga) = _]\451%112640(170516)(ka7 Kaa).
(65)

The negative sign in front of the inner surface integral
appears because the normal vector to the inner surface
is directed to the center, i.e. opposite to the direction of
the normal to the external surface at r,4 = R;1 A — 00.
Now we can use equations from subsection A replacing

the initial channel wave function by the CDCC one. For

MgDCC(post) we get

MSC"DCC(post) (ka7 de) _ —MgDCC(pOSt)(ka, de)

RpaA

FODCC(+)

(rpF ’ rnA) :|
aTnA

aTnA
(66)

r,r and r,4. Taking into account Eq. (I8) and (I9) we
get

TnA>Rnpa

TnA=Rna



MgDCC(post) (ka, de) _

_ [ Lna $

2 fna
Hn JnA Mg, 4 M, , Mn

SRy a
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_MCDCC(post) (ka, de)

<JAMA jnAmjnA|JFMF >

X < Jp My lna mlnA|jnA Mjoa > VnAjnalna / dryr X(jc)pF (rpF) / dQr, , Y:A mi, , (f'nA)

« \IjiCDCC(Jr)(

Note that the CDCC wave function itself also depends on
quantum numbers of p —n and d — A subsystems, which
we don’t specify here. It will be done in the following up
paper where concrete calculations will be presented.

Thus we have obtained a remarkable result: the post
form of the CDCC amplitude, in contrast to the DWBA
one, is given by the sum of only two terms:

MCDCC(post)(ka, Kga) = ]\4.01300(170515)(ka7 Kaa)

nt

CDCC (post
Mg, )(ka,dezés)

where the first term, which is the internal post form of the
CDCC amplitude, can be minimized by a proper choice
of Upr and the channel radius R,4, while the second
term, which is dominant, represents the surface integral
with the radius R, 4, which encircles the internal volume
in the subspace over the coordinate r,4. If the channel
radius is larger than the n — A nuclear interaction radius
the second term is parametrized in terms of the reduced
width amplitude (ANC of the projection of the bound
state wave function of F' on the two-body state n+A) and

the boundary condition at r,4 = Rn,a. If MZC pecost
is small enough,
MCDCC(post) (ka, de) ~ _MgifC(pOSt) (ka, de)'
(69)

Thus we succeeded to parametrize the post form of the
CDCC amplitude in terms of the R-matrix parameters.
Eq. (68)) and parametrization of the surface term of the
post CDCC amplitude in terms of the R-matrix param-
eters, Eq. (61), are one of the main results of this paper.

Although it is assumed that M, CDCC(p °3!) can be min-
imized so that the second term 1n Eq. (©8) becomes

dominant, I would like to present a different form for

Mgfcc(po“)(kpp, kga), which leads to a different form

for the whole amplitude MCPCC@os) (k p kya). To

this end, let us rewrite the transition operator AV ;"

r'yr, rnA) (BnA - 1) - RnA

5\I/iCDCC(+)(rpF7 rnA) (67)
aTnA TnA:RnA'
in Mgfcc(p”t)(kpp, kya) as
AV = U 1V = Upr
= [Uph" + Un i + Von] = [Vina + Upr] + Via — U5
(70)

Here, V,4 is the mean field potential supporting the
bound state (n A) while Ufi" is the projected optical
potential describing the n — A interaction in the initial
state of the reaction and entering the Schrodinger equa-
tion for the projected CDCC wave function in the initial
state. The bracketed potential operators are the right-
hand-side operators of the Schrédinger equations in the
internal region, 7,4 < Rn4,

cbhcc Ppn Py CDCC
(E T)\I/ (+) _ (Up +U P +Vpn) (+)
(71)
and
(E- D)X I5* = (Vaa+ Upr) XS I5 " (72)

Replacing the bracketed potential operators [U +

U 4 V,] and [Vya + Upr] by E— T and E — T,

MlCDCC(post)

correspondingly, we get for a new form:

MCDCC(post) (ka, de) _ MgifC(pOSt) (ka7 de)

wnt

Maqu)cc(posﬂ (ka7 de)? (73)
MaC;DCC(post) (ka7 de)
cDCC(+)
< AT PO )
Py
AV V4 — Ul (75)

Then the total post form of the CDCC amplitude can be



written as

MCDCC(;Dost)(ka, de) _ MCDCC(POSt) (ka7 de)

int
_ MCDCC(post) (ka, de)

SR, a
= MgRlZfC(pOSt)(kaa kaa) — MgRlZfC(pOSt)(kav kia)

+ MCDCC(post) (ka, de) — MCDCC(post) (ka7 de)

aux aux

=< LI Voa ~U w200 > | (76)
Thus, we obtained another important result. The CDCC
amplitude in the post form is equal to the inner volume
integral over variable r,4 with the transition operator
Vs — U:Z". This transition operator is the difference
between the bound state potential V,, 4 supporting the
final bound state (n A) and the projected optical poten-
tial describing the n — A interaction in the initial state.
It is worth mentioning that Eqs (68) and (70) are ex-

act within the CDCC approach. If MCPC¢wost)

imt is small
enough, then

MaC;l;CC(post) (ka7 de) ~ MSC"DCC(post)(ka, de)'

Bna
(77)
However, I prefer Eq. (G8) rather than (7G). To calcu-
late MSPCCWost) (he needs to know the overlap func-

tion in the internal region, where the overlap function is
model-dependent and requires microscopic calculations.
In contrast, in Eq. (G8)) the dominant part is the surface
integral, which is parametrized in terms of the reduced
width amplitude (ANC). The model dependence of the
surface part is related with the ambiguity of the optical
potentials and the value of the cut-off orbital angular mo-
mentum in the p — n subsystem in the CDCC approach.
Comparison with experiment allows one to extract the re-
duced width amplitude. The model-dependent internal
part in Eq. (G8) is small. Eqs (68) and (7G) is prelude
to the theory of the stripping to resonance, where the
convergence problem of the external part is one of the
main issue. As we have demonstrated in the post CDCC
formalism the external part doesn’t appear at all. It re-
solves the convergence problem related with the external
part.

D. Deuteron stripping to bound states. Prior
CDCC formalism

A priori, the amplitudes in the post and prior forms of
the CDCC formalism are not equal. That is why the ob-
tained equations using the surface integrals are expected
to be different in both formalisms. The prior form of the
CDCC stripping amplitude is

MCDCC(pM’or) (ka7 de)

Y. . —pP,
=< \IJ?DCC( ) | AV 4" [¢a XEIJ;X) > (78)
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where

—Pna

AV 3" =URA + Via — Uaa. (79)

The projected CDCC wave function in the final state is
a solution of the three-body Schrédinger equation

(BE—T —US%A = Voa — VI wGPCCO" — 0. (80)

Here,
/d anA }/lnA M, A (f‘nA)

X YE:A My a (f‘nA) (81)

is the projection operator, which truncates the number of
the spherical harmonics Y, , m, , (fn4) in the coordinate
rnA.

Now, as usually, we split the amplitude
into the internal and external parts in the subspace over
variable r,, 4:

MCDCC(prior)

MCDCC(prior) (ka , de)

_ M;?CC(prioT)(ka7 kaa) + MitDCC(prior)(ka7 Kan),
(82)
where
MEDPCCErion (e 1 kg )
=< \IJ?DCC“) | U;DXA + Vioa — Ugalea x((iz) > i
(83)
and
M(J/C;?CC(prior)(ka, Ka)
=< 0P Ul — Ugalpax > . (84)

TnA>Rna

The external part of the prior amplitude (see discussion
in subsection [IB)), due to the structure of the transition
operator, is small and the dominant contribution comes
from the internal amplitude. We will rewrite this ampli-
tude singling out the surface integral over variable ry 4.
To do it we rewrite the transition operator

_Pn
A VdAA = U;DALA + VnA - UdA
= [Upi* + Vaa + V] = [Vn + Uaal. + (Vo — Vi)
(85)
The bracketed operators are the right-hand-side opera-
tors of the Schrédinger equations

CDCC(—)x

(E—T) S CDCC(—)x

= (UAA 4 Voa + V) 0§
(86)

and

(E=T)paxyh) = Von + Usa)paxy.  (87)



Taking into account these equations we can rewrite
MgltDCC(prlor)(ka7 kga) in the form:
nt

+ MCDCC(prior) (ka7 de)7 (88)

aux

MCDCC(pM'OT) (ka, de) _ MgDCC(pT‘iOT) (ka7 de)

where

M%QCC(prior) (ka , de)

cpee(-)

=< ¥ | Von = Vo' * | @a Xl(;l) > rna<Bna (89)
and
MSPECETN (1 Kga)
< yCPeee) T - T o) > < (90)
TnASRnaA

Here, the kinetic energy operator T' = T,r + Tha. In

CDCC(pri .
Mg (Prier) the volume integral over r,r can be trans-

formed into the surface one taken over the sphere with the
infinitely large radius: rp,r = Rpr — 00. For r,4 < R4,
due to the presence of the deuteron bound state wave
function, the integrand goes to zero exponentially, that
is this surface integral vanishes. Hence, only the sur-
face integral encircling the inner volume with the radius
Tna = Rpa:

MgDCC(prior) (ka7 de)

= - < \I/?DCC(_) |?nA — ?nA | ©Yd X((;l) >

TnA<Rna
CDCC(post
= — Mg, (ke Kaa). (91)
gbCC(post) g given by Eq. ©7).

Sk, 4
M,ﬁfjcc(p Tior)(kpp, kia) is an auxiliary internal part,
which is small because at 7,4 < Rp4 and rpp > Rp due
to the proton absorption in the nuclear interior, p — n
nuclear interaction is significantly depleted, and so the
difference Vj,, — V,fr4. Then

MCDCC(prior) (ka7 de)

= MERCCwrion) (k,p, kaa) — M S,CRZfC(pOSt) (kpr, kaa)

+ MGC;?CC(:DTZOT) (ka7 de), (92)

Thus the total prior form CDCC amplitude consists of
three terms, small auxiliary internal part, small external
prior form and the dominant surface term. We can see
that post and prior CDCC formalisms are not equivalent.
In the approach used in the paper the configuration space
over variable r,, 4 was split into the internal and external
parts. As it has been discussed in Introduction, such a
splitting is natural because the main object of interest in
the analysis of deuteron stripping is the overlap function
I% of the bound states wave functions of the target A
and final nucleus F. Its external part (rpa > Rpa) is
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parametrized in terms of the observable ANC while the
internal part is model-dependent.

In the post formalism the external part is domi-
nant. Invoking the post CDCC formalism allows us to
rewrite the external CDCC matrix element in the form
of the surface integral over variable r,4, which can be
parametrized in terms of the parameters used in the R-
matrix method for binary reactions, while the model-
dependent internal part gives small contribution. Thus
the volume part of the matrix element over variable r,, 4
is transformed to the surface integral. For transfer to
bound states such a transformation doesn’t bring any sig-
nificant advantages because the volume matrix element
converges. However, for stripping to resonance states
(see subsection [[ITC)) this transformation provides a de-
cisive benefit because it solves the convergence problem
of the matrix element. Here, the transformation of the
post CDCC matrix element has been presented mostly
for demonstration but the results will be used below in
subsection [ILC] for stripping to resonance states.

The prior CDCC formalism would be preferable if we
split the matrix element into the internal and external
parts over variable r,,, to separate the internal and pe-
ripheral parts of the deuteron bound state wave function.
But this wave function is well known and is not an ob-
ject of study. That is why below, when considering the
stripping to resonance states, we use only the post CDCC
formalism.

IIT. DEUTERON STRIPPING INTO
RESONANCE STATES

Now we proceed to the main goal of this paper, for-
mulation of the deuteron stripping into resonance states
using the surface integrals what will lead us to the gener-
alized R-matrix approach for the stripping into resonance
states. Let us consider the deuteron stripping

d+A—p+b+B. (93)

We assume that the resonance formed in the system
F = A+ n can decay into channel B + b, which can
be different from the entry channel A +n. We start from
the post form and transform it to the surface integral
following the method applied for the stripping to bound
states. Now the application of the R-matrix approach
looks natural. Although we consider the deuteron strip-
ping leading to a specific final channel d+ A — p+b+ B,
there can be a few open channels coupled to the chan-
nel n + A, which is formed after neutron is transferred
to the target A. As in the previous sections, follow the
R-matrix approach, we split the integration region over
r,4 into two regions: internal and external. Internal re-
gion is determined as the one where all open channels are
coupled with each other, so that the transition from one
channel to another can occur only in the internal region.
The external region is the one where all the channels are
decoupled. We obtain new forms for the DWBA and



then for the post form of the CDCC amplitude. For the
DWBA both post and prior approach will lead to the
same final expression. In the standard approach the post
form of the DWBA amplitude is mainly contributed by
the external part in the subspace r, 4, where the con-
vergence question of the DWBA matrix element, which
contains the integration over r,r and r,4, becomes a
main issue. In the prior form the main contribution to
the DWBA matrix element mainly comes from the inter-
nal region in the subspace r,4, where a strong coupling
between different open channels becomes an issue. In a
new approach formulated below the DWBA amplitude
(in the post and prior forms) is written as the sum of
three amplitudes: small internal post and external prior
forms, and the dominant surface integral in the subspace
over rpa. This surface term is parametrized in terms
of the reduced width amplitudes, resonance energies and
boundary condition, that is the quantities used in a stan-
dard R-matrix approach. In the post CDCC approach
the amplitude is given by the sum of the small inter-
nal post form and the dominant surface term, that is, in
contract to the DWBA, no external prior form appears
in the CDCC method. This resolves the issue of the con-
vergence for stripping into resonant states.

A. Stripping to resonance states. Post form of
DWBA.

The post form of the DWBA amplitude can be ob-
tained by generalizing the corresponding equation for the
deuteron stripping to the bound state. As a starting
point, we use Eq. (@) in which, to get the amplitude
for the deuteron stripping to resonance states, we should

replace the overlap function I by the exact scattering

)

wave function \I/Z()_B with the incident wave in the channel

b+ B:

MDW(post) (P de)

=< XS UEY O AV rloapax(h > (94)
where AVPF =Upa + Vpn — Upr and
. +)*

v =) =) (95)

Since we consider the stripping to the resonance state,
which decays into two fragments b and B, there are three
particles, p, b and B, in the final state. Hence, the kine-
matics of the final state of the reaction depends on two
Jacobian momenta, for which we adopt the relative mo-
mentum of two fragments b and B and by the momen-
tum corresponding to the relative motion of the exit-
ing proton and the center of mass of the system b+ B.
Thus the deuteron stripping reaction amplitude depends
on the momentum P = {k,p, kyp}, which is the six-
dimensional momentum conjugated to the Jacobian co-
ordinates of the system p +b+ B Y = {r,r, rv5}.
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Then repeating the steps used in derivation of the ex-
pression for the post form of the DWBA amplitude for
deuteron stripping to the bound state we get

MDW(post) (P de) _ MZZZV(ZDost) (P, de)
(P, kqa). (96)

FMEYET (P kga) + MPW

Here, internal post amplitude M.} Wwost)(p ky4) and

external prior amplitude M2W @) (P k,4) are given
by

MDW(post) (P de)

wnt

+)

=< XTI AV pleax) > en (97)
and
Mgcgv(mor) (P, kaa)
=< XI();) Tgle:t)(*” AVPF|SDd Xgijrq) > o (98)
Here, T (r,4) =< a0 5 and
T(emt)(—) \IJ emt) -)
nA (I'nA) =< PA | >,

The last term of Eq. (M) which will be transformed
to the surface integral, is

MBW (P, kga)

—< XD TEOONT _ T o) > (99)

TnA>Rna

Let us discuss the advantage of this new form of the
DWBA amplitude for the deuteron stripping to reso-

nance state(s). Since the internal part M-y *° g

wm
given by the volume integral, its calculatlon requires

the knowledge of ¥, mt)( ) in the internal region. The
model dependence of this function in the nuclear inte-
rior (rpa < Rpa), where different coupled channels do
contribute, brings one of the main problems and main
uncertainty in the calculation of the internal matrix el-
ement. However, as it has been discussed in subsection
[[TAl this matrix element gives a small contribution to
the total post form amplitude MPW®ost) due to the
structure of the transition operator AVP r and constrain
mmaA < Rpa. These arguments are also valid when con-
sidering the stripping into resonance states. A proper
choice of the optical potential U,r and the channel ra-
dius R, 4 may significantly reduce the contribution from
the internal post form DWBA amplitude. Due to the
structure of the transition operator A Vg4, which has
been also discussed in subsection [TA] the external ma-

trix element M2} ") in the prior form is also small
and in some cases with reasonable choice of the channel
radius R, 4 even can be neglected. Note that in order to

keep small M, DW(p %) the channel radius R4 cannot be

wmn
too large and in order to keep small M2} ") cannot

be too small. Thus with optimal choice of the chan-
nel radius the dominant part is the surface part M SD w



which contains only one volume integral over r,r. Eq.
@6)), which presents a new form of the DWBA ampli-
tude for stripping to resonance states, is quite important
for analysis of the stripping to resonance In this sense
the usage of the external prior amplitude M Z};V(p rior)
has clear benefit because it is small and better converges

the external post form. Also small is the internal ampli-

tude Ml-lzfv (Post) " The main contribution to MPW (post)

comes from the surface term MPW. Using the R-matrix
representation of the scattering wave function \I/Z()_B)* we
are able to express the total DWBA amplitude in terms
of the reduced width amplitudes, level matrix, bound-
ary condition and the channel radius, that is parameters
used in a standard R-matrix method to analyze binary
resonant reactions n+ A — b+ B. Since the reaction un-
der consideration is the deuteron stripping, the presence

0s 2 k
MO P k) = 5 [ S
bB \ HOB T M,

N

- chs . * ~ _ —) — =
e it (<kop) Y Movssrse (Bop)] 2 A e <xUF BT IAT plpa Xyl >

v,7=1

In this equation we assume that the channel spin s and
its projection mg in the exit channel ¢ = b+ B are fixed
[41]. JF is the resonance spin (M its projection) in the
subsystem F' = n+A = b+ B and [ is the b+ B orbital an-
gular momentum in the resonance state. The sum over
Jr and [ assumes that a few resonances with different
spins may contribute to the reaction. The subscript ¢
used in Appendix [A] for the channel b + B is replaced
here by bB. Also E/7Mr =< o,| X7 Mr > is projec-
tion of XJF Mr introduced in Appendix [Alon the bound
state p4. The bound-state like wave function XJ/rMr

27 ka
MDW(post) P, k 1) =
ot (P, kaa) ks \| 1ws Z
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of the deuteron in the initial state and exiting proton
causes the distortions. That is why the reaction ampli-
tude, in addition to the R-matrix parameters describing
the binary subprocess, contains additional factors - dis-
torted waves in the initial and the final state. That is
why we can call the obtained expression for the DWBA
amplitude a generalized R-matrix for deuteron stripping
to resonance states.

Now we proceed to the derivation of the expressions for
each amplitude in the right-hand-side of Eq. (@8] and the
total post form DWBA amplitude. Since the stripping
into resonance states can lead to rearrangement, the exit
channel b+ B may differ from the entry channel n + A.
To proceed further we now use the equations for \I/Z()'g)
obtained in Appendix [Al Taking into account Eqgs. (@3]

and (ATl we get

< smg Lmy|Jp Mp > < Jo My, Jy My|Jg Mg >

(100)

TnA<Rna

describes the system F' =n+ A = b+ B in the internal
region. A priori, it can be calculated using, for example,
the shell model approach [36]. In Appendix [A] X /7 Mr s
written as a nonorthogonal sum of coupled channels, see
Eq. (A4). If we neglect the contribution from the chan-
nel ¢, then Eii%’v can be approximated by the internal
part of the overlap function, see Eq. (I8]). Taking into
account this equation (rewritten in LS-coupling scheme)
we get

il < SMg lml|JFMF > < S/msl l’ml/ |JFMF >

JFMFs’ll’mS/mlml/ Mn

X < Jn My Ja Mals' mg > < Jo My Jp Myp|Jg My > e~ %50 Yy, (~kyp)

N
< > Coonsrae(Bon)Y2 (A 0r < XS Vi, Gna) IX 1 g () [AVpplga X5 >

v,T=1

Here we added the sum over the channel spin s’ (its pro-
jection mg in the entry channel ¢ = n+ A of the resonant
subreaction n + A — F' — b+ B and over the n + A or-

(101)

TnASRna

bital angular momentum !’. The sum over M, and s’
appears because the transferred neutron is intermediate
(virtual). It is important that with a proper choice of



the optical potential U,r the matrix element M, DW (post)

int
can be minimized so that its model dependence wouldn’t
have impact on the total matrix element M PW(Post),

MDW(pm'or)

To obtain the expression for M_,, we use for

the external part \Illg?t)(_), which can be obtained from
Eq. (A3])), assuming that the resonance contribution to
this wave function is dominant. In the sum over Jr in

Eq. (A31) we keep only those total angular momenta at

0T . 27 UbB
MEY @ (p k) = —i —— |22
ext ( ) dA) ? kup UnA Z
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which resonances contributing to the reaction occur. Let
us consider two possible cases.

(i) The exit channel ¢ = b+ B in the resonant sub-process
n—+A — b+ B is different from channel ¢/ = n+ A. In this
case the external resonant wave function is given by Eq.
([A36]) and its projection on the bound state £ = @4 is

determined by Eq. (A37). Then M2V #7°) reduces to

ext

Z'l <lmy sm5|JFMF > < l'ml/ s'ms/|JFMF >

Jrp Mp s’ Ul m g my my M,

X < Ty My Ja Mals' my >< Jo My Jp Mp|Ja My > Yy, (—KuB) Si s 1a s b

— O*/ knA; TnA *
x <7 i )

TnA

Here, V44 is given by Eq. (35). In the external region
Voa=0and Vgyu = Upa — Uga. Also has been added
the sum over the orbital angular momentum ! and its
projection m; (I’ and my) in the exit (entry) channel
¢ = b+B (¢ = n+A) of the resonant subreaction n+A —
b+ B, the sum over the channel spin s’ and its projection
mg in the entry channel ¢ = n + A of the resonance
subprocess n+ A — b+ B and the sum over M,, because

i 2T UpB
1 [DW(przor) Pk _
ext ( ) dA) ka UnA §

Py, (Fna)| AV aaloa x>

TnA>Rnpa

(102)

the neutron is transferred particle. The projections of the
spins of the incident deuteron My, the exiting proton M,
the channel spin s and its projection mg of the exiting
particles b and B are fixed. We also use the symmetry
of the S matrix: S;]/FS, Vsl = S7r The matrix

cslye’ sl

element S;'5 ;. 1.} is given by Eq. (AZH). Substituting
it into Eq. (I02) gives

it <lmy SmS|JFMF > < l’ml/ S/ms/|JFMF >

JF MF s' Ll Mgr My My Mn

X < Jy My Ja Mals' my >< Jo My, Jp My|Ja My > Y7, (—ksp)

N

. chs - shs
N LY TP T MY Z [FbeleF(EbB)]l/z [A_l]m- Crnas i gp(Ena)l

v,7=1
NG Of (kna, Tna) Rya
pE TnA O;c/ (knAu RnA)

Now we take into account that
Ojlke, Re) = \/F? (ke, Re) + Gk, Re)

. " Fr(kg, Rz)
X e~ twai g M TR Ry

= \/Fl?(kg, Ra) + Glg(kg, Rg) et 621’?,

(104)

which for the channel é = ¢/ = n+ A and [ = I takes the
form
O (kna, Rua) =\ FR(kna, Rua) + G (na, Rna)

Fl/ (knAY RnA)
Gr(kpasRna)

i arctan

- \/F‘l%(knAv RnA) + G%/(k"A’ RnA) e 6221,7 (105)

* S iV (+)
Yy my (Fna)| AVaaled Xga =

1/2 Ov(kna, Rna)
RnA
+ (103)

TnA>Rna

where in the absence of the Coulomb interac-
tion Fi(p) = (mp/2)Y2J141/2(p) and Gi(p) =
(=D (mp/2)Y2 T_q11/2)(p)s  Jxat1/2)(p) are Bessel

functions.

Then using Egs. (A4]]) and (I05) we get
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; 2
MPWrien) p de):27r1/kM7"‘L}% 3 i< Ly smalJp Mp >
FbB %bB SinA Jr Mp s" Ul mg mymy My

x <U'myp s my|Jp Mp > < Jo My Ja Ma|s'my >< Jo My, Jy Mp|Jq My > Yy, (—kip)

N
x e o Z [CuB st 70 (Bor)Y? [A™Y0r Yrnas v
v,7=1
.y Of (kna, ™a R, " ~ 7
() Qilkna, rna) d (Fua) AV aalpax(y) > - (106)
TnA>Rnpa

X <X Umy
pE TnA Ol*/ (k’H,A7 RnA) m

be obtained from (I02]). Here we present the expression
for the diagonal transition (elastic scattering) amplitude,
which can be obtained taking into account Eq. (A33):

(i) If ¢ = ¢/, that is b = n and B = A. Here two cases
are possible: non-diagonal transition for which s # s’
or/and | # I’ and diagonal transition with [ = I’ and
s = §’. The amplitude for the nondiagonal transition can

2
il Z it <Ilmy smglJp Mp ><Imp smy|Jp Mp >

DW (prior) .
Mext (Pa de) =1 k AR
nA nA JFMplmS/mlml/Mn

|:1 — SJF (nA) sl Ol(knA; RnA)

X < Jp My, Jp Mp|Jg Mg > < Jy My Ja Malsme > Y/, (—kna) (nA) si;
(=) Of (kna, rna) Ryua . m — (+)
X < Fpa)| AV > . 107
XpF TrA O?(knAy RnA) lml/( A)' dA|(Pd XdA roa>Roa ( )
Substituting the expression for the elastic scattering S- obtain
matrix element S{;A)Sl;(nA)sl given by Eq. (A43) we
|
TL0T . 2 .
M:;L/V(p )(P, de):ziw Z it <Ilmy smg|Jp Mp ><Imp smg|Jp Mp >
knA RnA Tr Mpe 1 M
F F msl my ml/ n
X < Jy My Jy Mp|Jg My > < Jo My, Ja Malsmg > Y5, (—kna)
N
i ohs . —
x |1 — 6_215"‘“ (1 +1 Z [FunAlep (EnA)]1/2 [A 1]IJT [F‘rnAleF (EnA)]1/2)} Ol(knAu RnA)
v,T=1
(=) Of (kna, Tna) Rpa v m — (+)
X < toa)| AV > . 108
XpF TnA Ol* (knAa RnA) lml,( A)| dA|<Pd Xaa TnA>Rnpa ( )

One-level, one channel case is the simplest one for which
MEW@rier) (p x4 boils down to

ext
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MDW(pm'or) Pk _
( ’ dA) ‘ knA RnA

ext

>

Jr Mplmg mymy My

X < Jp My, Jp Mp|Jde >< J, M, Ja MA|smS/ > Yltnl(_knA)

RnA *
O; (kna, Rua) 1\

4 Of knA7T77,A
x < x7 Z(TA )

where

FnA slJp (EnA)

OnAslJ- = arctan ,
naster 2(Ena0)stgp — Ena)

EnA(O)leF > EnA; (110)

is the resonant phase shift, F, 40y, is the real part of
the complex resonance energy of the resonance with the
quantum numbers sl Jg in the channel n + A. Now we

1

(Fra)| AV galpa XEIA) >
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<lmy sm5|JFMF ><Imy sms/|JFMF >

9. shs .
[1 e 208, s10p eQZénAsLJFi| Ol(knAa RnA)

" (109)

)
TnA>Rna

derive the equation for M é:’ W by transforming it into the
surface integrals over variable r,4. We can repeat the
discussion in Section II A. The integration in Eq. (@9)
over r, 4 is taken over the external volume restricted by
two spherical surfaces: the inner surface with the radius
R, 4 and the external surface with the radius R;l A4 — 00.
As it has been shown in Appendix [B] after regularization
the integral over the infinitely large sphere vanishes (see

Eq. (B22))) and

(ext)(-) .
L (+) (+) [T, (rna)]
MBW (P, ki) = —Mg’RVfA(P, kya) = R%, T / dryr / d Qe 4 [palrpn) Xac,, (taa) X7, (vpr) AarnA
cat)(— L 00a(rpn) X)) (xan)
= x5 e (X550 ()] T o (111)
nA TnA=Rna

Here, — M SDRWA (P, kqa) is the surface integral encircling
the inner surface of the external volume at Tna = Rpa.
A negative sign appears because the normal vector to the
surface is directed to the center of the volume, i.e. op-
posite to the normal vector to the external surface (at
infinitely large radius). For simplicity, we dropped the
quantum numbers in Eq. ([III) but they will be recov-

27
Y Nadel

MEY (kpr, kaa) = —Mg)" (P, kaa) = T

Oy (kna,rna)
9 rnA

< [ A0, Vi @) [alrm) 3 (50

,27‘1’ UbB 1

= — 7 — = Z il

k UnA 2
bB N UnA SlnA 5oy mimy s My,

8rn,4

UbB 52
(— R
Una nA

x <U'my smg|JM >< Jy My, Jx Mals' mg >< J, My,

ered below. Note that Eq. (III) can be obtained from
Eq. 27) by substituting Tgfzt)(f)(rnA) for the overlap
function I Te Mp Ja Ma mya(TnA)-

For the exit channel ¢ = b + B in the resonant sub-
process n + A — b+ B different from channel ¢ =n+ A

using Eq. (A37) we get

1
it <lmy smg|Jp Mp >
2MnA

JFMpll’mlml/ San

Ty M\ Ma > Yoo (Bos) S35 uaar. [ drpex ), (apr)

L (e Qelhnas aa) amrpn)xﬁ;i)(rm}
X_ka e TnA arnA rnA=Rna

<lmy smg|JpM ><1U'mp s’ mg|Jp Mp >< J,, My, Ja Mals' mg >

< My Ty Mylda Ma > Vi (o) S25 n e O s Rua) [ e XL (re) [ 4800 Ye )

X [sﬁd(Tpn) Xl(j;z, (rga) (Bna —1) — Rpa o

am(w@xiﬁ)(rﬂ

(112)

TnA=Rna



Here,

801/ (knAﬂ‘nA)
Orna rnA=Rna

B,
A Ov (kna, Rna)

= RnA

(113)

is the boundary condition. Sum over M, is a for-

™ UpB 1

MY (kpp, kaa) = —Mg)" (P, kaa) = 7—

kvp \ vna pina
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mal because My and M, are fixed. The coefficient
< Jn My, Jp Mp|Jg Mg > appears from the vertex d —
p + n and the product < U'my s'mgy|Jp Mp ><
JIn My, Ja M als' mg > from the vertex n+ A — F. The
matrix element S’ngSlmA o is given by Eq. (A45). Sub-
stituting it into Eq. (I12) gives

Z it <lmy smg|Jp Mp >

JF Mpll, s’ mymyr Mgr Mn

x < llm[/ s'mg|Jp Mp > < Jo My, Ja Mals'mg >< Jy, My, J, My|Jg Mg > Y/,

- shs - shs
—W0p1 o= 10.y

(~kip)e

X Z VbBSlJF EbB)]l/2 [A_l]u‘r [FTnAs’l’ JF(EnA)]1/2 Ol’(knAu RnA) /drpF X(:E{)pF(rpF) / dQl‘nA l’ml/(rnA)

v,T=1
0 @alrpn) i) ) (ran)
(+) 1) p kaa
X [%(Tpn)xm (rga) (Bpa —1) = Rya Tr } o n (114)

Taking into account Eq. (AZd]) and Eq. (I04) we arrive

at the final form for MZW (k,r, kga):

2Rpa ;
MEY (kyr, kaa) = —MEY (P, kga) = 74 ————— > i <lmy smelJp Mp >
nA HoB Pk
bB UnA MbB Jp Mpll s"mymy mg My,

x < U'mp 8 my|Jp Mp > < Jo My Ja Mals' mg > < Jo My Jp My|Ja Mg > Y7, (—kyp) e %

X Z voBs17p (Eo)]"? (A ur Yrnas s /drpFX(ji()pF

v,7=1

RnA

(rPF) / dQy,, Yo my (Frna)

% [alron) X, (vaa) (Bua = 1) -

Now let us consider the diagonal transition csl — csl,
where c = ¢ =n+ A. To get MSDW once again we start

from Eq. ([III). Now in this equation Tffjt)(f) should

DW : m 1
MEY (kpr, Keaa) =i ——— S i
MHA ’ﬂA JF MFlml ml// msu Mn

am(rpn)xﬁ*;;)(rm]
(9 TnA

(115)

TnA=RnaA

J(ext)(0) 4y text)(=)

be replaced by Tcslms;cslms// cslmgieslmn

Egs. (A30) and (A33). Then the equation for surface
matrix element for the diagonal transition takes the form

given by

<lmy SmS|JFMF > < Imyn Sms//|JFMF >

X < Jy My Ja Malsmgr > < Jy My, Jp My|Jg Mg > Y, (—kna)

N

X |:1 - e—i252i” (1 +1 Z []-—‘l/nASlJF (EnA)]1/2 [A_l]u‘r I“rnAlep (EnA)]1/2>:| Ol(knAa RnA)

v,T=1

X /drpFX(_—L)pF(rpF)/ernA lmlu(rnA) [Sﬁd(rpn)xl((—:A

(raa) (Bna —1) —

awd&pn)xgi)(rm]

R,
A aTnA

TnA=Rna

(116)



Summing up all three amplitudes Ml-lzfv(po“) (P, kqa),
MEY PO (P kga)  and MEV(kyp, kaa) 0 =
—M?RWA (kpr, kga) we get the total post DWBA

for the (d,p) stripping.

I
MPW@est) (P kgp) =27y [ ———
1B ko
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(i) Resonant reaction n + A — b + B, that is
¢c = b+ B # ¢ = n+ A Then the total post
form of the DWBA deuteron stripping amplitude is

it < SMmg lml|JFMF > < S/msl l’ml/ |JFMF >

JFMFs’ll/ms/mlml/ Mn

N
X < Jn My Ja Mals' my > < Jy My, Jp My|Jg Mg > e~ 0051 V% (—kyp) > Tvvssise(Bep)]? [A7Y,,
v,T=1
-) JF e +) 2 fina
{ <r I apna) AVprloaxild > | 4 [ rnasrs
(=) O (kna, Tna) Rna . e o +)
X < ; nA)| AV >
XpF TnA Ol*’ (knA7 RnA) : ml,(r A)l pFlSDd Xaa TnaA>Rna
RnA YrnAs'l'J /dI‘ FX(+) (I‘ F) / er }/l/m (an)
2 finA ’ PEA—kpr 0P A v

x [@d(rpn) Xgl (raa) (Bna —1) — Rna

Assuming in this equation b = n and B = A, that is
¢c=c but | # 1’ and/or s # s’ we get the expression
for the DWBA deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A);s — F —
(TL + A)l/ sl

Equation (II7) is very instructive for understanding
the difference between the stripping to resonance states
and on-shell binary resonant reactions. As we can see, the
transfer reaction amplitude contains the resonance fac-
tors determining the resonant subprocess n+ A — b+ B,
the partial width amplitude [T, sps1, (EbB)]1/2 of the
level v for the decay to the exit channel b+ B, the matrix
elements of the inverse R-matrix level matrix [A~!],,
and the reduced width amplitude ;4 ¢ - of the level
7 for the entry channel n+ A rather than the correspond-
ing partial width amplitude which would present if we
consider the corresponding on-shell binary resonant re-
action n + A — b+ B. The difference is crucial because
the partial width amplitude [T, ;5 51 7, (Eyp)]/? contains
the penetrability factor, see Eq. (A4d]), which is missing
in the reduced width amplitude and, hence, in Eq. (IT7).
The lower is the energy of the resonance, the stronger is
its suppression due to the barrier penetrability in the en-

0 pa(rpn) i) (raa)
Orna

(117)

TnA=Rna }

trance channel in the on-shell binary resonant reaction
n+ A — b+ B. Besides, if a few resonances do con-
tribute with the different I’, then the higher is I/, the
stronger is its suppression. However, it is not the case
if one tries to populate low-energy resonances with dif-
ferent !’ using transfer reaction. Missing penetrability
factor in the entry channel of the subresonance reaction
n+ A — b+ B in the transfer amplitude makes it pos-
sible to populate low-lying resonances. Moreover for the
same reason, the resonances with higher I’ are not sup-
pressed in the stripping. Hence, when a few resonances
are populated in the transfer reaction, the measured ex-
perimental spectrum of the fragments b and B can be
quite different from the one measured using the on-shell
binary resonant reaction. The missing penetrability fac-
tor in the entry channel n+ A of the resonant subreaction
n+ A — b+ B in the transfer reaction explains the power
of the Trojan Horse method as indirect technique in nu-
clear astrophysics (see [32,137] and references therein).

(ii) Diagonal transition in the resonant subprocess (n+
A)ys = F = (n+ A)js, that is, c =, 1 =1, s = ¢
The total post form of the deuteron stripping DWBA
amplitude is



MPWwosH (P kgq) =2

Jr Mplmgn mymyn My,
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Z Z'l <sm5lml|JFMF><smsulml~|JFMF>

X < Jp My Ja Malsmgs > < Ju My Jy My|Jg Mg > e 530V (<)

N
/ 1 _
X { m Z [FvnAlep(EnA)]l/2 [A 1]1/7' < X;S)F

v,7=1
N
+ 1

v,7=1

(=) Of (kna, rna)

- hs . _
1-— 671267”” (1 +1 Z [FunAleF (EnA)]1/2 [A 1]1/7' FTnAlep (EnA)]1/2)

_) +

15 1 (raa) |A T pelpa xS >

TnA<RnaA

RnA +)

(Faa)l AV prlpa xSy >

*

1
——— Oi(kna, Ry
% (knARnA l( A A) <X F

Y,
O; (kna, Rpa) '™

TnA TnA>Rna
1 N
+ m /drpFX(:E{)pF(rpF)/ernA Ylmlu(rnA)
8 a(rpn) Xt ) (xaa)
% [alron) X, (£4a) (Bua = 1) = Ry ———0s eaa ] . (118)
TnA rnA=Rna

B. Stripping to resonance states. Prior form of
DWBA.

Here we show that starting from the prior form we are
able to obtain the generalized DWBA R-matrix ampli-
tude for the deuteron stripping to resonance states, Eq.
@6), much easier than from the post form. The prior
of the DWBA amplitude for deuteron stripping to reso-
nance states is

MDW(prior) (1:)7 de)

(

=< PN AV aalpavaxty >, (119)

where AV 44 is defined by Eq. (35). As usually, we split
the amplitude into internal and external parts

MDW(prior) (P, de) _ MDW(PTior) (P, de)

int

FMEWV@rien (p oy, (120)
with
Mzgl/[/(prior) (P, de)
=< XA U AV aalpa xSy > o 2
and
MO E (e, kaa)
=< xfo}) U AT jalpaxy) > n (122)

The splitting of the amplitude into the internal and ex-
ternal parts in the subspace over the coordinate r, 4 is
necessary to rewrite the prior DWBA amplitude in the
generalized R-matrix approach for stripping to resonance

states. As we have discussed in subsections D%IIl and
[TAl the external matrix element Mjif”p ") in the
prior form is small and in some cases with reasonable
choice of the channel radius R, 4 even can be neglected.
It is important for analysis of the stripping to resonance
states because the external part in the post form doesn’t
converge. In this sense the usage of the prior form in
the external part has clear benefit. The main contribu-
tion to the prior form amplitude M PW (#rior) comes from
the internal part M;ZZV (Prier) *Since the internal part
is given by the volume integral, its calculation requires

the knowledge of \I/l(f];lt)(*) in the internal region. The
model dependence of this function in the nuclear interior
(rna < Rpa), where different coupled channels do con-
tribute, brings one of the main problems and main uncer-
tainty in the calculation of the internal matrix element.
Using the surface integral we can rewrite the volume inte-
gral of the internal matrix element in terms of the volume
integral in the post form and dominant surface integral
taken over the sphere at r,4 = R,a. With reasonable
choice of the channel radius R, 4 the contribution from
the internal volume integral in the post form can be min-
imized to make it significantly smaller than the surface
matrix element. The latter can be expressed in terms of
the R-matrix parameters - the observable reduced width
amplitude (ANC), boundary condition and channel ra-
dius. Repeating the steps outlined in subsection [TB] we
get

MDW(prior) (P, de)

int

= Mt (P kaa) + MEY (P, kaa).

wnt

(123)



DW (post . . .
Here, M, , ®ost) as been previously considered and is

given by Eqs. (I00) and (I0I) while MP"W takes the form

MBW (P, kga)
- _ <Xp )T(ezt)( )l? ?lspdx

)
TnASRna

(124)

where Y(¢#0)(=) =< \Ifl()?t)(i)W’A >. The fact that the
volume integral in this equation is the internal one makes
transformation of this volume matrix element to the sur-
face one much easier than for the post form. The tran-
sition operator T = Tpp + T,a. Since rpa < Rpa at
rpp — oo the integrand in Eq. (@9) vanishes exponen-
tially due to the presence of 4. Hence, the operator T,
is Hermitian, that is, applying the integration by parts
over r,r twice we get

<xPrlgnt N7 =T pax) >

TnA<Rna
=< X;()F) < ‘I’b?t loa > |? T | pa XdA)
nASRnA
=0. (125)
Thus MEPW (P, kg4) reduces to
MBW (P, kga)
=< XI(;’) Tgle:t)(_” ?nA - ?nA |g0d X((;l) > .
TnA<Rna
(126)

Using the Green’s theorem we can transform this vol-
ume integral into the surface one. Note that the volume
integral over r,4 is constrained by the sphere with the
radius r,4 = R,4. Hence, only one surface integral ap-
pears with r,4 = R,a. Here we see an important ad-
vantage of using the prior form versus the post one. In
the post form transformation of the external volume in-
tegral to the surface one led to two surface integrals at
Tna = Rpa and 74 = Rn 4 — oo. It required an elabo-
rate proof, which included regularization, to demonstrate
that the surface integral at rp,4 = R;1 4 — 0o vanishes.
After transformation to the surface integral we get

MSI')W(Pa de) == *‘?RI‘/ZA (Pv de)a

(127)

Eqs (1), (IT2) and (II3) determine this surface inte-
gral.

C. Stripping to resonance states. Post CDCC
formalism.

The CDCC approach for stripping to resonance states,
which takes into account the deuteron breakup in the
initial channel, definitely has advantage compared to a
standard DWBA. The application of the surface formu-
lation of the reaction theory for the DWBA has been
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done mainly for demonstration, but our main goal is the
CDCC.

Here we present the derivation of the post form CDCC
amplitude using the surface integral. This amplitude is

MCDCC(post) (ka7 de)
=< (PO | AT g PO 5 (128)

This equation is an extension of the post CDCC am-
plitude for stripping to bound states, see Eq. (B4I).

A V p is defined by Eq. ([@0). Now, as usually, we split

M cb CC(pOSt) into the internal and external parts in the

subspace T, 4:

MCDCC(post) (P, de)

nt

MCDCC(post) (P, de) _

+ MEPCCwes (p ). (129)
The internal amplitude Mgfcc(p ost) g given by
Mi?ltDCC(post) (P de)
_ . X; )\I/(emt)( )|AVPpn|\I/CDCC(+) _
TnASRna
(130)
Correspondingly, the external amplitude is
Mi?CC(post) (P de)
—< X;F) \IJ emt |AVPpn|qJCDCC(+) > i
TnA>Rna
(131)

Now we repeat the steps outlined in subsection[[LTCl Tak-
ing into account Eqs (B8), (B9) and (@) we arrive at

MeC;?CC(post) (P de) MgDCC(post) (P de)

=<l Wi ONT - T Pe0)

)
P TnA>RnA

(132)

where T' = T, + Ty a. It is shown in Appendix [C] that

MgDCC(Post) can be reduced to

_MCDCC(post) (P de)

SRpa

|?HA _ ?n | \IJCDCC(Jr)

MgDCC(post) (P de) _

(ext)(
=< X;F) \I/ .
TnASIin A

(133)

This integral can be directly transformed into the surface
integral with 7,4 = R, encircling the internal volume,
while the integral over r,r is taken over all the coordi-
nate space. Thus we have shown that the post CDCC
amplitude for stripping to resonance states is given by
the difference of two terms, internal post CDCC ampli-
tude and the surface integral:

MCDCC(post)(P, kaa) = Mglfcc(pmt)(R Kga)

—MgRifC(pOSt) (kpr, kaa).

(134)



The internal amplitude Mgfcc(p °st) can be minimized

by a proper choice of U,r and the channel radius R, 4,
while the surface integral is dominant. If the channel
radius is larger than the n — A nuclear interaction ra-
dius the second term is parametrized in terms of the re-
duced width amplitude and the boundary condition at
na = Rna. Thus we succeeded to parametrize the post
form of the CDCC amplitude in terms of the R-matrix
parameters. It is one of the main results of this paper.
Eq. ([@34) is the most important result of this paper.
Due to the absence of the external term, which is present
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in the DWBA and which causes the convergence issue,
the convergence problem in the post CDCC approach is
resolved: the integration in the surface matrix element
is performed over the full coordinate space only over one
coordinate rpr rather than over two coordinates, r, and
rnAa.

. cDec(
Expression for M, ,

be obtained from Eq.

Post) for different cases can
({0I) by replacing the
initial channel wave function ¢q(rpr) Xgl)(rdA) by

\I!iCDCC(Jr)(rpF, roa):

CDCC (post 27 kg .
Mint (pOS)(P7 de):k_ — Z Zl <smslml|JFMF>
bB /'l’bB JF MF s’ll’ms/ my mys Mn

N

x < s Mg U my |JF Mp><J, M, Ja MA|S/ Mg > 671‘6*}:};1 }/l*ml(—f(bB) Z [FvstlJF (EbB)]1/2 [Ail]vr

- - cDCC(+
X < X;F) If g Jp (Tna) [AV e[V, )

Note that the CDCC wave function itself also depends on
quantum numbers of p — n and d — A subsystems, which
we don’t specify here. It will be done in the following

up paper where concrete calculations will be presented.

Natural Jacobian variables for \I!Z-CDCC(JF) are rga and

r'pn, but we use here another set of Jacobian variables,

(rpF ) rnA) >

v,7=1

(135)

TnASRnaA

rpr and rp4.

To write down explicitly M SC boc( OSt)(

Rya ka, de) in
terms of the surface integral we can use Eq. (III) re-
placing the initial channel wave function by the CDCC

one:

MgDCC(post)(ka, kgq) = _Mgl:ifC(:Dost)(ka, Kaa)
R2 ~ ext)(—)x*
= 2 nA / drPF X(:Ec) F(rpF) /dQI‘nA TnA [TiAt)( ) (%rnA - ernA)\I/iCDCC(JF)(I‘pF, rnA)}
HnA P TnA<Rna
R2 + CDCC(+ 3T51€m)(_)* eat)(—)* 5‘1’1-CDCC(+)(I‘ FyTnA)
= 211—24 / drpp XglgpF(rpF) /ernA v; ( )(rva Tna) 8;‘7 - ngA e 3Tn,4p
(136)

We can extend corresponding equations from subsection
[T Alby replacing the initial channel wave function by the
CDCC one. In particular, for the nodiagonal transition

in the resonant subreaction ¢’ s’ I’ — ¢ s, where ¢ = b-+B
and ¢/ =n+ A, we get from Eq (ITH)

TnA=RnaA
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[ 2R
MgDCC(post) (ka7 de) _ _MgRDfC(post) (1:,7 de) — nAk Z il
" MbB MnA bB JF Mpll’s’ml ml/ msl Mn

X <Ilmy smg|Jp Mp ><1'my 8 mg|Jp Mp > < J, My, Ja Mals'mg >

N
X Yl’;m(—f{bg)e_”ggl > Coensise(Ben)? A ur Yrnasi s /drpF X(j{)pF(I‘pF) / dQup, s Y, (Fna)
v,T=1
5 pCDCC(H) .
% \I/iCDCC(-H(I'pF, I'nA) (BnA _ 1) — Ry i 5 (rva r A) ) (137)
TnA rna=Rna

Correspondingly, the surface integral for the diagonal  transition ¢sl — c¢sl can be obtained from Eq. (II6):

MgDCC(pOSt)(ka,de):Z‘L Z it <Ilmy smg|Jp Mp ><lmy smgr|Jp Mp >

k
/'I”IIA ’ﬂA JFMFlmlmlumSu Mn

~

X < Jp My Ja MA|smS~ > Yl*ml(—knA)
N

X |:1 - €_i257}1i“ (1 +1 Z [FunAleF (EnA)]1/2 [A_I]IJT FTnAleF (EnA)]l/2)} Ol(knAa RnA)
v,T=1
. o wePeCH) , Ty
X /drpF X(_—ii()pF(rpF) / dQl‘nA }/lml// (rnA) |:\IjiCDCC(+)(rpF7 rnA) (BnA - 1) - RnA : or (A;DF A):| e A—R A-
(138)

Summing up two amplitudes Mgfcc(pOSt)(P, kga) (i) Resonant reaction n+ A — b+ B, that is ¢ = b+ B #
and Mgw(kpp, kia) = —M?RWA (kpr, kaa) we get the ¢ =n+ A. The total post form of the CDCC deuteron
total post CDCC amplitude for the (d, p) stripping. stripping amplitude can be obtained from Eq. (II7):

1
]\/[CDCC(;DOSt)(P7 de)(P, de):Qﬂ' Z il < SMg lml|JFMF><S/ms/l/ml/|JFMF>
V s ko

JFMFs’ll’mS/mlml/ Mn
he N
X < Jn My Ja Mals'mg > e 050 Y (—kyp) Z Cuvmsiae(Epp)]? [A7,,

v,7=1

_ 54 CDCC(+
X { < X;F) Iﬁ‘s’l’ JF(TnA) |AV;DF|\I]1 ( )(rpF’ rnA) > TnA<Rna

Roa .
2MnA YrnAs' U J /drpF X(_—ii()pp (rpF) / dQI‘nA Yy mys (rnA)
5 yCDCC() .
X |:\I]?DCC(+)(rpF7 rpa) (Bpa —1) = Rpa — (xpr, T A)} . (139)
8TnA TnA=Rpa

Assuming in this equation b = n and B = A, that is c=c butl #1" and/or s # s’ we get the expression for



the post CDCC deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A);s - F —
(TL + A)l/ sl

MCDCC(pOSt) (P, de) — 97 Z il

JF MF lmsu my ml// Mn

- chs ~
X < Jp M, Ja MA|S Mg > e Ona Yl*ml(_knA)

q

N
1 _ - S va (efslele]
Vi 2 Monastn(Ean) 2 A o <00 T 0 () IA Vo [0777C (0, xa) >
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(ii) Diagonal transition, ¢ = ¢/, 1 = I, s = s’. The
total post form of the CDCC amplitude is

< SMmg lml|JFMF > < smgr L myr |JFMF >

vr=t TnASRna
L 6712655‘” (1 +e Z [FV"ASIJF (EnA)]l/2 [Ail]UT FTTLASZJF (EHA)]I/Q)
v,7=1
1 i X
X m /drpFX(*k)pF(rPF) / ernA}/lmlu(rnA)
a\I/-CDCC(Jr) .
x [‘I’ic PO e, 10a) (Bua = 1) = Rpa — o, T A)} : (140)
8TnA rnA=Rna

Egs (I39) and (I40) are the final and main result of
this paper. Both matrix elements consist of only terms,
the internal post CDCC and the surface term. The in-
ternal term contains the integration over r, 4 in the in-
ternal volume r,4 < R,a. Hence, at rp,p — oo vari-
ables rqa ~ rpp — 00 and 7p, ~ rpr — 0o0. But then
\IJ?DCC(JF)(rpF, Tna) ~ T;F3 [35] the integral over rpp
does converge. The same conclusion is true for the sur-
face integral in which r,4 = R, 4. Hence, in this matrix

element also \IJZ-CDCC(JF)(rpF, Tpa) ~ rglji’ and integral
over rpr converges. Both amplitudes are parametrized
in terms of the parameters used in the conventional R-
matrix approach and providea tool to analyze the strip-
ping into resonance states using generalized R-matrix
approach. Finally, both amplitudes, (I39) and (I40),
don’t have penetration factor in the entry channel n + A
of the resonance formation in the resonant subreactions
n+A — b+ B and n+A — n+A. That is why stripping to
resonantstates provides a powerful tool to measure reso-
nances in the subsystem n+ A very close to the threshold,
which can be suppressed in the on-shell binary resonant
reaction but not in the stripping to resonance states.

IV. SUMMARY

The theory of the deuteron stripping populating bound
and resonance states based on the surface integral for-
malism is presented. To demonstrate the theory I first
develop it for the DWBA. Since the DWBA is outdated
and, definitely, deficient compared to the CDCC, the the-
ory is extended to the CDCC formalism. The theory is
applied for stripping to bound and resonance states. The

eventual goal of this paper is to deliver the theory of the
deuteron stripping to resonance states within the CDCC
formalism using the surface integral formulation of the
reaction theory [38]. Transformation of the volume ma-
trix element to the surface one (in the subspace over r,, 4)
and R-matrix representation of the scattering wave func-
tion of the fragments formed by the resonance decay al-
lows one to parametrize the reaction amplitude in terms
of the R-matrix parameters used in the analysis of the
binary resonant reactions. Since the reaction under con-
sideration is the deuteron stripping, the presence of the
deuteron in the initial state and exiting proton causes
the distortions. That is why the reaction amplitude,
in addition to the R-matrix parameters describing the
binary subprocess, contains additional factors - CDCC
wave function describing the d — A scattering in the ini-
tial channel (coupled to the deuteron breakup channel)
and the proton distorted wave in the final state. Hence,
the approach can be called a generalized R matrix for the
stripping to resonance states. The advantage of the ap-
proach is that the reaction amplitude for stripping to res-
onance states in the post CDCC formalism doesn’t have
convergence problem and is parametrized in terms of the
same observables as binary resonant reactions. Hence,
the formalism provides experimentalists a consistent tool
to analyze binary resonant reactions and stripping re-
actions populating resonant states extracting the same
observable parameters, namely, reduced widths (ANCs).
The power of the method has been demonstrated in the
analysis of the Trojan Horse reaction F(d, n a)10 [32].
The numerical application of the method will be demon-
strated in the following up papers.
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Appendix A: b + B scattering wave function \III(DB)

In this Appendix we consider the representation of the

scattering \I/Z()'g) wave function used in the R-matrix ap-
proach for binary resonance processes [39, [40]

1. Internal scattering wave function \II(H

A general equation for the internal wave function con-
tains the sum over total angular momentum Jp and its
projection Mp. Since we are interested in a wave func-

tion \I/( +) describing a resonance in the system F' = b+ B,
we cons1der only the internal wave function at given Jp,
at which resonance occurs. In the internal region in the
state with the total momentum Jg, channel spin s (its

projection mg) in the initial channel ¢ = b+ B the wave

function \I/Z() B) can be written as [39]

pleGno) =
,uc Mlmy
N
X Y (ke) Y [Cuesian (Bo)]/? A7), X]FMr,
v,T=1

(A1)

Here, E. = Epp and k. = kyp are the relative energy
and momentum of particles b and B, p. = upn, Ly (Fe)
is the formal (R-matrix) partial resonance width of the
level v in the channel ¢ = b+ B, A is the R-matrix level
matrix, N is the number of the levels included, o.; is the
Coulomb scattering phase shift in the channel ¢ and the
partial wave [, 5"? is the hard-sphere scattering phase
shift in the channel ¢ given by

E (k67 RC)

6 Gl(kca Rc) ’

= —w,.; + arctan

cl (A2)
where F(k., r.) and Gi(k., r.) are regular and singular
Coulomb solutions of the radial Schrédinger equation,

l

7 7 e
W] = 0¢] — Ocg = arctang,

(A3)
n=1
o¢; is the Coulomb scattering phase shift in the [-partial

wave, 7). is the Coulomb parameter for the scattering of
the fragments in the channel c.
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We consider only two coupled channels ¢ = b+ B
and ¢ = n+ A. Also X/7Mr is an eigenfunction of
the Hamiltonian describing the compound system F' =
n+ A = b+ B in the internal region excited to the dis-
crete level 7 with the total angular momentum Jr and
its projection Mp [42]. A separable form for \11;2’55,2’;”
reflects the fact that we consider the b + B interaction
proceeding through resonance states. The entry channel
of this scattering is the channel ¢ = b + B. The inverse
level matrix contains contribution from all N resonance
levels. In a simple one level case it reduces to the well-
known Breit-Wigner resonance propagator. All the open
channels coupled to ¢ contribute to X /77 and deter-
mine possible exit channel contributions into resonance
scattering. Hence, in the internal region, where different
open channels are coupled, X7 Mr can be written as a
nonorthogonal sum of these channels [39]:

X;]FMF — Z

1 7\ Jr M
;wréjA{gé(b = Fu(;g[JFj}a
cslimsj ©

cslms
(A4)

where &; is the product of the internal bound state wave
functions of the fragments in the channel ¢, ¢ = ¢, ¢/,
Ussj g, ;(re) is a set of the radial wave functions of the
relatlve motion of the fragments in the channel ¢ with
the channel spin s, orbital angular momentum [ and to-
tal angular momentum Jr in some adopted potential,
qﬁéjg ;‘Zf , where mgz is the projection of 3, is the channel
wave function (in LS-coupling). Also A is the antisym-
metrization operator between the nucleons of the frag-

: h,s .
Z e %0 ' < smg lmi|Jp Mp >ments in the channel & We consider only two coupled

channels, ¢ = b+ B and ¢/ = n + A. Thus the initial
channel ¢ can propagate into two final channels ¢ and ¢’
via the intermediate resonances. Although Eq. (A4) con-
tains the sum over all channel spins § and projections in
each open channel, in what follows consider the contribu-
tion to X/F Mr only from the channel with fixed channel
spin and its projection.

First, let us consider the contribution of the channel
cs" mgn into XJF Mr_ In this channel ¢, = ¢}, pp and

0L, = D < 8" e U | Jp Mp >
ml//
X Y” myr (i‘\C) ¢c s’ Mgrr (A5)
Ges m = Z < Jy My Jp Mp|s" mer >
M, Mz
X Yy, My, Vg Mp- (A6)

Here, ¢¢sm,, is the channel spin wave function in the
channel c¢s” mgr, j, a, is the spin wave function of
particle i, I” (my) is the relative orbital angular mo-
mentum (its projection) of the fragments in the channel
¢, r. = rpp is the radius-vector connecting b and the
center-of-mass of B. We adopt the channel radius R,
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large enough to neglect antisymmetrization between nu-
cleons of b and B at r. = R, that is

A Jr M
A{wT cj §C¢C§// l//FmS// Ues 1 JF]}

re=Rc
~ N gc ¢Cs” 1 Ues U Jpj ) (A7)
re=Rc
~1/2
!
where N, = (bng,)' .

Assuming that the overlap of the channel ¢ at the chan-
nel radius R, with the channel ¢’ is negligible we get for

the component of X;Iiyfn ., projected on & = ¢y ¢p at
e = R [39]
57{12 5{\’/{1:71 " (Refe) =< §C|X7-]§”A§f " ro=R.
=5 Z ¢CJ§//]\5Fm ’ Urcs!, 1 JF(R )7
1z
(A8)

where

) = NC Z WrcjUcs 1" JFj(TC)'
J

(A9)

uTcs“,l” Jr (Tc

TJF(im_f)(-i-) (R.t.)

csmg;c s’ mgn

o 27 kc Z
chc v He M, Ly

=< §C|\1/JF(mt)(+) >

csmg

e il < sy Lyl Jp Mp > Y, (ko) . [Cestiae (B)] V2 [A7Y]
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At r. = R, by definition [39]

\/2Mc cVres” " Jpy

(A10)

Ur s Jp

where ;5717 g, is the reduced width amplitude of the
level 7 in the channel ¢ s” I” Jr. I remind that the system
of units & = ¢ = 1 is being used throughout the paper if
not specified otherwise. Then

=Jr M
‘:TI:: s“I:ns// ( Z 2 ,Uc cVres"l Jp
l//
JF MF
(bc s U mogn (All)

':‘JF Mp
Thus we can express the component Z:70/7  (rc)

taken at the channel radius r. = R¢ in terms of the
sum of the reduced width amplitudes, where the sum is
taken over all allowed in the channel ¢ partial waves [”
at given Jr and s”. Then the component of \I/C‘Jig,ift) in
the exit channel ¢s” mg. projected onto & = pp pp at
r. = R, takes the form

k CShs N
= = Z 6_15C1’Ll <Smslml|JFMF><SHms// l”ml//|JFMF> }/l*ml(kc)
1

C MLV mymyn

ke R
N
1/21A -1
X Z vcleF )] [A ]V‘F

Here, s” is any channel spin value in the channel ¢ = b+B
allowed by the spin and angular momentum conservation
law. In particular, s” may coincide with s, that is s” = s.

Jr(int . 21 /k i hs
Tcls:l(ms);g—:)lms// (RC I‘C) - k R o el Zl Z

M mymyn

N
X Z [FvcleF (Ec)]l/2 [A_l]I/T

v,7=1

A similar consideration can be applied when we

2,U/C Rc Yres" U Jp }/l” myr (rc) ¢c s m -

2,U/CRCFYTCSIJF }/lmln(/r\c) (bcsmsu-

N
—Jr M R
vT :‘Ti S”I':TLSN (Rc rc)
v,T=1
(A12)
The diagonal component, I = [ and s” = s, which is

needed to determine the elastic scattering amplitude (see
below) is

< SMmg lml|JFMF > Smgr lml//|JFMF > }/lj;nl(l’;c)

(A13)

consider the contribution of the channel ¢’ s’ my into



XJrMr In this channel £, = pa and

(b{FMyFm/: E <S/ms/ l/ml/|JFMF>

c' s
mys

X Yy my (i‘\c’) ¢c’ 8" mgrs (A14)

¢c’s’m3/ = Z < Jn Mn JA MAlslms’ >

My Ma

X an My, ¢JA My - (A15)
Here, ¢¢ s'm,, is the channel spin wave function in the
channel ¢/ with the channel spin s’ and its projection m,,
" (my) is the relative orbital angular momentum (its
projection) of the fragments in the channel ¢/, ror = 1,4
is the radius-vector connecting n and the center-of-mass
of A. We adopt the channel radius R. large enough to
neglect antisymmetrization between n and nucleons of A
at ro = RC/, that is

A Jr M
A{w‘l’ g §Cl¢c’Fs’ l’Fm S Ut s U T j} R
g T =R_.

c c

Al6
ro=R, (A16)

c

~ Mp
Nc’ gc’ (bcl sl Ure sl Jpj

Te

~1/2
() T =@y

Assuming that the overlap of the channel ¢’ at the
channel radius R with the channel c is negligible we get
for the component of X/%MF projected onto & = 4

Tc's'my

where N =

TJp(int)(—i-)

(Rer £er)
! /
csmg;c’ s’ my c -c
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at Ter = Rc/
—Jr M a Jr M
=Jr, S,FmJ (Ro f) =< @a| X7 Mr >
ro=R.
Jr M
F/[/Fm , U e sl JF(RC’)a
(A17)

where

NC' Z ch/j Uet g 1! JFj(TC/)' (A18)
J

Ure sl Tp (Tc/) =

At Ter = Rc/

Ure sl Jp (Rc’) = 2 He? Rc’ Yre sl Jps (Alg)
where e = fina, Vre s'tv g is the reduced width am-

plitude of the level 7 in the channel ¢’ s'I’ Jp. Then

—=Jr M
‘:‘TI;’ s’insl (RC’ rC - 2 Nc’ ' Yre's'l Jp
Jr M.
X O 1 m,, (A20)

that is it can be expressed in terms of the sum of the
reduced widths amplitudes in all allowed partial waves I’

in the channel ¢’ at given Jr and s’. Then the component
\IJJp(int)(-i-)

csmg;c’ s" my

the form

projected on £ = w4 at ro = R, takes

N
—=Jr Mp

= Z et < smy Lmy|Jp Mp > Y5, (k) > Moestae (B [A BN (Refe)

2 He! Rc’ Yre sl Jp }/l/ mys (rc’) ¢c’ s'mg -

v,T=1

(A21)

M,lmy
2 | ke | ghs
- k ; m Z 6_1521 il <Smslml|JFMF><S/mS/ llml’|JFMF>
et He MUV mymy
N
X l*ml(k ) Z [Fucsl,]p(Ec)]1/2 [Ail]m-
v,7=1

Jr(int)(+)
cslmg;c’ sl my

The component T (Re Ter) is given by

; 27 ke
TJF (int)(+) Fe
kc Rc’ He

716}“ .1
cslmg;c' s'l’ e

clz

m\,(Rc, o) =

N
X Vi (ke) D Moesiae (B [A]r

v,7=1

2 Me! Rc’ Yre sl Jp }/l’ mys (rc/) ¢c/ s'm s+

Z <smslml|JFMF><s’mS/ l/ml/|JFMF>

M mgmy,

(A22)



2. External scattering wave function \IJ.E;];)

Now we proceed to the expression for the \IJ,(3+)

in the
external region, where r. > R, or ro» > Ry. In the
(ext)(

external region the wave function \I!csmf) with fixed
channel spin and its projection in the incident channel ¢
can be written as

Pt (+) —

csmsg

L+ plest) ()

csmg;r )

vl (A23)

where the first term is the incident wave and the second
term is the sum of the outgoing waves in all the open

channels. The incident term is
\chesmfrz 0 = 477—5 Z Z il <smslml|JFMF>

JFMF lmlm "
~ Fi(k
x < smgr Imy|Jp Mp > Y5, (ko)e “"clM
kere

X }/lml (f‘c) ¢csmsu b (A24‘)

where the subscript ¢ means that the incident wave is in
the channel ¢. The sum over my~ is a formal because

Z < SMg lml|JFMF > Smgr lml|JFMF >
Jr MFp
(A25)

Note that here we use the incident wave with the unit
amplitude rather than with the unit flux density. The
component \IJ;I;D l(fit)((:?l m_,,» which corresponds to the exit

channel ¢ slmgy» and fixed Jp, projected on &, reduces to

- 5m5 mogr -

Jr(ext)(0
T e, (£e) = 47
Mml

X < Smg lml|JFMF > < Smgr lml|JFMF > Yl*ml(f(c)

3 E(kcu 'f'c)

chzi m csSMmgrr A26
xeren Al Ty (i (A26)
Now we take into account that

iwClO kcu c) _iwCZI kca c

Fy(ke, mo) = < ke, 7e) — ¢ ke 7o) po7)

21
Here, O;(ke,r.) and I;(kc,r.) are the Coulomb Jost sin-
gular solution of the Schrodinger equation with outgoing

and ingoing asymptotic behavior (we follow the defini-
tions used in [39]):

Ol(kc, 'f‘c) rcgoo ei [kere—ne In(2kere)—lm/240, 0]7 (A28)
and
Il(km Tc) rczoo e—i [kere—me In(2kere),—l7/240, 0]' (A29)
Then we can rewrite TCJE p Ef:)c(g)lm in the form
Jr(ext)(0) 27y
Tcil ms;cslmgny (I‘C) =1 ke re v

X Z < SMmg lm[|JFMF > Smgr lml|JFMF >

M’ITLL
X Vi (ko) [Tilhe, ) -
(A30)

€i2w”0l(k¢:7 Tc) Yim, (/I'\C) ¢csm3//'
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Thus the incident wave is the pure Coulomb scattering
wave function in the incident channel ¢. The second term
in Eq. ([(A23) is given by the sum of the outgoing waves
in the open channels [40]:

C

Plert)(+) —

csmg;T

JpMplimlm[

X < $Mg lml|JFMF > Yl*ml(l;C) {eichl 5505555“

a S;].gl csl:| Ol(kc’ Tc) < §m§ leZ|JF MF > }/l"ml_(f‘g)
X ¢E§m5- (A31)

Here, &; is the product of the bound state wave func-

tions in the channel ¢ = ¢, ¢/, S]ivl Ly s the S-matrix

element for transition ¢sl — ¢51. Note that we consider
the outgoing waves in the channel with given total angu-
lar momentum Jp, initial channel spin s (its projection
ms) and final channel spin § (its projection mgz). Since
only two open channels are taken into account here, we
will write explicitly the outgoing waves in both channels.
First consider the elastic scattering, that is the outgoing
channel ¢ = ¢ = b+ B and the channel spin and orbital
angular momentum coincide with the incident channel
values, that is § = s and [ = [. The component of the
outgoing elastic scattered wave (csl — csl) is

Z";ffcfc >

JF MF mymyr

(ext)(+)

cslmgieslm),

X <Smslml|JFMF><Sm;lmlu|JFMF>
X Zl l*rnl (Rc) [eiQWCl Scslcs[] Ol(kc7 TC)}/ITTLL// (f.c)
X (bcsm;' (A32)

(ext)(+)
cslmg;eslm) on &, leads to

>

Jrp Mp mymgn

Hence, the projection of ¥

2T
kere

T(emt)(-l‘) ) (rc) —

cslmgicslmy

x < smg lmy|Jp Mp ><sm; Imy|Jp Mp >

X il l*m,l (RC) [euwd Schl csl] Ol(kcv TC) Ylmw (f'C)
X (bcsmS

(A33)

Correspondingly, for the inelastic scattering, ¢ = ¢ but
either § # s or [ # [ or both differ from the entry values,
we get

2
2T,

gleat)(+) _
kere

cslmg;cs” I myn

>

JFMF’ITLL’ITLLN
X <lmy SmleFMF > < l”ml// S/Ims//|JFMF >

X il let (RC) Sgg” 1":¢csl Oy (k07 T‘C) Yir myrn (fc) (bc s mgr e
(A34)



pleat) ()

cslmgycs” U mn

Then the projection of on &, is

ext ) 27
Tislv)fz:)cs”l”msn(rc) :_Zk T Z

Jrp Mp mymgn
X < lmy SmleFMF > < l”ml// Sllms//|JFMF >

X Z }/l ( ) S::]s” U"5csl Ol” (k07 TC) }/l” myn (f‘C) (bcs” Mg+
(A35)

Finally, for the outgoing scattered wave in the reaction
channel ¢ = ¢/ = n + A we have

(ext)(+) PR L K 3
‘chslms;c/s’l/ms/ __Zk T gC'Z
cTe

Vet

Jrp Mp mymy

X <lmy smS|JFMF > < l/m[/ s’ms/|JFMF >

x Yltm( ) S:;] s'lesl Ov (kC’u ’I“c/) Yi my (f'c’) (bc’ s mgr e
(A36)

It leads to its projection on &.:

C

k Ter ’Uc/

(ext)(+)
Tcslms;c/s/l/m /(I‘C -
Jr MF mymy

x <Imy smg|Jp Mp ><1'my s mg|Jp Mp >

x lej;m( ) S:;] s/ Usesl Ov (kc’u rc/) Yi my (fc’) (bc’ s'mgr e

(A37)

Now we can derive the expression for the matrix ele-
ments of the S matrix. Since the wave function \IJ(Jr)

continuous using Eqs. (A13), (A30) and (A33) we get

the equality

Tgls:l(izts); cslmgn (RC fc) = Tiiﬁz:?io.s)lms// (RC fc)
+ TieswltZT(L:_;)c slmgn (RC fc)’ (A38)
which boils down to
. ch N
eilécyl Z [Fuclep(Ec 1/2 TV 2k R YreslJr
v,T=1
— i [li(ke, R) = 77,0 Onlhes R (A39)
Taking into account that [39]
Ii(ke, Re) _ Gilke, Re) — i Fi(ke, Re) pi2wel _ g-2i8%
Ol(kCa Rc) Gl(km Rc) +iﬂ(k67 Rc)
(A40)
and
FTcleF(Ec):zpcl(Em Rc)ﬂyf—csl‘]pv (A41)
where
k. R,
Pcl(ECa Rc) = (A42)

E2(kcu Rc) + Glz(k& RC)
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is the Coulomb-centrifugal barrier penetrability, we get
the elastic scattering matrix S-matrix element:

N
Sggl csl 6_2i6?f (1 +1 Z [FucleF(Ec)]l/z [A_l]lf‘r

v,T=1

X [Frclep (Ec)]1/2)

From equality of Eqs. (A22]) and (A37) at r = Ry

(A43)

Jr(int A ext)(+ Y

TC?iﬂs;Z’ ' mgys (RCI I‘c/) = Frt(:slzés;zz’ s' 1 my (RC’ rC’)

(A44)
we obtain the reaction matrix element:
. chs . ch N
Scjgl sl te Hoci e léC/ v Z [FVCSIJF (EC)]1/2
v,7=1
X [Ail]m' [FT c sl Jp (Ec’)]1/2- (A45)

Both obtained matrix elements coincide with the corre-
sponding matrix elements from [40]. The only difference
is in the definition of the solid scattering phase shifts.
The obtained matrix elements of the S matrix confirm
that the relative normalization of the internal and exter-
nal wave parts of ‘~IJbJ]_Eg are correct and we can use them
to calculate the reaction amplitude of the deuteron strip-
ping proceeding through resonance states.

Appendix B: Matrix element MZ"W

Let us consider the DWBA surface (in the subspace
over r,4) matrix element

T T

MEW (P, kaa) =< x\ TP

(+)
X
¥d XdA TnA>Rnpa

= M&e (P, kaa) + M (Kpr, Kaa), (B1)
where Tslezt)( ) =< oy |‘IJ (eat)(+) |
MSD(%)(P, de) = / drnA /drpFX:(DF) T ext ) (I‘nA)

rnA>Rna

% [Typr = Tprlpax(y) > (B2)

and

MSD(IT/E/A)(P7 kia) = /drpF / dr,a X( )* Tff:t)(f)*(rm)

TnA>Rna

5 [Ta = Traloax$h > (B3)

M é)(%) can be written as
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ME (P dean) = [ v [dryen 2 T 00 For = Torloant

- / drna /drpFX;})* T (0, ) [Ty — Tprleaxy >

TnASRnaA

/drnA /drpFX —)* T(emt)( )*

We took into account that for any finite volume 7,4 <

R, 4 the matrix element containing pF vanishes
as it has been discussed in Section II A for deuteron strip-
ping to bound states. To estimate MS( 7y We need equa-

tions connecting different variables:

rga = 1/2 Tpn + Irpa,
rpp =A/(A+1)rpa + rpp.

Now in the matrix element (B4 we replace the variable
rpa by rp,. Then we get

MS(pF)(P7 de) =

ex * A"'l
szAt)( ) (—— A [rpr — Tpn]) ?pF _?pF

X Spd(rpn)XdA A rpp — 54 rpn)' (B7)

A+1 Vs
Ay / drpm / drpr x5 (1)

?pF - ?pF sﬁd X((iA)

This matrix element can be rewritten in the form, in
which the integral over r,r is transformed to the surface
integral:

A+l A . 9 1
Mstory (P Yean) = (=0 gy plim B g
A+l Av2 O ) T T (A e — 1))
x/dr spd(/r )/dQ [ )(LI‘F— + r ) XpF pF) tnA 2 IpF pn
pn pn rpr | Xaa \T 41— Tp oA e Orpr
(+) A1 At2

() ~leat) (= A+1 _ OXga (“4 Ty — S I'pn)} B8

XpF (rpr) nA ( A [rpr — Tpn)) Drpr PRy p oo (B8)

Due to the presence of the deuteron bound state wave and

function the integration over r,, is limited. At r,p —
oo and 7p, < 00 we can replace the distorted waves in
the initial and final channels by their leading asymptotic
terms:

(+)(

TdATIO0  ikga-rgatinga In(kga raa—kaa-ria
Xy (Taa) "R e ( )

(B9)

X(;‘)* TPF__;OO e tkpF TpF+inpF In(kpr rpp+kpr TpF)
» .

(B10)

Here, n;; is the Coulomb parameter of particles ¢ and j

in the continuum. Note that rgsq = Aj{l rpFp — A;;l Tpn,

and at r,r — 00 and 7, <00 rg4 — 00. Then



O etkdaTiatinaa In(kaa raa—KaaTaa)
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8 ’I”pF
rpr—oo A +1 & kg (A e — A2 0 Yiinaa In(k —kga-Taa)
— i de 'I'pFe dA vy pF— 54 Tpn Naa In(kga Tqaa dA' TdA (Bll)
and The leading term of its derivative at r,p — oo is
667ika'rpF+i77pF ln(kpp ’I"pFJrka-I‘pF)
8TpF
’I"pF;OO i ka ) f'pF e ikprrprtingr In(kpr T‘pF-‘rka-rpF)' 50 (k . )/T )
(B12) nA\FnA, TnA nA TpF__;OO anA L
8TpF TpF
For Tflejt)(_)*(% [r,r—Tpn]) we can take only the exter- x ¢l “at (knarpr—kna fprrpn)
nal part, which contains the resonant S matrix element il At1
) ) —i[Mna In(2 5= knaTpr)+lna™/2—0naol
see Eq. (A37). Neglecting all the spin-dependent and xe B A SnAtprrTina A0 (B14)
angular parts and leaving only its radial part, which is
Ona(rna)/rna, we get for its leading asymptotic term:
—OnA (knA7 TnA) rpp:))oo —A L i% (knarpr—kna¥pF Tpn)
TnA A+1r,p
x e lmma mZknarna)tlnam/2=onaol (B13) Then Mé’(%) reduces to
|
DW . AR A+1 . A+1
Mgpry (P, kaa) ~ Rplégoo Ryp /drpn Pa(rpn)e " ZA Aty / A, (3= kaa +kpF) - Tpr — —— kna
% & (2 kga—kpr) Fpr Rpr el At kpa Rypr etnaa In (de TdA(RpF)*de'FdA(RpF))Jri Npr In(kpr Rpr+kpr-Fpr Rpr)
« el AL kA Fpr Tpntnna In(2 25 kg Rpr)] (B15)
Taking into account the asymptotic behavior of the plane disappearance of M SD(%):
wave
L n (e Byr)
) sin (e Ryp
— [ dgMEV (P kaa) — 1 —
glarpr TPET 2T [e'970F §(§ — Fpp) 2¢ / 1 Mspr) (P aa) RP:“IEOO eR,r
1qTpF P q—€
— e ITPE §(§ + fyp)], (B16) x [e'4Ter fi(Rpp) — e TF fo(Ryp)] =0, (B18)

where q = %kd/} — k,r we obtain that the matrix
element

M*"P(%) (P’ de) ~ R lim fy (RpF) eld Bpr

pF —>00

+f2(RpF) e_iquF]. (B17)

Thus M g’(%) has no limit at R,r — oo but regularization
of this matrix element by integrating the matrix element
over an infinitesimal bin in the momentum plane leads to

where € << gq.

A similar prove can be applied to estimate M éP(ZVA)
given by Eq. (B3)). Since the integral over 7,4 is taken
over external volume with r, 4 > R, the transformation
of the volume integral into the surface one leads to two
surface integrals:

ME 4 (P, Kaa) = — gRTA (P, kaa) + MEY (P, kqa).
(B19)
The first term is the surface integral encircling the in-

ner surface of the external volume at r,4 = R, 4, while
the second term is the surface integral taken at rpa =



R, , — oo. A negative sign in front of the first term
appears because the normal to the surface is directed in-
ward to the center of the volume, that is opposite to the

ng(Pa de) =

[ At eulrn) DX (/2 1+ 1)
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normal to the external surface (at infinitely large radius).
The surface integral over the infinitely large sphere in the
subspace over r,, 4 is

OXH (AJ(A + 1) Tpa + 1) T

(9TnA

XA/ A+ 1) ra + 1) TED O (1 0)

Here, the Jacobian variable r,r is replaced by ry,, by
rpn, = rpp — A/(A + 1)rpa. The disappearance of the
matrix element (B20) can be proved similarly to the proof
for MSD(Z‘;). Due to the presence of the bound state
©d(rpn) the integration over ry, is limited by finite dis-
tances. Hence, rp,p — 00 and 744 — 00 at 4 — 0.
Replacing the distorted waves by their leading asymp-
totic terms (B9) and (BIQ), singling out the plane wave
containing r, 4 and using the asymptotic representation
of this plane wave, see Eq. (BIf), integrating over Q,_,
we eventually arrive at

MR (P ka) . lim [ 4 g1 (R)
nA 70

+emt 0 nago(R), )], (B21)

MSPCC(P, kyn) = / drypa /drpFX(j()pF

TnA>Rna
= MS§;or (P, kaa) = M§CC (P, kaa),

where

MESPCC (P kya) = /drnA /drpr(_i)pF(rpF)
< T ()T = TI0EPCC D 0 va)  (C2)
and

MERCP ) = [ [ o)

TnASRnaA

x YR 0, 4) [T = T1UEPCD e, x0a). (C3)

Note that in the matrix element M5 the integration is
carried over r,r and ry, 4 in all the coordinate space while

‘9X§J4)((1/2) Tpn + rnA)]
(9TnA

(B20)

, .
rnA:RnA%oo

Regularization of this matrix element by integrating it
over an infinitesimal bin in the momentum plane ¢’ leads
to disappearance of M EOZV, that is

Mgyiay (P kaa) = =ME}" (P, Kaa). (B22)

Appendix C: Matrix element MgDCC(pOSt)(P, kga)

CDCC(post)

Here we show how to transform Mg into the

. . CDCC(post
surface integral over the coordinate rp4. Mg (post)

can be written as

() YO (2, )T = TIOOPECD (10 1)

(C1)

in M SE% the external region in the subspace over r, 4 is
excluded. Let us first consider ML . The CDCC wave
function is given by Eq. (B2). If we substitute the first
term,n = 0, which contains the deuteron bound state
wave function, the transformation leads to the surface
integrals with r,rp = R,p — 00 and rp,4 = Rpa — 00.
Both surface integrals vanish and the proof is similar to
the one presented in the previous section. For the rest of

the CDCC wave function corresponding to the sum with

n > 0, which we call \IJiCCDCC(

surface integrals gives

+), transformation to the
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C co(
rnA ?pF ?pF P +) (rpF; rnA)

+ / dry 4 / dryp X_ka(rpF)’rg;g)*(rnA)[?nA —?nA]‘I’iCCDCCH)(I“va )

:Rplilﬁoo 2 hpr /dQI‘pF /drnA oA rnA)WfCDCC(+)(rpF, rna) 6X(J§:~;SPF)
— X8 () T4 (1) 0L, DCC;)EPF =
+ Rnlirgoo ,MnA /ernA /drpF [X k F(rp )‘I’CDCCH)( rpr, TnA) 6T5{§;‘:(:"A)
) ) T () L2 m) (1)

Let us, first, consider the first term, in which R,r — o0.
Let us divide the integration region over r,, into the
region 4/ Rpr — 0 and the region where rp4 2 Ryr —
oo. In the first region we get that rqa ~ R,r — 0o and
Tpn ~ Rpr — oo. Taking into account the asymptotic
behavior of \I/CDCC(+)(rpF, Tpa) ~ r;lji’ and Eq. (BIG)
we get that the first term goes to zero as R;I? — 0. In
the remained region r,4 ~ Ryr — oo and we consider it
later. The second term of Eq. (C4)), in which R, 4 — oo,
we also separate into two regions: r,p/R,a — 0 and

rpr 2 Rpa — oo. In the first region ryp, ~ Rpa — 00

CDCC
and 744 ~ Rpa — oo and ¥, (+)(I'pp, TpA) ~ rnA.

Hence the matrix element goes to zero as R;j — 0. To
consider the behavior of the first and second terms of
Eq. (C4) in the second regions, where rpa, rpp — 00,

1 m? . .
MSDI‘,‘(;Z(P? de) = 5 (MnAMpF)3/2 pli>nolo P5 /drpF

—)x —)x 0 _cpcc
X () T () o070 ey, va)

Here the hyper-radius p is the parameter going to infin-
ity. The integrand is contains highly oscillating (actually
infinitely oscillating) functions. The behavior of the inte-
gral at p — oo depends on the asymptotic behavior of the
integrand. The integration over df,r can be performed
directly using the asymptotic form of x;})*(rpp). It is
given by the Coulomb distorted plane wave, but for sim-

gCDOC(H)

it is more convenient to introduce the hyper-spherical
coordinates in the six-dimensional hyper-space:

_ HnA o HpF o
p= m Tna + m TpF’
m . m
TnA = P — SIn «, TpF =p — COS «,
\/ Hn A \/ HpF
0<a<m/2 (C5)

Here, m is the scaling mass parameter, for example,
the nucleon mass. Then MEW in the region, where
Tna, TpF — 00, can be written as the integral over the hy-
persphere encircling the volume integral with the radius
of the hyper-sphere p — oo |3§]:

/2

/ dr,a / dasin® a cos? a

0

8 * — )%
(epres Tna) o X (o) V0 (el (CO)

plicity, what does not affect the final result we neglect,
as in the previous section, the Coulomb effects. Then
the asymptotic form of the plane wave is given by Eq.
(BI6) and, hence, integration over ¥, using d-functions
is trivial leading to fpr = iﬁpp. After performing the
integration over df,r only two integrals are left. From

Eqgs (BY), (BA) and (Chl) we get for
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_ 2 A
Tpn = {[Tpp — A+1rpprm4+(

A2
7‘2
A41)2 n4

and

A?
— P cos? [_m -
p\/ cos?a F A+1 HnAzsta—i— A1 1 sin® o (C7)
1, A+2 (A+2)2
rdA—\/4rpF+ 2(A+1)rpprnA+4(A+1)2rnA
) ‘/ 1/ILLn—Azsm204—i— A+1) - — sin“ «. (C8)

1 m 5
=py/— —— cos*aF
4 ppr

Here, z = an-RpF. We recall also that in Eq. (52)) at n >

0 1/)pn (rpn) at 7, — oo contains the asymptotic terms

eFikpn rpn . (n)(+) etFdaTaA
T;an, 5 Whlle XZ (rdA) ~ T

simplicity, neglected the Coulomb distortion. Then after
integration over dit,r the leading asymptotic form of the
integrand with omitted Coulomb effects is a product of
highly oscillating at p — co exponents:

, where we, for

ei i ka TpF ei knarna ei i kpn Tpn ei kaaTaa
TpF TnA T2, TdA
—00 1
P eirglaz) (C9)
s
P
Thus we need to estimate a highly oscillatory integral:
1 /2
Ji ~ lim dz [ dasin®a cos?a P9 (C10)

p—00
-1 0

Evidently that this integral and, hence, MEW (P, kg4)
vanishes at p — oo, whether a stationary phase point
does exist or not, because the integration brings p to the
denominator.

Now we proceed to MEW (P, kq4). We rewrite is as

/ drpa /drppxz(,})*(rpp)

TnASRnaA

(tna) [Tpr — T ] WP (0, 1,00)

+ / dr4 /drppxz(,})*(rpp)

TnASRnaA

< T

MSDZZ(Pa de) =

K =)

)*(rnA) [?nA - ?nA] \I]iCDCC(Jr)(rpFu rnA)'
(C11)

Let first consider the first matrix element containing 7),r.
It is easy to show that this matrix element vanishes. Af-
ter transforming it into the surface integral over r,p we
get

/ dr,, 4 /drppx](oF) (rpr) T(ﬁt)( » (rna)

TnA<Rna

X [?pF - ?pF] \I/Z-CDCC(-’_)(I‘;DF, rnA)

- 2 (—)+
= QMPF Rpl;goo R /erpF / drnA TnA (I'nA)
TnA<Rna
) (r
% [‘I’zc POy, 1) ngiw
’I”pF
CDCC(+)
(=) 9, (Tpr, Tna) } c
— 12
Xpr (Tpr) o R (C12)

The matrix element containing n = 0 term of the CDCC
wave function vanishes because in the subspace r,4 <
Rna at rp,p — oo the deuteron bound state wave func-
tion exponentially fades away. The terms of the CDCC
wave function with n > 1 also produce vanishing matrix
element because the CDCC wave function corresponding
to these terms in the subspace r,4 < Rpa at rp,p — 00
decays as 1/r> i that the whole matrix element vanishes

as lim R? F/R — 0. Thus we arrive at
R F—>00 p
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MZW (P, kaa) = —M&, (P, kaa) = — / drypa /dr,,F Xor " (0pr) TR (100) (T s = Tral WP (1,0 v,0)
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1 Z)s cpcc Z)x )x 0 _cpcc
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There are two main reasons for absence of the practical theory of stripping to resonance states
which could be used by experimental groups: numerical problem of the convergence of the DWBA
matrix element when the full transition operator is included and it is unclear what spectroscopic
information can be extracted from the analysis of transfer reactions populating the resonance states.
The purpose of this paper is to address both questions. The theory of the deuteron stripping is
developed, which is based on the post continuum discretized coupled channels (CDCC) formalism
going beyond of the DWBA and surface integral formulation of the reaction theory [A. S. Kadyrov
et al., Ann. Phys. 324, 1516 (2009)]. First, the formalism is developed for the DWBA and
then extended to the CDCC formalism, which is ultimate goal of this work. The CDCC wave
function takes into account not only the initial elastic d + A channel but also its coupling to the
deuteron breakup channel p + n + A missing in the DWBA. Stripping to both bound states and
resonances are included. The convergence problem for stripping to resonance states is solved in
the post CDCC formalism. The reaction amplitude is parametrized in terms of the reduced width
amplitudes (ANCs), inverse level matrix, boundary condition and channel radius, that is the same
parameters which are used in the conventional R-matrix method. For stripping to resonance states
many-level, one and two-channel cases are considered. The theory provides a consistent tool to
analyze both binary resonant reactions and deuteron stripping in terms of the same parameters.

PACS numbers: 24.30-v, 25.45.-z, 25.45.Hi, 24.10.-i

I. INTRODUCTION

Production of unstable nuclei close to proton and neu-
tron drip lines has become possible in recent years, mak-
ing deuteron stripping reactions (d, p) and (d, n) on these
nuclei (in inverse kinematics) not only more and more
feasible as beam intensity increasing but also a unique
tool to study unstable nuclei and astrophysical (n, v),
(p,7v) and (p, o) processes. The deuteron stripping re-
actions populating resonance states of final nuclei are
important and most challenging part of reactions on un-
statble nuclei. If for nucleon transfer reactions popu-
lating bound states for about fifty years experimental-
ists used the standard distorted waves Born approxima-
tion (DWBA), an adequate theory for transfer reactions
to resonance states yet to be developed. By standard
DWBA I mean the approach in which the one-step trans-
fer matrix element is evaluated with incoming and out-
going distorted waves calculated by fitting the deuteron
and proton elastic scattering with local optical potentials.
The transition operator contains finite range effects as
well as the full complex remnant term. The main idea
of the DWBA is that the transition matrix element is so
small that one can use the first order perturbation theory.
Since the nuclear potential is quite large by itself (~ 100
MeV), the smallness of the transition operator can be
fulfilled only if the reaction is peripheral enough, so that
the non-diagonal matrix element, representing the trans-
fer reaction amplitude, becomes small. However, since
the resonance wave function is large in the nuclear inte-
rior and different channels are coupled in the nuclear in-
terior, the character of the stripping to resonances can be

quite different from the stripping to bound states. Nowa-
days the standard DWBA is gradually being replaced
by more advanced approaches like continuum dicretized
coupled channels (CDCC) [1H3], adiabatic distorted wave
(ADWA) [4], coupled reaction channels (CRC) and the
coupled channels in Born approximation (CCBA) avail-
able in FRESCO code [5]. There are two main reasons for
absence of the practical theory of stripping to resonance
states which could be used by experimental groups. First
one is the numerical problem of the convergence of the
DWBA matrix element when the full transition operator
is included. However, it is only a technical problem. The
second pure scientific unsolved problem is what spectro-
scopic information can be extracted from the analysis of
transfer reactions populating the resonance states. Be-
sides, since the standard DWBA is deficient to more ad-
vanced methods like CDCC or ADWA, a new approach
should go beyond of the DWBA.

Majority of theoretical works devoted to the develop-
ment of the theory of single-nucleon stripping into un-
bound states of the residual nucleus have been published
in 1970-s [6-21]]. Great interest in these reactions at that
time stemmed primarily from the fact that they allow one
to extract reliable information on the properties of nu-
clear resonant states by means of the combined analysis
of the data on stripping and elastic resonant scattering
of nucleons from the target nucleus [§, [13, [15, [16]. In
most of the cited works the theory of stripping into reso-
nant states was developed within the standard DWBA
by analogy with usual stripping to bound states. In
this case the expression for the reaction amplitude ob-
tained instead of the bound-state wave function for the
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captured nucleon (form factor) contained a continuum
wave function which leads to slow convergence of the ra-
dial integrals or even to their divergence depending on
the choice of this wave function. In Refs. [6, 19, [11] the
form factor was taken to be a scattering wave function,
which described the resonant scattering of the nucleon
from the target nucleus. This wave function was calcu-
lated using a single-particle potential whose parameters
were adjusted to give a resonance with the correspond-
ing properties. The Gamov decaying-state wave function
and the Weinberg wave function which are regular at
the origin and purely outgoing at infinity were used in
Refs. [10] and [14], respectively. Various methods were
suggested to calculate radial integrals practically with
the above-mentioned form factors: (i) the introduction of
the convergence factor exp(—ar) into the integrand [6];
the integral obtained was calculated for various a > 0
and then its values were extrapolated numerically to the
limit of @ = 0; (ii) the method of contour integration
in the complex r-plane (complex scaling) [9]; (iii) the
method based on the correct account of the boundary
conditions in the three-body scattering problem [11]; (iv)
the Zeldowich-Berggren method [20] of the regularization
of integrals containing the Gamov function in which the
convergence factor exp(—ar?) was introduced [10]; (v)
the pseudo-bound-states method [14]. The methods (ii)
and (iii) were most convenient for numerical calculations.
Although the above methods allow one to avoid formal
difficulties, nevertheless all the methods are rather com-
plicated because of cumbersome numerical calculations
and carry on the shortcomings of the standard DWBA
for stripping to bound states.

Even if we put aside the technical problem of conver-
gence of the matrix element for stripping to resonance
states, there is more important question remains: the
spectroscopic information which can be extracted from
analysis of deuteron stripping reactions (and other trans-
fer reactions) into resonant states. This is really a crucial
question because the answer determines the reason why
we measure nuclear reactions. For more than 50 years
transfer reactions to bound states, and deuteron strip-
ping in particular, have been used to determine the spec-
troscopic factors, which measure the weight of the single-
particle state in the overlap function of the initial and fi-
nal nuclei. That is why there was always a temptation to
develop a theory of stripping into resonant states which is
fully similar to stripping to bound states. For example, in
[13] it was assumed that the spectroscopic factor could be
extracted from deuteron stripping into resonance states.
In this case the spectroscopic factor is the ratio of the
observable and single-particle resonance widths. How-
ever, the spectroscopic factor is not observable and de-
pends on the single-particle potential used to calculate
the single-particle width. In [22] it has been shown that
spectroscopic factors are not invariant under finite-range
unitary transformations and, hence, in exact approach
nuclear reactions cannot be a tool to determine spectro-
scopic factors. In [22] it was called separation of nuclear

reactions and spectroscopic factors. However, there is a
model-independent information, which can be extracted
from deuteron stripping reactions. I mean the asymp-
totic normalization coefficients (ANCs), which are the
amplitudes of the tails of the overlap functions [23] and
are invariant under finite range unitary transformations.
The most model-independent definition of the ANC is
that it determines the residue of the elastic scattering
S matrix in the pole corresponding to bound, virtual or
resonance states. For the resonance state the ANC and
partial resonance widths are related [24, 25]:

[ijl]2 _ (_1)162 ¢i1(kzacoyj1) _ HzA

. Toaji (1)
zA(0)j51

Here [ and j are the orbital and total angular momentum
of particle = in the resonance state F' = (Ax), piz 4 is the
reduced mass of x and A, k; 4(0);; is the real part of the
resonance relative momentum of z and A, ¢;;(kza) is the
non-resonant scattering phase shift, Ci jl and I'; 4 j; are
the ANC and partial resonance width in the channel z4+ A
with the quantum numbers [ and j. Eq. () stands for
narrow resonance, i.e. for k1 << kza(0)j1, where
kya(ryji is the imaginary part of the resonance momen-
tum kyaryj1 = kza)j1 — P kzan;i, which determines
the location of the resonance pole in the momentum
plane. Due to relation (), the resonance width is also
invariant under finite-range unitary transformations and
can be determined from the experiment.

Nowadays, it is quite well understood that the ANCs
can be determined from peripheral transfer reactions,
see [26-31] and references therein. However, the ANC
method has been applied only for transfer reactions pop-
ulating bound states. It is well known that from bi-
nary resonance scattering and reactions using the con-
ventional R-matrix approach one can determine the res-
onance partial widths, which, as we have underscored are
related to the ANCs. R-matrix method is one of the most
popular tools among the experimental groups worldwide
because the approach is comparatively simple even for
many-body, many-channel cases and deals with the for-
mal partial resonance widths determined from the fit to
the experimental data. These formal widths can be eas-
ily related with the observable partial widths. Using the
R-matrix approach one can fit simultaneously data for
all available channels. It allows one to control the consis-
tency of the obtained physical parameters. The question
is whether the theory of stripping to resonance states can
be formulated in terms of the same parameters which are
used in the R-matrix analysis of the binary resonance re-
actions.

It is the purpose of this paper to deliver a theory of the
deuteron stripping, which will solve all the above men-
tioned problems for the deuteron stripping into resonant
states. This theory is based on the post CDCC formalism
going beyond of the DWBA and surface integral formula-
tion of the reaction theory [32]. The CDCC wave function
takes into account not only the initial elastic d + A chan-
nel but also its coupling to the deuteron breakup chan-



nel p + n + A missing in the DWBA. The convergence
problem is also resolved in this formalism. The reaction
amplitude is parametrized in terms of the reduced width
amplitudes (ANCs), inverse level matrix, boundary con-
dition and channel radius, that is the same parameters
which are used in the R-matrix method. Thus the the-
ory provides a consistent tool to analyze both binary res-
onant reactions and deuteron stripping in terms of the
same parameters.

The theory is based on the surface-integral formula-
tion of nuclear reactions and valid for stripping to both
bound and resonance states. First, just for demonstra-
tion of the formalism, the transformation of the DWBA
amplitude for stripping to the bound state is presented.
The reaction matrix element is split into two parts: inter-
nal (over the relative coordinate between the transferred
nucleon and target) and external. The idea of such sep-
aration is based on the fact that in the post formalism
the main contribution to the stripping amplitude comes
from the nuclear exterior while the prior form amplitude
is dominated by the internal region. It will be shown
that the dominant external post (internal prior) ampli-
tude using the Green’s theorem can be written as the
dominant surface integral encircling the internal volume
plus small addition from the prior external (post internal)
part. Thus, both post and prior forms lead to the same
reaction amplitude given by the sum of small internal
post form, small external prior form and the dominant
surface integral. The contribution of the post internal
part can be minimized by a proper choice of the final-
state optical potential, and the other two amplitudes are
parameterized in terms of the reduced widths amplitudes
(ANCs). After that the theory is extended to the CDCC
formalism. Then the theory is applied for stripping to
resonance states. First it is developed for the standard
DWBA and then the post CDCC formalism based on the
surface integrals is developed. Omne of the most impor-
tant results of this paper is that the post CDCC form
for stripping into resonant states can be written as the
sum of the small internal (over the coordinate r,4) post
form and the dominant surface part. The absence of the
diverging (or poor converging) external part solves the
problem of convergence of the matrix element for strip-
ping to resonance state.

In the developed approach the information about the
resonance subprocess is contained in the scattering wave
function of the fragments formed by resonance decay.
This wave function is written in a standard R-matrix
form using its separation into the internal and external
parts. It allows us to generalize the R-matrix method
for binary reactions to stripping reactions. Since the
deuteron stripping into resonant states is 2 — 3 parti-
cles reaction, the excitation of the resonance occurs in
the subsystem, while the third particle causes the distor-
tion. The extracted partial resonance widths can be used
for calculation of the (n,~y) processes. If the cross section
for (n, ) resonant capture is available, the simultaneous
fit to the deuteron stripping and (n, 7) resonance cap-

ture can be done. The method can be also applied for
analysis of the Trojan Horse reactions [33]. Concrete cal-
culations and the application of the theory for deuteron
stripping and Trojan Horse reactions will be presented
in the following up papers. In what follows we use the
system of units in which 2 = ¢ = 1. We also neglect the
spins of the particles if not specified otherwise.

II. SURFACE INTEGRAL FORMULATION FOR
DEUTERON STRIPPING TO BOUND STATE.

Before the theory of the deuteron stripping to reso-
nant states will be outlined I will present a surface in-
tegral formulation of the theory for stripping populating
bound states. First, just for demonstration, I consider
the DWBA and then extend it by including the CDCC
wave functions. As it has been explained in Introduction,
the transfer reaction matrix element will be split into two
parts in the subspace determining the relative motion of
the transferred nucleon and target: internal and external
parts. After that replacing the potentials in the transi-
tion operators by the kinetic energy operators and using
the Green’s theorem the matrix element in terms of the
surface integral will be obtained.

A. Stripping to bound state. Post form of DWBA.

In this section we consider the post form DWBA am-
plitude, which we split into the internal and external part
in the subspace over the relative coordinate between the
transferred n and A. Due to the choice of the transition
operator in the post form, the internal part turns out to
be small. The external part, which is parameterized in
terms of the ANC, will be transformed into the dominant
surface integral encircling the internal volume and small
external prior DWBA amplitude.

We start consideration from the exact reaction ampli-
tude for the deuteron stripping to bound states

d+A—p+F 2)

where F' = (An) is the bound state. The post form of
the exact reaction amplitude

M@ (kyp, kga) =< | AVp[WY > (3)

where \IJEJF) is the exact scattering wave function in the
initial state with the two-body incident wave d + A,

<I>§f ) = x;}) ¢} is the channel function in the exit state
p+ F, ¢; is the bound-state wave function of nucleus
i, Xz(j) = Xl((-:_j) (r;;) is the distorted wave describing the
relative motion of particles ¢ and j with the relative mo-
mentum k;;; AV,r = Vpa + Vpr, — Upr is the transition
operator in the post form, V;; is the microscopic interac-
tion potential between nuclei 7 and j, U;; is the optical
potential between nuclei ¢ and j; r;; is the radius-vector



connecting the center of mass of particles i and j. I

remind that the exact wave function \I/Z(-'H is fully anti-

symmetrized but the channel wave function 34 is not
antisymmetrized with respect to exchange of the exiting
proton and nucleons in F. However, the internal wave
function of F' ¢p in <I>(f_) is fully antisymmetrized. The
reason why we can drop the antisymmetrization in the
channel wave function is the presence of the fully anti-
symmetrized exact wave function in the initial state and
fully symmetric transition operator what can be seen be-
low when the transition operator is expressed in terms of
the kinetic energy operators.

To obtain the post form of the DWBA from Eq. (3)
( (+ _

we replace \IJZ-+) by the channel wave function ®;

YdPpa X&Z) in the initial d 4+ A state:

P9 (k,p, kga) =< 5[ AVp[@T) > (4)
Then we use approximation
pr = I} pa, (5)

where T4 (r,4) is the overlap function of the bound state
wave functions of nuclei F' and A:

Ii(rna) = (pal or). (6)

Note that the integration in Eq. (@) is taken over all the
internal coordinates of nucleus A. Then the transition
operator in Eq. (@) takes the form < @4|AVpp|pa >=
< oalVpalpa > +Vpn — Upp. Potential < @a|Vpalpa >
is replaced by the optical potential U,4 and we obtain a
standard post form of the DWBA amplitude:

MDW(post) (ka, de) —< (I)(f_)| AV;DF|®E+) >, (7)

where AV ,r = Upa + Vpy, — Upr. Now we will transform
this volume integral into the surface one. First, we adopt
rpa and r,r as Jacobian variables and split the configura-
tion space over r, 4 into the internal and external regions,
while the integral over the second Jacobian variable, r,r,
is taken over all the coordinate space. Splitting the reac-
tion amplitude into internal and external amplitudes we
get
MDW(post) (ka, de) _ MDW(ZDOSt) (ka7 de)

nt

+ M " (e, k), (8)
where the internal amplitude M.} (Post) is given by
MY ey, kya)
=<xr [ AVpeloaxid > | ()

Correspondingly, the external amplitude is given by

MDW(post) (ka , de)

exrt

=< X\ IL AV pleax(y >

(10)

TnA>RnaA

Here, R, is the channel radius similar to the one in-
troduced in the R-matrix approach, which separates the
internal and external regions.

The splitting of the amplitude into the internal a nd
external parts in the subspace over the Jacobian variable
r, 4 is natural and evident. The overlap function I g (rna)
is the only object in the reaction amplitude which pro-
vides spectroscopic and structure information. In the ex-
ternal region the overlap function has a standard radial
shape given by the spherical Hankel function (for neu-
trons) with the amplitude called the ANC (see below).
To determine the behavior of the overlap function in the
nuclear interior, which bring one of the main uncertain-
ties in the analysis of the deuteron stripping, microscopic
calculations are required [34]. In a standard approach the
internal part of the overlap function is approximated by
the single-particle bound state wave function calculated
in the adopted mean field. The proportionality coeffi-
cient is the square root of the spectroscopic factor. Due
to the structure of the transition operator the external

matrix element 121" P* in the post form is dominant

compared to a small contribution coming from the inter-
nal part Ml-lzfv(po“)

the following.

. This simple observation stems from

In the internal matrix element, r,4 < Rj,a, due ab-
sorption of the protons inside nucleus F', effective rp, ~
TpA & rpr > Rp, where Rp is the radius of nucleus
F. For the protons outside of F' and neutrons inside or
on the surface of A each nuclear interaction in the op-
erator AVPF = Upa + Vpn — Upr is small. Potential
Upr is arbitrary and often U, is chosen to compensate
for Upa so that the transition operator reduces to V.
Since the DWBA is the first order perturbation theory,
the minimization of the whole transition operator A Vp a
provides smaller higher order terms and, hence, better
serves the theory. This choice is more preferable in the
formalism presented here and we adopt Upr, which min-
imizes AV,,F =Upa + Vo — Upr at 14 < R, 4 making
the contribution from the internal matrix element small
compared to the external one.

In the external matrix element (r,4 > Rp), which is
dominant, the overlap function I4§ can be replaced by

its asymptotic tail. Although Mﬂ”p ) can be eas-
ily calculated for stripping to the bound state, here we
transform this matrix element into an alternative form,
which has clear advantage in case of stripping to reso-
nance states discussed below where convergence becomes

a main impediment.

Now we proceed to the transformation of the volume
integral defining the external matrix element in terms
of the dominant surface integral encircling the sphere at
rna = Rpa and a small, due to the structure of the tran-
sition operator in the prior form (see Eq. (7)), external
volume integral in the prior form. Note that the trans-
formation is exact within the DWBA formalism.

To transform the external volume integral to the sur-



face one, we rewrite the transition operator as

Upr = [Vpn + Uaal — [UprF]
—|—(UpA — UdA)- (11)

AV;)F = UpA —i—Vpn —

The bracketed operators are the right-hand-side opera-
tors in the Schrédinger equations for the initial and final
channel wave functions in the external region:

(B —T)ax5y = (Vpn + Uda) pa x5y (12)

and
(E—T)IExSF" = Upr IE NP (13)

To derive Eq. ([3) we took into account that at rp,4 >
Rna I satisfies the asymptotic Schrédinger equation
(ena — Tna) I§ = 0, where €;; is the binding energy of
the bound state (i j) and T;; is the kinetic energy oper-
ator of the relative motion of ¢ and j. These equations
imply the following connection between the external post
form DWBA amplitude and the matrix element MZW
containing the surface integral:

Megfv(posw (kpr, kaa) = MEY (kyr, kaa)
+M T (K, Kan),  (14)
where
MET P (e, kaa)
=< X\ AV aalpax) > . (15)
and
Msj?w(kaa kaa)
=< pr IA|? ?W’d XG> (16)
T71A>R71A

Here, the transition operator in the prior form AV 44 in
the external region, where the nuclear n — A interaction
disappears, takes the form

AVdA = UpA —Uga. (17)

The overlap function is given by

Ig(rnA> = Z

JnA MG, 4 my

< JaMy jnAmjnA|JFMF >

nA

X < Jp My lpa mlnA|j7lA My, 4 >

X Yi,a My, 4 (Fna) Ia Jnalna (rna). (18)

Here, < ji1 mq jama|jsms > is the Clebsch-Gordan co-
efficient, l,a (my,,) is the orbital angular momentum
(its projection) of the relative motion of n and A, j,a
(mj, ) is the total angular momentum (its projection)
of n in the bound state F' = (nA), J; (M;) is the spin
(its projection) of nucleus 4; I Ina jna(Tna) is the radial
overlap function, which is a real function [23], ¥}, (%) is

the spherical harmonics and ¥ = r/r is the unit vector.
We assume that only one value of [,,4 contributes to ex-
pansion ([I8). If the channel radius is taken larger than
the range of the nuclear interaction, the radial overlap
function can be replaced by its asymptotic term,

U nA> Rpa
OA l Z
Jnalna

l(nl(z KnATnA), (19)

F ln
IA JnA lna (RnA) At

X IinAh

where hl(il (i KnaTna) is the spherical Hankel function
of the first order, C¥ jualna is the ANC of the overlap
function, kna = /2 nacena is the bound state wave
number.

It is also useful to introduce the reduced-width ampli-

tude used in the R-matrix approach, which can be ex-
pressed in terms of the ANC [25]:

RnA

2 [inA A jnalna (R"A)

YnAjnalna =

R"A lnat+1 F ) .
- 2MnA A A CAjlelnA hlnA(ZH"A R”A)' (20)

Correspondingly, the reduced width is

Roa
’772”4 nalna - 2 Mn [IA Jnalna (RnA)]2
R, '
= 5 DL O st B (R a R

(21)

It is worth mentioning that, due to the presence of the
channel radius R, 4, the reduced width, in contrast to the
ANC, is model-dependent. The dependence on the chan-
nel radius becomes crucial with increase of the binding
energy. We are going to use also the boundary condi-
tion, which is the logarithmic derivative of the overlap
function at r,4 = Rpa:

1 dlroah®) (iknarna)]

BnA =
hl(il (iHnARnA) dr

TnA=RnaA

(22)

Due to Eq. ([9), the amplitude Melifv(p”or) can be
parametrized in terms of the ANC. We note that this am-
plitude is also small. In the external region, r,4 > Rp4,
the nuclear n — A interaction can be neglected. Besides
in this region the overlap function exponentially fades
away. Also, if the proton absorption is strong in the in-
ternal region of A, the dominant contribution comes from
rpa > Ra, where R4 is the radius of nucleus A. If the
adopted radius channel R, 4 is larger than the n — A nu-
clear interaction radius we can neglect n— A nuclear inter-
action in the external region. In this region each nuclear
potential szil and U é\A and their difference Upa —Ugq are

small. The Coulomb part US, —U$, = Za e® Ra/(2 RY),



where R, is the deuteron size and Z4e is the charge
of nucleus A, is also too small compared to the nuclear
potential. Thus the dominant contribution to the post

DWBA amplitude MQY"(?"“), Eq. (@), and, hence, to
the total post form DWBA amplitude MPW o5t comes

from the surface integral M LW . Here and in what follows

all the amplitudes with the transition operator ? —
are assigned the subscript S, which is abbreviation of
?surface”, because the volume matrix elements of these
amplitudes can be transformed into the surface ones in
the subspace over variable r,, 4 while over the second Ja-
cobian variable r,r we always keep the volume integral.

Now we express M SD W in terms of the surface integral
over variable r,4 and the same technique will be used
throughout the paper. The kinetic energy operator can
be written as T' = Tpr + Tra. Tpr is a Hermitian oper-
ator in the subspace spanned by the bra and ket states
in Eq. ([I@). It can be proved if we take into account
that at r,r — oo the integrand in this equation van-
ishes exponentially due to the presence of the bound state
wave function ¢4(r,,) and the overlap function I (r,,4).
Hence, integrating by parts twice the integral over r,p
we obtain

<X I T o = Torleaxy) > e
=< X;;“) I ?pF - ?pF| d Xt(;l) > e aSBaa 0.
(23)
Then MPW reduces to
MEWY (kpp, kaa)
~< X I Toa = Taalpaxi® >| o (@9

MEY (kpp, kaa) = _MSDRVL/A (kpr, kga)

We apply now Green’s theorem to transform the vol-
ume integral into the surface one, which encircles the
inner volume over the coordinate r:

/ ar ) [T - 7] o)

r<R
1
o ji ds [g(r) Vi f(x) — £(r) Vs g(r)]
1, af(r) Og(r)
g @ faon o G~ B
(25)

Here, dS = R?d ), #, where Q, is the solid angle. Note
that the unit vector t is the normal vector to the sphere
directed outside of the restricted by the surface volume.
The integration in Eq. (24) over r,4 is taken over the
external volume restricted by two spherical surfaces: the
inner surface with the radius R,,4 and the external sur-
face with the radius R;A — 00, that is

MEY (kpr, kaa) = M8, (kpr, kaa)

+MEW (kyr, kaa).  (26)
The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rna = Ry while the second term is the surface integral
taken at o4 = R;A — 00. A negative sign in front of
the first term appears because the normal to the surface
is directed inward to the center of the volume, i.e. op-
posite to the normal to the external surface (at infinitely
large radius). The second term vanishes because of the
presence of the overlap function [ g , which decreases ex-
ponentially at 7,4 — oo. Then for M SD W we get

(+)
R ) +) O[] (rna)]* P . 00a(rpm) Xi,, ) (Tda)
2 pna faa / Arpr X (0r) [ A [gpd(r’m)ka (raa) OTna g (rna) Orna (} ’”SLA:RHA'
27

reduced width amplitude (ANC) and boundray condi-
tion, the quantities used in the R-matrix approach:

Here we took into account that xf:)*(r) = X(j() (r). In-

voking Eqs. (I8) and (IJ) we can rewrite MW in the
form explicitly showing parametrization in terms of the



1
5 ilnA—i_ ! KnA RnA h/[(i)A ('L KnA RnA)

MDW
5 2 HnA

(kpr, kaa) =

D

< JaMy jnAmjnA|JFMF >

JnAa Mg, 4 mu, , My

X < I My bnamu, [ jnamg, o > < Jp My Jo MylJg Mg > CY ;1|

x / dryr X% () / A%, s Yy (Fna) [wdupn)xgi(rm (Bpa— 1) = Rua

0 pa(rpm) x&i)(rd,ﬂ

Orna

(28)
o RnA . .
— 5 Z <JAMA]nAmjnA|JFMF><JnMn lnAmlnA|jnAmjnA>

HnA g amy, mi, , M
X < Jp My Jn My |Ja Ma > Ynaj,at.a / dr,r x %) (rpr) / A, Y0, (Fna)
0 pa(ryn) i) ) (ran)
% [altom) Xioh (vaa) (Bua = 1) = Ry ————t a2 . (29)
TnA rnA=Rna

Finally, the total post form DWBA amplitude is given
by

M PW (post) (ka, de) _ MDW(:DOSt) (ka7 de)

int

+MOY P (K, Kaa) + MEW (Kyr, Kaa).  (30)
Taking into account that MPW = MPWEest _

MDW(prior)

ot we can rewrite Eq. (B0) in a different form:

MDW(post) (ka7 de) — Mi[n)ZV(POSt) (ka, de)
Y

+ [Megfv(pm) (Kpr, kaa) — MO P70 (K, kaa)| .
(31)

Thus, the main result of this section is that the post

form of the DWBA amplitude can be written as the sum
MDW(prior) + MSDW

of the peripheral parts, M_,,
internal term MZZZV (Post) " The peripheral part itself con-
sists of the dominant surface amplitude M SD W and small
external prior form Mjif”p 7o) The peripheral part is
parametrized in terms of the ANC (reduced width ampli-
tude), channel radius R, 4 and the logarithmic boundary
condition, that is in terms of the parameters used in the
R-matrix fitting. The model dependence of these two pe-
ripheral amplitudes is caused by the ambiguity of the op-

tical potentials and channel radius R, 4. The strongest

model dependence comes from Ml]ZtW (P OSt), because, in
addition to the ambiguity of the optical potentials, to
calculate it one needs to know the behavior of the overlap

function in the internal region. For peripheral reactions

DW (post)

contribution of M, ,

, and small

can be neglected.

B. Prior form of DWBA. Stripping to bound state.

In subsection A the post form of the DWBA amplitude
has been considered. However, all the results hold also
for the prior form

M DW (prior) (ka7 kga) =< X;(o;’) If” AVdA| Pd Xl(i-;) >
= MDW(pTiOT) (ka) de) + MBDW(pTiOT) (ka’ de)’

int xt

(32)
where
M (e, Teaa)
=< K IAValgax@y > | (33)
and
MY (e, Teaa)
=< K 1AVasleax@d > | o (39
with the transition operator
AVgs =Upsa +Vypa — Uga. (35)

The n— A interaction potential V,,4 =< 04 |Vialpa > is
the mean field real potential supporting the bound state
(n A). The splitting of the amplitude into the internal
and external terms in the subspace over the coordinate
r, 4 helps us to further transform the prior DWBA ampli-
tude. Due to the structure of the transition operator the

external matrix element M, j;f”p ") in the prior form is
small (see the discussion in subsection [T'A]) and the main

contribution in the prior form comes from the internal

part MZZZV (Prier) " Since the internal part is given by the

volume integral, its calculation requires the knowledge of

TnA=Rna



the overlap function in the internal region. The model
dependence of the overlap function in the nuclear inte-
rior (rpa < Ry,a) brings one of the main problems and
main uncertainty in the calculation of the internal matrix
element. However, using the surface integral we can re-
distribute the internal contribution in terms of dominant
the surface term (over variable ry4) plus small internal
part written in terms of the volume integral in the post
form. With reasonable choice of the channel radius R, 4
the contribution from the internal volume integral in the
post form can be significantly decreased compared the
surface matrix element. The latter can be expressed in
terms of the R-matrix parameters - the observable re-
duced width amplitude (ANC), boundary condition and

. DW (prior) .
channel radius. To transform M, (Prier) into the sur-
face integral in the subspace over variable r,, 4 we rewrite

the transition operator in the internal region as

AVys =Upa+ Vs — Uga

= [Vna +Upr| + (Upa + Von — Upr) — [Von + Uaal.
(36)

The bracketed transition operators are the potential op-
erators in the Schrodinger equations for the initial and
final channel wave functions. Hence, for the internal prior
form of the DWBA we obtain
M P (e, Kaa)
DW DW (pri
= MO (e, aa) + MG (e, de)(’ )
37

where

MEY (kpp, kaa) = — < X;}) Iy T - ?| <PdX,(;;) >

=—-< XZ(,;') I£| ?nA - ?nA| Pd X(d:) >
=-Mg5)" (kyr, kaa). (38)

Note that here M SDRWA is the surface integral encircling

the border of the internal volume at 7,4 = R, 4 with the
normal directed outward. Thus we have demonstrated,
what should be expected from the very beginning, that
MPWprior) — prPW(post) - Hence all the equations ob-
tained in the previous subsection [[TA] are also valid in
the prior formalism.

It is worth mentioning that in the post formalism, in
contrast to the prior one, we have obtained two surface
integrals (in the subspace over r, 4) with the radii r,,4 =
R,a and rpa = R;A — 00 and then proved that the
second integral is zero. From the equality of the post
and prior DWBA amplitudes we could conclude that the
surface matrix element over infinitely large sphere 7,4 =
R;1 4 — 00, which appears only in the post formalism,
vanishes.

There is another interesting point to discuss which ex-
plains the advantage of the above outlined formulation
of the stripping. As we have discussed, due to differ-
ent structure of the transition operators in the post and

prior forms, the main contribution to the post (prior)
form comes from the external (internal) part (in the sub-
space over variable r,, 4). Since both forms give identical
amplitudes, that is, describe the same reaction mecha-
nism and the same physics, such redistribution of the
main contribution is possible only if the main contribu-
tion to each form comes from the border between external
and internal parts. In the post (prior) form this border
attributed to the external (internal) form and can be ex-
pressed in term of the surface integral. Let us rewrite
equality MPW(prior) — \fPW(post) i the following form:
MDW(pTZO’I") (ka, de) + MeDW(przor) (ka, de)

int xt
= MY (ke kaa) + MY P (K, kaa).
(39)

In this form the dominant terms are MZ-]ZZV (prior) nd

MEV @) while the rest two terms, M2 7" and

DW (post)
Mint

are smaller. From Eq. (39) we get

MDW(post) (ka7 de) _ MDW(prior) (ka7 de)

ext ext

_ MDW(prior) (ka, de) _ MDW(POst) (ka, de)

nt nt
= MEZ" (kyr, kaa) = —M3)" (kpr, kaa)- (40)
Thus the difference between the post and prior external
amplitudes (or the prior and post internal ones) is the
surface integral in the subspace over r;, 4.

There is one more point left to discuss. When deriving
the post form of the DWBA amplitude from Eq. (@) we
used approximation ¢r ~ I{ ¢4 neglecting the contri-
bution from the channels n+ A,,, n > 0, where A,, is the
excited state of A. However, I will show now that the
surface integral formulation doesn’t require this approxi-
mation. To this end let us split M (P25Y) into the internal
and external parts in the subspace over variable r, 4. In
the internal part we use a standard DWBA approxima-
tion pr ~ I{ pa to arrive to the standard internal post
DWBA amplitude. In the external part we rewrite the
transition operator as

A‘/;)F = VpA + Vpn - UpF
= —[Va +Upr] + [Von + Va + Uga] + (Vpa — Uaa).
(41)

The bracketed operators are the right-hand side opera-
tors of the Schrédinger equations

(E=T)0") = (Vpo + Va + Usa) @7 (42)

and
(E-T) 07" = (Va+ Upp) @477, (43)
Hence, the external part of M®°s9) reduces to

MPosH (kpr, kaa)

ext

= MS(emt) (ka7 de) + Még:ior) (k;DFa de)a (44)



where
Mégm)(ka, kaa)
=< <I> | Vpa — Uga |0 o (45)
TnA nA
and
MS(ext) (kpr, kaqa) = <I>( )| T_T |<I> o
TnA nA
(46)

In the matrix element A7®7%")

po we can use a standard
DWBA approximation ¢r & I§ ¢4 which leads to the
standard external prior DWBA amplitude. The matrix

element Mg(c,¢) can be rewritten as

Ms(eur) (Kpr, kaa)
=< (I)(f_)| ?nA — ?nA |‘I>l(»+)

TnA>Rna

=< X;}) oF| T s = Toa loapa x> . n
=< XpF) IA|?nA_?nA|@dXdA) > SR
- A‘JE)RIZ/A (k;DF; de); (47)

We took into account that < @gf)|?pp — ?pp + ?A —

?A|<I>1(-+) > = 0, where T4 is the internal motion kinetic
energy operator of nucleus A, and Tha 04 = ©aTha.
Thus Mg(erty can be transformed to the surface inte-
gral over variable r,4 encircling the inner volume with
the radius r,4 = R,a without invoking approximation
or ~ I ¢4. It means that, when deriving the post form

of the DWBA amplitude, the approximation pp ~ If A PA

MDW(post)

is required only to obtain two small terms, M, ,

and M2V@T) put not the dominant surface term
—-M SDRWA' In this sense the surface integral formalism

is an improvement of the DWBA.

C. Deuteron stripping to bound states. Post
CDCC formalism

In the previous sections we succeeded to parametrize
the DWBA amplitude in terms of the ANC except for a

small term, MZZtW (Post)  The most serious shortcoming
of the DWBA is that it neglects the coupling to open
reaction and breakup channels. This coupling can be
taken into account if an exact wave function in the initial
or final states is used. However, the exact wave functions
are not yet available (if they would be available in the
whole configuration space, we don’t need to calculate the
matrix element because the asymptotic terms of the exact
wave functions provide the reaction amplitudes in all the
open channels). Here we use the CDCC formalism, which
takes into account the elastic d + A and the deuteron
breakup channel p +n 4+ A in the initial state.

In this subsection the surface integral formulation of
the reaction theory will be applied to the post form of the
CDCC amplitude for deuteron stripping to bound states.
It will allow us to parametrize the stripping amplitude in
the CDCC approach in terms of the R-matrix parameters
- the reduced width amplitude, boundary condition and
the channel radius. To obtain the CDCC wave function
describing the initial state of the stripping (re)action, first
ot

the exact initial scattering wave function is replaced

by the three-body wave function \I/?B(ﬂ, which takes into

account the coupling of the initial channel d + A and the
deuteron breakup channel p +n + A [1H3] and satisfies
the Schrédinger equation (in the three-body p +n + A
model space)

UnA - ‘/;771,) \IIBB(Jr) 0 (48)

with the outgoing waves in the elastic channel d + A and
the breakup channel p +n + A. A general solution of
this equation with the d + A incident wave has outgo-
ing waves in the elastic, breakup and two rearrangement
channels, n+(p A) and p+(n A). To damp rearrangement
channels in the asymptotic behavior of the wave function

\IJ3B(+) the optical potentials Up4 and U, with strong

(E—T —Ups —

imaginary terms can be used [35]. \Ing(Jr) is given by

\IJ3B(+)(

rqa, rpn) = <Pd(rpn) Xf(-:l (raa)

+ / ADpn 05 (1pn) Xpor oy (Far)- (49)

Here, @q(rpy,) is the deuteron bound state wave function,

wgﬂ (rpn) the p — n scattering wave function with the

iﬁi (rqa) and X(pJEi,pn)(rdA)

are the expansion coefficients, Fga —epn = P?/(2 piaa) +
p;in/ (2 fpn)-

In practical application the wave function W;
replaced by the CDCC wave function, which is a solut1on
of the projected Schrodinger equation

— V) PCCH — 0. (50)

relative momentum ppy,, X

3B(+)

(BT - UB

Here, U™ = P, Upa P, and

lmaa:

,m_z Z [ 490, Vi o)

lpn=0 Mipn =—lpn

x Y, r;n) (51)

o i (
l:l-?’ﬂ mlpn

is the projection operator, which truncates the number of
the spherical harmonics Y, m,, _(pn) in the coordinate
rpn. Application of this operator to the three-body wave
function suppresses the rearrangement channels in the
asymptotic wave function. The CDCC wave function is
taken in the form

gCDCC(+) Ppn Z 1/)

: (Tpn; Yaa) X

rdA)7

(52)



where 1#](091) (rpn) = @a(rpn) is the deuteron bound state

wave function, wl(fﬁ) (rpn), n > 1, is the n-th discretized
continuum state of the p — n pair obtained by averaging
continuous breakup states in the n-th bin, y\™ ™ (r44)
are the functions, which describe the relative motion of
the center-of-mass of the p — n pair in the n-th state and

A. Note that XEO)(JF)(rdA) asymptotically behaves as the
incident Coulomb distorted d — A plane wave plus outgo-

ing scattered wave, while Xgn)(Jr)(rdA) for n > 0 asymp-
totically do not contain any plane wave having only the

outgoing scattered wave.

To derive the post form of the CDCC amplitude from
the exact one, first we replace the initial exact scattering
wave function \IJEJF) by ©a \IJ?B(JF). Note that \I/fB(+) is
the three-body model (p +n + A) wave function which
treats nucleus A as a constituent particle leaving its inter-
nal degrees of freedom intact. That is why the wave func-

tion \IJ(JF) is approximated by the product of the bound

state wave function ¢4 and \IlsBH). Correspondingly,

the transition operator AV,r = Vpa + Vpp, — Upr is re-
placed by AV ,r = Upa + Vpn — Upp. This replacement
of the microscopic potential V4 in the exact post form
amplitude by U, 4 is evident because the p— A interaction
potential in the transition operator should be the same
as the one in the Schrodinger equation for the initial scat-
tering wave function \IlgBH) Potential V,,,, remains the
same when we approx1mate the initial exact scattering
wave function ny the three-body one. The final state
optical potential U,r is arbitrary and we discuss the op-
timal choice of this potential later on. These approxima-
tions lead to the expression for the post form stripping
amplitude in the three-body model in the initial state:

M3B(post) (ka, de)

( B(+) §

=< X or| AV, plpa ¥?

—< xpp) I | AV o U3EH) 5 (53)

Thus, even if we treat the d + A collision in the initial
channel in the three-body approach, the final state con-
tains the overlap function, which is essentually many-
body object. Eq. (B3) is impractical to use because it
requires the knowledge of the three-body wave function
\IlfB(Jr), Eq. (@9), which contains unknown expansion co-
efficients X, (ra4) and xp(p,,)(raa). In practical appli-

cations the \113 )
CDCC(+)

is approximated by the CDCC wave

function ¥, , which requires the knowledge of the
finite number of the expansion coefficients. They can be
found from the coupled equations. Correspondingly, the
transition operator AV pr = Upa+V,y —Upr in Eq. (G3)

is replaced by AVPP" = P”" + Vpn — Upp. Note that
only the potential UpA(rpA) where rpa =rga+1/2rp,

is affected by the projector Ppn. Then the expression for
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the post form of the CDCC amplitude takes the form:

MCDCC(post)(k 7 de)

CDCC(+ ‘
—< P I ATV | wEPeC) s (54)
Now we split M P into the internal and external parts
in the subspace r;, 4:

MCDCC(post) (ka, de) _ ]\4‘CDCC(;Dost)(ka7 de)

nt

+M€thDCC(post) (ka, de).

(55)

The internal amplitude MZC bOC(post) i given by

MZSLtDCC(Z)OSt) (kZDFa de)

CDCC(+)

=< XpF Iy AV Y, > e (56)
Correspondingly, the external amplitude is

MitDCC(post) (ka, de)

—< P I AT wEPeet) (57)

TnA>Rnpa

I remind that the integral over the second Jacobian vari-
able, rpF, is taken over all the coordinate space. Sim-
ilarly to the DWBA case, the internal part is small if
the channel radius R,4 is not too large. Due to the
strong absorption of the proton inside A, which is con-

trolled by the imaginary part of the optical potential
UP”" the effective distances are r,4 > Ra4. Besides,
in the internal region, 7,4 < R, 4, and large r,4, where
TpA ~ Tpn = |Tpa — Tpal, U P”” + Vpr can be well ap-
proximated by a properly chosen optical potential U,r

minimizing AV 7" and the internal matrix element. The

next step is to transform the external matrix element to
the surface one. To this end we rewrite the transition
operator in the form

Ppn

AV 2 = U 4 Vo = Upr = [~Upr] + [USF" + V).

(58)

The bracketed operators in (B8)) are the right-hand-side
potential operators in the Schroédinger equations in the
external region 7,4 > Rpja, where the nuclear n — A
interaction vanishes:

CDCC(+) CDCC(+)
(E—T)¥! (59)

= (Uy5" + Vpn) ¥
and

(B~ )X\ 15 = Upp X 15 (60)
Note that the second equation follows from

(—ena —Tpa) I5 =< @a|Vialor > . (61)



In the external region, r,4 > R,a, the source term
on the right-hand-side disappears and Eq. (60) becomes
evident. Taking into account Eqs (B9) and (60)) we get

MCDCC(post) (ka, de) = MgDCC(post) (ka7 de)

ext
=<\ IEIT - T PO

)
TnA>Rna

(62)

where T' = T),r 4+ T}, 4. Here, as in the previous section,
for the surface integral we use the subscript ”S”. Since
the CDCC wave function doesn’t propagate into the final
state (its asymptotic terms have only elastic and breakup
terms) the operator Tp,r is Hermitian, i.e.

< XSGR LI T e = Tyl 9P >

rnA>Rna
— cDhcCccC
=< X;()F) I£|?pF — ?pFl‘I’i +) > SR =0.
(63)

It can be also shown explicitly taking into account that
the volume integral over r,r can be transformed into
the surface integral over the sphere with the radius
rpr = Rpp — 00. Since the overlap function decays
exponentially at r,4 — oo, the integration over r,4 is
limited. Hence, at r,p — oo using Eqgs (Bf) we get
that rqa ~ rprp — oo and rp, ~ rprp — 00. The first
term of the CDCC wave function decays exponentially
at rpr — 00 because of the presence of the deuteron
bound state wave function. The terms with n > 1 decay

as 1/r3p [36]. The distorted wave x;})*(ppp) decays as

B 2,anA

R2 8 IF ry * *
= [ 3, ) [ a9, [0EPC i, p) DAL e 20

B 2MnA

Natural Jacobian variables for \I!Z-CDCC(JF) are rga and

rpn, but here we use another set of Jacobian variables,

R? . *
o [ ) [ a9t [0 (T, = T DU, 1)
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1/rpr, see Eq. (B14)). Hence the surface integral vanishes
at R,p — 00 as R2p/Rip — 0.

Then MgDCC(pOSt) takes the form

MgDCC(post) (ka : de)

— < XD I T a = T | 9EPOCH)

= —MEPOCP N (e, ya) + MEPOCP N (e, ).
(64)

TnA>RnaA

Thus, the volume integral at r,4 > R,4 in the ma-

trix element MgDCC(pOSt) can be written as the sum of

two surface integrals encircling the external volume, the
sphere with the radius r,4 = R, and the sphere with
TnA = R;A — 00. Note that the integral over ryrp is
taken over all the coordinate space. Evidently that the
integral over the infinitely large sphere vanishes because
the overlap function I exponentially decreases. Hence,

MgDCC(pOSt) (kpr, kga) = _]\451%112640(170516)(ka7 Kaa).
(65)

The negative sign in front of the inner surface integral
appears because the normal vector to the inner surface
is directed to the center, i.e. opposite to the direction of
the normal to the external surface at r,4 = R;1 A — 00.
Now we can use equations from subsection A replacing

the initial channel wave function by the CDCC one. For

MgDCC(post) we get

MSC"DCC(post) (ka7 de) _ —MgDCC(pOSt)(ka, de)

RpaA

FODCC(+)

(rpF ’ rnA) :|
aTnA

aTnA
(66)

r,r and r,4. Taking into account Eq. (I8) and (I9) we
get

TnA>Rnpa

TnA=Rna



MgDCC(post) (ka, de) _

_ [ Lna $

2 fna
Hn JnA Mg, 4 M, , Mn

SRy a
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_MCDCC(post) (ka, de)

<JAMA jnAmjnA|JFMF >

X < Jp My lna mlnA|jnA Mjoa > VnAjnalna / dryr X(jc)pF (rpF) / dQr, , Y:A mi, , (f'nA)

« \IjiCDCC(Jr)(

Note that the CDCC wave function itself also depends on
quantum numbers of p —n and d — A subsystems, which
we don’t specify here. It will be done in the following up
paper where concrete calculations will be presented.

Thus we have obtained a remarkable result: the post
form of the CDCC amplitude, in contrast to the DWBA
one, is given by the sum of only two terms:

MCDCC(post)(ka, Kga) = ]\4.01300(170515)(ka7 Kaa)

nt

CDCC (post
Mg, )(ka,dezés)

where the first term, which is the internal post form of the
CDCC amplitude, can be minimized by a proper choice
of Upr and the channel radius R,4, while the second
term, which is dominant, represents the surface integral
with the radius R, 4, which encircles the internal volume
in the subspace over the coordinate r,4. If the channel
radius is larger than the n — A nuclear interaction radius
the second term is parametrized in terms of the reduced
width amplitude (ANC of the projection of the bound
state wave function of F' on the two-body state n+A) and

the boundary condition at r,4 = Rn,a. If MZC pecost
is small enough,
MCDCC(post) (ka, de) ~ _MgifC(pOSt) (ka, de)'
(69)

Thus we succeeded to parametrize the post form of the
CDCC amplitude in terms of the R-matrix parameters.
Eq. (68)) and parametrization of the surface term of the
post CDCC amplitude in terms of the R-matrix param-
eters, Eq. (61), are one of the main results of this paper.

Although it is assumed that M, CDCC(p °3!) can be min-
imized so that the second term 1n Eq. (©8) becomes

dominant, I would like to present a different form for

Mgfcc(po“)(kpp, kga), which leads to a different form

for the whole amplitude MCPCC@os) (k p kya). To

this end, let us rewrite the transition operator AV ;"

r'yr, rnA) (BnA - 1) - RnA

5\I/iCDCC(+)(rpF7 rnA) (67)
aTnA TnA:RnA'
in Mgfcc(p”t)(kpp, kya) as
AV = U 1V = Upr
= [Uph" + Un i + Von] = [Vina + Upr] + Via — U5
(70)

Here, V,4 is the mean field potential supporting the
bound state (n A) while Ufi" is the projected optical
potential describing the n — A interaction in the initial
state of the reaction and entering the Schrodinger equa-
tion for the projected CDCC wave function in the initial
state. The bracketed potential operators are the right-
hand-side operators of the Schrédinger equations in the
internal region, 7,4 < Rn4,

cbhcc Ppn Py CDCC
(E T)\I/ (+) _ (Up +U P +Vpn) (+)
(71)
and
(E- D)X I5* = (Vaa+ Upr) XS I5 " (72)

Replacing the bracketed potential operators [U +

U 4 V,] and [Vya + Upr] by E— T and E — T,

MlCDCC(post)

correspondingly, we get for a new form:

MCDCC(post) (ka, de) _ MgifC(pOSt) (ka7 de)

wnt

Maqu)cc(posﬂ (ka7 de)? (73)
MaC;DCC(post) (ka7 de)
cDCC(+)
< AT PO )
Py
AV V4 — Ul (75)

Then the total post form of the CDCC amplitude can be



written as

MCDCC(;Dost)(ka, de) _ MCDCC(POSt) (ka7 de)

int
_ MCDCC(post) (ka, de)

SR, a
= MgRlZfC(pOSt)(kaa kaa) — MgRlZfC(pOSt)(kav kia)

+ MCDCC(post) (ka, de) — MCDCC(post) (ka7 de)

aux aux

=< LI Voa ~U w200 > | (76)
Thus, we obtained another important result. The CDCC
amplitude in the post form is equal to the inner volume
integral over variable r,4 with the transition operator
Vs — U:Z". This transition operator is the difference
between the bound state potential V,, 4 supporting the
final bound state (n A) and the projected optical poten-
tial describing the n — A interaction in the initial state.
It is worth mentioning that Eqs (68) and (70) are ex-

act within the CDCC approach. If MCPC¢wost)

imt is small
enough, then

MaC;l;CC(post) (ka7 de) ~ MSC"DCC(post)(ka, de)'

Bna
(77)
However, I prefer Eq. (G8) rather than (7G). To calcu-
late MSPCCWost) (he needs to know the overlap func-

tion in the internal region, where the overlap function is
model-dependent and requires microscopic calculations.
In contrast, in Eq. (G8)) the dominant part is the surface
integral, which is parametrized in terms of the reduced
width amplitude (ANC). The model dependence of the
surface part is related with the ambiguity of the optical
potentials and the value of the cut-off orbital angular mo-
mentum in the p — n subsystem in the CDCC approach.
Comparison with experiment allows one to extract the re-
duced width amplitude. The model-dependent internal
part in Eq. (G8) is small. Eqs (68) and (7G) is prelude
to the theory of the stripping to resonance, where the
convergence problem of the external part is one of the
main issue. As we have demonstrated in the post CDCC
formalism the external part doesn’t appear at all. It re-
solves the convergence problem related with the external
part.

D. Deuteron stripping to bound states. Prior
CDCC formalism

A priori, the amplitudes in the post and prior forms of
the CDCC formalism are not equal. That is why the ob-
tained equations using the surface integrals are expected
to be different in both formalisms. The prior form of the
CDCC stripping amplitude is

MCDCC(pM’or) (ka7 de)

Y. . —pP,
=< \IJ?DCC( ) | AV 4" [¢a XEIJ;X) > (78)

13

where

—Pna

AV 3" =URA + Via — Uaa. (79)

The projected CDCC wave function in the final state is
a solution of the three-body Schrédinger equation

(BE—T —US%A = Voa — VI wGPCCO" — 0. (80)

Here,
/d anA }/lnA M, A (f‘nA)

X YE:A My a (f‘nA) (81)

is the projection operator, which truncates the number of
the spherical harmonics Y, , m, , (fn4) in the coordinate
rnA.

Now, as usually, we split the amplitude
into the internal and external parts in the subspace over
variable r,, 4:

MCDCC(prior)

MCDCC(prior) (ka , de)

_ M;?CC(prioT)(ka7 kaa) + MitDCC(prior)(ka7 Kan),
(82)
where
MEDPCCErion (e 1 kg )
=< \IJ?DCC“) | U;DXA + Vioa — Ugalea x((iz) > i
(83)
and
M(J/C;?CC(prior)(ka, Ka)
=< 0P Ul — Ugalpax > . (84)

TnA>Rna

The external part of the prior amplitude (see discussion
in subsection [IB)), due to the structure of the transition
operator, is small and the dominant contribution comes
from the internal amplitude. We will rewrite this ampli-
tude singling out the surface integral over variable ry 4.
To do it we rewrite the transition operator

_Pn
A VdAA = U;DALA + VnA - UdA
= [Upi* + Vaa + V] = [Vn + Uaal. + (Vo — Vi)
(85)
The bracketed operators are the right-hand-side opera-
tors of the Schrédinger equations

CDCC(—)x

(E—T) S CDCC(—)x

= (UAA 4 Voa + V) 0§
(86)

and

(E=T)paxyh) = Von + Usa)paxy.  (87)



Taking into account these equations we can rewrite
MgltDCC(prlor)(ka7 kga) in the form:
nt

+ MCDCC(prior) (ka7 de)7 (88)

aux

MCDCC(pM'OT) (ka, de) _ MgDCC(pT‘iOT) (ka7 de)

where

M%QCC(prior) (ka , de)

cpee(-)

=< ¥ | Von = Vo' * | @a Xl(;l) > rna<Bna (89)
and
MSPECETN (1 Kga)
< yCPeee) T - T o) > < (90)
TnASRnaA

Here, the kinetic energy operator T' = T,r + Tha. In

CDCC(pri .
Mg (Prier) the volume integral over r,r can be trans-

formed into the surface one taken over the sphere with the
infinitely large radius: rp,r = Rpr — 00. For r,4 < R4,
due to the presence of the deuteron bound state wave
function, the integrand goes to zero exponentially, that
is this surface integral vanishes. Hence, only the sur-
face integral encircling the inner volume with the radius
Tna = Rpa:

MgDCC(prior) (ka7 de)

= - < \I/?DCC(_) |?nA — ?nA | ©Yd X((;l) >

TnA<Rna
CDCC(post
= — Mg, (ke Kaa). (91)
gbCC(post) g given by Eq. ©7).

Sk, 4
M,ﬁfjcc(p Tior)(kpp, kia) is an auxiliary internal part,
which is small because at 7,4 < Rp4 and rpp > Rp due
to the proton absorption in the nuclear interior, p — n
nuclear interaction is significantly depleted, and so the
difference Vj,, — V,fr4. Then

MCDCC(prior) (ka7 de)

= MERCCwrion) (k,p, kaa) — M S,CRZfC(pOSt) (kpr, kaa)

+ MGC;?CC(:DTZOT) (ka7 de), (92)

Thus the total prior form CDCC amplitude consists of
three terms, small auxiliary internal part, small external
prior form and the dominant surface term. We can see
that post and prior CDCC formalisms are not equivalent.
In the approach used in the paper the configuration space
over variable r,, 4 was split into the internal and external
parts. As it has been discussed in Introduction, such a
splitting is natural because the main object of interest in
the analysis of deuteron stripping is the overlap function
I% of the bound states wave functions of the target A
and final nucleus F. Its external part (rpa > Rpa) is
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parametrized in terms of the observable ANC while the
internal part is model-dependent.

In the post formalism the external part is domi-
nant. Invoking the post CDCC formalism allows us to
rewrite the external CDCC matrix element in the form
of the surface integral over variable r,4, which can be
parametrized in terms of the parameters used in the R-
matrix method for binary reactions, while the model-
dependent internal part gives small contribution. Thus
the volume part of the matrix element over variable r,, 4
is transformed to the surface integral. For transfer to
bound states such a transformation doesn’t bring any sig-
nificant advantages because the volume matrix element
converges. However, for stripping to resonance states
(see subsection [[ITC)) this transformation provides a de-
cisive benefit because it solves the convergence problem
of the matrix element. Here, the transformation of the
post CDCC matrix element has been presented mostly
for demonstration but the results will be used below in
subsection [ILC] for stripping to resonance states.

The prior CDCC formalism would be preferable if we
split the matrix element into the internal and external
parts over variable r,,, to separate the internal and pe-
ripheral parts of the deuteron bound state wave function.
But this wave function is well known and is not an ob-
ject of study. That is why below, when considering the
stripping to resonance states, we use only the post CDCC
formalism.

IIT. DEUTERON STRIPPING INTO
RESONANCE STATES

Now we proceed to the main goal of this paper, for-
mulation of the deuteron stripping into resonance states
using the surface integrals what will lead us to the gener-
alized R-matrix approach for the stripping into resonance
states. Let us consider the deuteron stripping

d+A—p+b+B. (93)

We assume that the resonance formed in the system
F = A+ n can decay into channel B + b, which can
be different from the entry channel A +n. We start from
the post form and transform it to the surface integral
following the method applied for the stripping to bound
states. Now the application of the R-matrix approach
looks natural. Although we consider the deuteron strip-
ping leading to a specific final channel d+ A — p+b+ B,
there can be a few open channels coupled to the chan-
nel n + A, which is formed after neutron is transferred
to the target A. As in the previous sections, follow the
R-matrix approach, we split the integration region over
r,4 into two regions: internal and external. Internal re-
gion is determined as the one where all open channels are
coupled with each other, so that the transition from one
channel to another can occur only in the internal region.
The external region is the one where all the channels are
decoupled. We obtain new forms for the DWBA and



then for the post form of the CDCC amplitude. For the
DWBA both post and prior approach will lead to the
same final expression. In the standard approach the post
form of the DWBA amplitude is mainly contributed by
the external part in the subspace r, 4, where the con-
vergence question of the DWBA matrix element, which
contains the integration over r,r and r,4, becomes a
main issue. In the prior form the main contribution to
the DWBA matrix element mainly comes from the inter-
nal region in the subspace r,4, where a strong coupling
between different open channels becomes an issue. In a
new approach formulated below the DWBA amplitude
(in the post and prior forms) is written as the sum of
three amplitudes: small internal post and external prior
forms, and the dominant surface integral in the subspace
over rpa. This surface term is parametrized in terms
of the reduced width amplitudes, resonance energies and
boundary condition, that is the quantities used in a stan-
dard R-matrix approach. In the post CDCC approach
the amplitude is given by the sum of the small inter-
nal post form and the dominant surface term, that is, in
contrast to the DWBA, no external prior form appears
in the CDCC method. This resolves the issue of the con-
vergence for stripping into resonant states.

A. Stripping to resonance states. Post form of
DWBA.

The post form of the DWBA amplitude can be ob-
tained by generalizing the corresponding equation for the
deuteron stripping to the bound state. As a starting
point, we use Eq. (@) in which, to get the amplitude
for the deuteron stripping to resonance states, we should

replace the overlap function I by the exact scattering

)

wave function \I/Z()_B with the incident wave in the channel

b+ B:

MDW(post) (P de)

=< XS UEY O AV rloapax(h > (94)
where AVPF =Upa + Vpn — Upr and
. +)*

v =) =) (95)

Since we consider the stripping to the resonance state,
which decays into two fragments b and B, there are three
particles, p, b and B, in the final state. Hence, the kine-
matics of the final state of the reaction depends on two
Jacobian momenta, for which we adopt the relative mo-
mentum of two fragments b and B and by the momen-
tum corresponding to the relative motion of the exit-
ing proton and the center of mass of the system b+ B.
Thus the deuteron stripping reaction amplitude depends
on the momentum P = {k,p, kyp}, which is the six-
dimensional momentum conjugated to the Jacobian co-
ordinates of the system p +b+ B Y = {r,r, rv5}.
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Then repeating the steps used in derivation of the ex-
pression for the post form of the DWBA amplitude for
deuteron stripping to the bound state we get

MDW(post) (P de) _ MZZZV(ZDost) (P, de)
(P, kqa). (96)

FMEYET (P kga) + MPW

Here, internal post amplitude M.} Wwost)(p ky4) and

external prior amplitude M2W @) (P k,4) are given
by

MDW(post) (P de)

wnt

+)

=< XTI AV pleax) > en (97)
and
Mgcgv(mor) (P, kaa)
=< XI();) Tgle:t)(*” AVPF|SDd Xgijrq) > o (98)
Here, T (r,4) =< a0 5 and
T(emt)(—) \IJ emt) -)
nA (I'nA) =< PA | >,

The last term of Eq. (M) which will be transformed
to the surface integral, is

MBW (P, kga)

—< XD TEOONT _ T o) > (99)

TnA>Rna

Let us discuss the advantage of this new form of the
DWBA amplitude for the deuteron stripping to reso-

nance state(s). Since the internal part M-y *° g

wm
given by the volume integral, its calculatlon requires

the knowledge of ¥, mt)( ) in the internal region. The
model dependence of this function in the nuclear inte-
rior (rpa < Rpa), where different coupled channels do
contribute, brings one of the main problems and main
uncertainty in the calculation of the internal matrix el-
ement. However, as it has been discussed in subsection
[[TAl this matrix element gives a small contribution to
the total post form amplitude MPW®ost) due to the
structure of the transition operator AVP r and constrain
mmaA < Rpa. These arguments are also valid when con-
sidering the stripping into resonance states. A proper
choice of the optical potential U,r and the channel ra-
dius R, 4 may significantly reduce the contribution from
the internal post form DWBA amplitude. Due to the
structure of the transition operator A Vg4, which has
been also discussed in subsection [TA] the external ma-

trix element M2} ") in the prior form is also small
and in some cases, with reasonable choice of the channel
radius R, 4, even can be neglected. Note that, in order to
keep MZDW(p °%) small, the channel radius R,,4 cannot be

too large and, in order to keep M, e[;‘t/V(p ") small, cannot

be too small. Thus with an optimal choice of the chan-
nel radius the dominant part is the surface part M SD w



which contains only one volume integral over r,r. Eq.
[@6l), which presents a new form of the DWBA amplitude
for stripping to resonance states, is quite important for
analysis of the stripping to resonance.

Using the R-matrix representation of the scattering

wave function \Illg;)* we are able to express the to-
tal DWBA amplitude in terms of the reduced width
amplitudes, level matrix, boundary condition and the
channel radius, that is parameters used in a standard
R-matrix method to analyze binary resonant reactions
n+ A — b+ B. Since the reaction under consideration
is the deuteron stripping, the presence of the deuteron
in the initial state and exiting proton causes the distor-

tions. That is why the reaction amplitude, in addition to

0S8 2 k
MO P dg) = Y
bB \ KBy M

N

e_i‘;l}’lgl il Yi*ml(—f{bB) Z [FustlJF (EbB)]1/2 [A_l]

v,T=1

In this equation we assume that the channel spin s and
its projection mg in the exit channel ¢ = b+ B are fixed
[41]. JF is the resonance spin (Mp its projection) in the
subsystem F' = n+A = b+ B and [ is the b+ B orbital an-
gular momentum in the resonance state. The sum over
Jr and [ assumes that a few resonances with different
spins may contribute to the reaction. The subscript c
used in Appendix [A] for the channel b + B is replaced
here by bB. Also ET]";%F =< pa|XJFMr > is projec-
tion of X/F Mr introduced in Appendix [A]on the bound
state 4. The bound-state like wave function XJrMr

27 ka
Z‘[DW(post) P, k _ 2 :
nt (P, kaa) kvg \| vB
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the R-matrix parameters describing the binary subpro-
cess, contains additional factors - distorted waves in the
initial and the final states. That is why we can call the
obtained expression for the DWBA amplitude a general-
ized R-matrix for deuteron stripping to resonance states.

Now we proceed to the derivation of the expressions for
each amplitude in the right-hand-side of Eq. (@6]) and the
total post form DWBA amplitude. Since the stripping
into resonance states can lead to rearrangement, the exit
channel b + B may differ from the entry channel n + A.
To proceed further we now use the equations for \IIZSJ];)
obtained in Appendix [Al Taking into account Egs. (Of)

and (AJ]) we get

<sms Imy|Jp Mp > < Jp M, J, Mp|Jqg Mg >

v < XS@ B MR IAT plpax ) > . (100)

TnA<Rna

describes the system FF=n + A = b+ B in the internal
region. A priori, it can be calculated using, for example,
the shell model approach [37]. In Appendix [A] X /¥ Mr is
written as a nonorthogonal sum of coupled channels, see
Eq. (A4). If we neglect the contribution from the chan-
nel ¢, then EZZ%F can be approximated by the internal
part of the overlap function, see Eq. (I8]). Taking into
account this equation (rewritten in LS-coupling scheme)

we get

it < smg lmy|Jp Mp > < s mg l'my |Jp Mp >

Jr Mp s' Ul mg mymy My

X < Jn My Ja Mals' mg > < Jo My Jp Mp|Jg My > e %50 Yy, (—kyp)

N
< 3 Moonsrse(Bop) 2 A e < X2 Vi, @aa) I3 o i g (rea) AV prl0ax§y >

v,7=1

Here we added the sum over the channel spin s’ (its pro-
jection my ) in the entry channel ¢/ =n + A of the reso-
nant subreaction n+ A — F — b+ B and over the n+ A
orbital angular momentum !’. The sum over M, and
s’ (my) appears because the transferred neutron is in-
termediate (virtual). It is important that with a proper

+) (101)

rTnA<Rna

choice of the optical potential U,r the matrix element

MZZZV (®os!) can be minimized so that its model depen-

dence wouldn’t have impact on the total matrix element
MDW(post) .

DW (prior)

To obtain the expression for M_,, we use for



the external part \I/lg?t)(*), which can be obtained from
Eq. (A3])), assuming that the resonance contribution to
this wave function is dominant. In the sum over Jp in
Eq. (A31) we keep only those total angular momenta at
which resonances contributing to the reaction occur. Let

us consider two possible cases.

TL0T . 2
Mi?/@ )(1:)7 de) - _; ™ UbB
kv \ vna
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(i) The exit channel ¢ = b+ B in the resonant sub-process
n+A — b+ B is different from channel ¢/ = n+ A. In this
case the external resonant wave function is given by Eq.
(A36) and its projection on the bound state £ = @4 is

determined by Eq. (A37)). Then M, DW(prior) 1educes to

ext

it <lmy SmS|JFMF > < l’ml/ S/ms/|JFMF >

JF MF sl mgr My Mys Mn

X < Ty My Ja Mals' mg >< Jo My Jy My|Ja Mg > Y, (—ken) Sif st nn s

(=) Op(kna, rna) . +

X < XpF L
n

Here, V44 is given by Eq. (B5). In the external region
Voa =0and Vgyu = Upa — Ugqa. Also has been added
the sum over the orbital angular momentum ! and its
projection m; (I’ and my) in the exit (entry) channel
¢c=b+ B (¢ =n+ A) of the resonant subreaction n +
A — b+ B, the sum over the channel spin s’ and its
projection mg in the entry channel ¢/ = n + A of the
resonance subprocess n + A — b+ B and the sum over

i 27 UbB
MDW(przor) Pk _ " YbB
ext ( ) dA) ki UnA Z

7 iy (Bna) | AV aalpa X >

TnA>Rnpa

(102)

M, because the neutron is the transferred particle. The
projections of the spins of the incident deuteron My, the
exiting proton M), the channel spin s and its projection
my of the exiting particles b and B are fixed. We also use
the symmetry of the S matrix: S77 = gJr

c's'l'yesl cslye’ sl

The matrix element S5 ;.. 1.y i given by Eq. (AZ5).
Substituting it into Eq. ([I02) gives

il <lmy SmS|JFMF > < l/ml/ S/ms/|JFMF >

JF MF s’ll’ms/ mymys Mn

X < Jy My Ja Mals' mg >< Jo My, Jp My|Ja Mg > Y7, (—kig)

—idpg, L~ . 1/2 A1 1/2 Ov (kna, Bna)
xe Ble At Z [FUbBSlJF(EbB)] [A ]VT [F‘rnAs’l’Jp(EnA)] R—A
v,T=1 n
(=) O[*/ (k’H,A7 TnA) RnA * A v (+)
X < Y, na)| AV > . 103
XpF TnA O (kna, Rna) ' my (Fna)] a4la X Tna>Rna (103)
Now we take into account that where in the absence of the Coulomb interac-
i — 1/2 =
O[(k&, Rg) — \/Fl?(ké, Ré) + Glg(k57 Rg) tion l Fl(p) 12 (7T p/2) Jl+1/2(p) and Gl(p)
(=1 (mp/2)"2 J_11/2)(P):  Jxat1/2)(p) are Bessel
_ _ ¢ arctan M funCtiOnS.
w e 1Wal ¢ Gi(hs, Rg)

- \/Fl?(kg, Re) + G2(ke, Re) e’ %1, (104)

which for the channel & = ¢/ = n+ A and [ = I’ takes the
form

Ol’ (knA; RnA) = \/F?(knA; RnA) + GlQI (knAv RnA)

Fl/ (knAY RnA)
Gz/ (knAY RnA)

1 arctan

= \/F(kna Rua) + G (kua, Rua) € Pav,  (105)

Then using Egs. (A4]]) and (I05) we get
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Ti0T 2 n .
Mg‘t/v(p )(P, de):27TU/Ml:7AM Z it <Ilmy smg|Jp Mp >
B B iin

JFMFS,ll,mS/ mpmys Mn

X < l’my s’ms/|JF Mp >< J, M, Ja MA|s’mS/ >< J, M, JpMp|Jde > Yl*ml(_ﬁbB)
N

. shs
X 6_151)31 Z [FUstlJF(EbB)]1/2 [A_l]ur YrnAs'l'J
v,T=1
() Op(kna, Tna)  Rna . e - +)
X < ; na)| AV > . 106
XpF TnA Ol*’ (knA7 RnA) ! ml,(r A)| dA'de Xaa TnA>Rnpa ( )

(ii) If ¢ = ¢/, that is b = n and B = A. Here two cases  be obtained from (I02). Here we present the expression
are possible: non-diagonal transition for which s # s’ for the diagonal transition (elastic scattering) amplitude,
or/and | # I’ and diagonal transition with [ = I’ and  which can be obtained taking into account Eq. (A33):

s = §’. The amplitude for the nondiagonal transition can

rior . 2 .
MPW )(P, de)Zliﬂ Z it <lmy smg|Jp Mp ><1lmy smg|Jp Mp >

ext k R
nA nA JFMplmS/mlml/Mn

X < Jp My Jp Mp|Jg My > < Jo My, Ja Malsmy > Y5, (—kna) [1 - Sif;sl;nAsl} O1(kna, Rna)

(=) Of (kna, Tna) Ry . s = +)
X < fha)| AV > . 107
XpF TrA O?(knAy RnA) lml/( A)' dA|(Pd XdA roa>Roa ( )
Substituting the expression for the elastic scattering S- matrix element S;{f&s 1:na s 8iven by Eq. (A43) we obtain
|
0T . 2 .
MeL;It/V(p )(P, de):lkiw Z Zl <lmlsms|JFMF><lmysms/|JFMF>
na ftna Jr Mgl M,
F Flmg mymy n
X < Jp My Jp My|Ja My > < Jy My, Ja Malsmg > Y5, (—kna)
N
—948hs . _
X |1—e 29057, (1 +1 Z [PunAlep(EnA)]1/2 [A l]IJT [F‘rnAlep(EnA)]l/z)} Ol(knAu RnA)
v,T=1
(=) Of (kna, Tna) Rna . a — (+)
X < fha)| AV > . 108
XpF -, O U, For) Umy (Bna)l AV aaled Xga R (108)

One-level, one channel case is the simplest one for which
MEW@rier) (p x4 boils down to

ext



27

MDW(pm'or) Pk _
( ’ dA) ‘ knA RnA

ext

>

Jr Mplmg mymy My

X < Jp My, Jp Mp|Jde >< J, M, Ja MA|smS/ > Yltnl(_knA)

RnA *
O; (kna, Rua) 1\

4 Of knA7T77,A
x < x7 Z(TA )

where

FnA slJp (EnA)

OnAslJ- = arctan ,
naster 2(Ena0)stgp — Ena)

EnA(O)leF > EnA; (110)

is the resonant phase shift, F, 40y, is the real part of
the complex resonance energy of the resonance with the
quantum numbers sl Jg in the channel n + A. Now we

1

(Fra)| AV galpa XEIA) >
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<lmy sm5|JFMF ><Imy sms/|JFMF >

9. shs .
[1 e 208, s10p eQZénAsLJFi| Ol(knAa RnA)

" (109)

)
TnA>Rna

derive the equation for M é:’ W by transforming it into the
surface integrals over variable r,4. We can repeat the
discussion in Section II A. The integration in Eq. (@9)
over r, 4 is taken over the external volume restricted by
two spherical surfaces: the inner surface with the radius
R, 4 and the external surface with the radius R;l A4 — 00.
As it has been shown in Appendix [B] after regularization
the integral over the infinitely large sphere vanishes (see

Eq. (B20)) and

(ext)(—) .
L (+) (+) ar, (rna)]
MGV (P, kaa) = —Mg)" (P, kaa) = R, T / dryr / d Qe 4 [0a(rpn) xic,, (taa) X7, (Tpr) A&rnA
cat)(— L 00a(ryn) xi) ) (raa)
= x5 () (X550 ()] T o (111)
nA TnA=RnaA

Here, — M SDRWA (P, kqa) is the surface integral encircling
the inner surface of the external volume at Tna = Rpa.
A negative sign appears because the normal vector to the
surface is directed to the center of the volume, i.e. op-
posite to the normal vector to the external surface (at
infinitely large radius). For simplicity, we dropped the
quantum numbers in Eq. ([III) but they will be recov-

27
Y Nadel

MEY (kpr, kaa) = —Mg)" (P, kaa) = T

Oy (kna,rna)
9 TnA

< [ A0, Vi () [atrm) ) ()

,27‘1’ UbB 1

= — 7 — = Z il

k UnA 2
bB N UnA SlnA 5oy mimy s My,

(97‘7“4

UbB 52
(— R
Una nA

x <U'my smg|JM >< Jy My, Jx Mals' mg >< J, My,

ered below. Note that Eq. (III) can be obtained from
Eq. 27) by substituting Tgfzt)(f)(rnA) for the overlap
function I (r,4).

For the exit channel ¢ = b + B in the resonant sub-
process n + A — b+ B different from channel ¢ =n+ A

using Eq. (A37) we get

1
it <lmy smg|Jp Mp >
2MnA

JFMpll’mlml/ San

']P MP|']d Md > }/ltTLL(_l;bB) Sv{fls’ U';bB sl /erDF X(—-ii()pp(r;DF)

L (o) Qs ) aw(rpn)xﬁ;p(rm)}
X_ka e TnA aTnA rnA=Rna

<lmy smg|JpM ><1U'mp s’ mg|Jp Mp >< J,, My, Ja Mals' mg >

< My Ty Mylda Ma > Vi (o) S25 n e O s Rua) [ e XL (re) [ 4800 Ye )

X [Sﬁd(rpn) Xl(j;z, (rga) (Bna —1) — Rpa D

3<ﬂd(rpn)xf$l)(rdfx)}

(112)

TnA=RnaA



Here,

801/ (knAﬂ‘nA)
Orna rnA=Rna

B,
A Ov (kna, Rna)

= RnA

(113)

is the boundary condition. Sum over M, is a for-

™ UpB 1

MY (kpp, kaa) = —Mg)" (P, kaa) = 7—

kvp \ vna pina
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mal because My and M, are fixed. The coefficient
< Jn My, Jp Mp|Jg Mg > appears from the vertex d —
p + n and the product < U'my s'mgy|Jp Mp ><
JIn My, Ja M als' mg > from the vertex n+ A — F. The
matrix element S’ngSlmA o is given by Eq. (A45). Sub-
stituting it into Eq. (I12) gives

Z it <lmy smg|Jp Mp >

JF Mpll, s’ mymyr Mgr Mn

x < llm[/ s'mg|Jp Mp > < Jo My, Ja Mals'mg >< Jy, My, J, My|Jg Mg > Y/,

- shs - shs
—W0p1 o= 10.y

(~kip)e

X Z VbBSlJF EbB)]l/2 [A_l]u‘r [FTnAs’l’ JF(EnA)]1/2 Ol’(knAu RnA) /drpF X(:E{)pF(rpF) / dQl‘nA l’ml/(rnA)

v,T=1
9 @a(tpn) Xic ) (Taa)
(+) _ _ p kaa
X [wd(rpn)xde(rdA) (Bna—1) = Rpa D LM:RM. (114)

Taking into account Eq. (AZd]) and Eq. (I04) we arrive

at the final form for MZW (k,r, kga):

2Rpa ;
MEY (kyr, kaa) = —MEY (P, kga) = 74 ————— > i <lmy smelJp Mp >
nA HoB Pk
bB UnA MbB Jp Mpll s"mymy mg My,

x < U'mp 8 my|Jp Mp > < Jo My Ja Mals' mg > < Jo My Jp My|Ja Mg > Y7, (—kyp) e %

X Z voBs17p (Eo)]"? (A ur Yrnas s /drpFX(ji()pF

v,7=1

RnA

(rPF) / dQy,, Yo my (Frna)

% [altpm) it (raa) (Bua = 1) -

Now let us consider the diagonal transition csl — csl,
where c = ¢ =n+ A. To get MSDW once again we start

from Eq. ([III). Now in this equation Tffjt)(f) should

DW - T 1
MEY (I, Keaa) = i ——— S i
M’ILA nA JF MFlml Myrr Mgrr Mn

awd@pn)xﬁtixrm]
(9 T'nA

(115)

rTnA=Rna

be replaced by TcheleL)s(,Oc)s tm + Tchelwva)s(;i tm given by

Egs. (A30) and (A33). Then the equation for the surface
matrix element for the diagonal transition takes the form

<lmy SmS|JFMF > < Imyn Sms//|JFMF >

X < Jy My Ja Malsmgr > < Jo My, Jp My|Jg Mg > Y, (—kna)

N

X |:1 - e—i?éﬁi” (1 +1 Z []-—‘l/’n,ASlJF (EnA)]1/2 [A_l]u‘r I“rnAlep (EnA)]1/2>:| Ol(knAa RnA)

v,T=1

X /drpFX(_—L)pF(rpF)/ernA lmlu(rnA) [Sﬁd(rpn)xl((—:A

(raa) (Bna —1) —

awd@pn)xgi)(rm}

R,
A (97‘7,,4

TnA=Rna

(116)



Summing up all three amplitudes Ml-lzfv(po“) (P, kqa),
MEV®Ere (p .,y and  MPY(kyp, kaa) =
- gRV'l/A (kpr, kga) we get the total post DWBA

for the (d, p) stripping.

1
MPW@osh (P kyp) =27 [ ————
(P Keas) s ko Z
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(i) Resonant reaction n + A — b + B, that is
¢c = b+ B # ¢ = n+ A Then the total post
form of the DWBA deuteron stripping amplitude is

il < SMmg lml|JFMF ><s'm5/ l/m[/ |JFMF >

Jr Mp s' Ul mg mymy My

N

. chs ~
X < My Ja Mals'mg > < Jo My Jp Myl Ja My > e 2050 Yy, (<kop) Y [Tuessise (Eop)] /> [A7 .,

X { <X IE oy ran) AV pplpa xSy >

NG O (kna, Tna) Ry :
pE TnA Ol*/ (k’H,A7 RnA) v

RnA

+
2 HnA

+

TnASRna

(F0a)| AV ppl0a X5 >

v,7=1

2 HnA
RnA

YrnAs'l' Jp

+)

TnA>Rna

YrnAs'lJ /drpF X(:E()TIF(I‘;DF) / dQl‘nA le’ml/(f‘nA)

x [wd(rpn) ) (£44) (Bua — 1) — Ry

Assuming in this equation b = n and B = A, that is
¢c=c but I # 1’ and/or s # s’ we get the expression
for the DWBA deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A);s = F —
(TL + A)l/ sl

Equation (II7) is very instructive for understanding
the difference between the stripping to resonance states
and on-shell binary resonant reactions. As we can see, the
transfer reaction amplitude contains the resonance fac-
tors determining the resonant subprocess n+ A — b+ B,
the partial width amplitude [T 45477, (Epp)]'/? of the
level v for the decay to the exit channel b+ B, the matrix
elements of the inverse R-matrix level matrix [A~Y],,
and the reduced width amplitude 7, 4 s/ 17 7 of the level
7 for the entry channel n+ A rather than the correspond-
ing partial width amplitude which would present if we
consider the corresponding on-shell binary resonant re-
action n + A — b+ B. The difference is crucial because
the partial width amplitude [T', 45 51 7, (Epp)]/? contains
the penetrability factor, see Eq. ([A4dl), which doesn’t
present in the reduced width amplitude v, n4 s 12 g and,
hence, in Eq. (II7). The lower is the energy of the reso-
nance, the stronger is its suppression due to the barrier
penetrability in the entrance channel in the on-shell bi-

0 @a(rpn) i) ) (xan)
(9TnA

(117)

TnA=Rna }

nary resonant reaction n + A — b+ B. Besides, if a few
resonances do contribute with the different I’, then the
higher I/, the stronger its suppression. However, it is not
the case if one tries to populate low-energy resonances
with different !’ using transfer reaction. Missing pene-
trability factor in the entry channel of the subresonance
reaction n + A — b+ B in the transfer amplitude makes
it possible to populate low-lying resonances. Moreover
for the same reason, the resonances with higher I’ are
not suppressed in the stripping. Hence, when a few res-
onances are populated in the transfer reaction, the mea-
sured experimental spectrum of the fragments b and B
can be quite different from the one measured using the
on-shell binary resonant reaction. The missing penetra-
bility factor in the entry channel n + A of the resonant
subreaction n + A — b+ B in the transfer reaction ex-
plains the power of the Trojan Horse method as indirect
technique in nuclear astrophysics (see [33, 38] and refer-
ences therein).

(ii) Diagonal transition in the resonant subprocess (n+
A)ys = F = (n+ A)js, that is, c =, 1 =1, s = ¢
The total post form of the deuteron stripping DWBA
amplitude is



MPWwosH (P kgq) =2

Jr Mplmgn mymyn My,
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Z Z'l <sm5lml|JFMF><smsulml~|JFMF>

x < Jn M, JAMA|smSn > < Ty My Jp Myl Jy My > e 050y (—k,a)

{\/ Lina Fmn Z vnAsiJe( nA)]1/2 A7, < X;F) Iglep(TnA”AV;DFWdX,(;;) >

v, 7=1
N
+ 1

v,7=1

(=) Of (kna, rna)

- hs . _
1-— 671267”” (1 +1 Z [FunAleF (EnA)]1/2 [A 1]1/7' FTnAlep (EnA)]1/2)

TnA<RnaA

RnA * )

1
—— Oi(kna, Rn
X(knARnA t(kna, Rna) <Xpr

Yo, Fad)| AV prloa x5 >

nA Ozk (knA, R'n,A) o> B a
1 A
+ m /dI‘pF X(:Ec)pF(rpF) / dQy, . Ylmw (rnA)
9 pa(Tpn) Xiep) (¥aa)
(+) T » Kya
X [Sﬁd(rpn) Xkya (rga) (Bna—1) — Rua T } o . 1)

B. Stripping to resonance states. Prior form of
DWBA.

Here we show that starting from the prior form we are
able to obtain the generalized DWBA R-matrix ampli-
tude for the deuteron stripping to resonance states, Eq.
@6), much easier than from the post form. The prior
of the DWBA amplitude for deuteron stripping to reso-
nance states is

MDW(prior)(P de)
AV aalpapaxsy) >, (119)

where AV 44 is defined by Eq. (@5) and Tf;‘) =<

cpA|\Ifl()§) > . As usually, we split the amplitude into
internal and external parts

—< G

MDW(prior) (P, de) — MDW(PMOT) (P, de)

int
+M£¥V(prior) (P, kqa)  (120)
with
Mzgl/v(prior)(lp de)
=< P AV aalea xS > raa<han 2V
and
MEL;ZV(WW)(ka, de)
—< x( ) ATV galpa x> 122)
Fna>Rna

The splitting of the amplitude into the internal and ex-
ternal parts in the subspace over the coordinate r, 4 is
necessary to rewrite the prior DWBA amplitude in the

generalized R-matrix approach for stripping to resonance
states. As we have discussed in subsections [TAl and
[TAl the external matrix element Mem‘t/v(p ") in the
prior form is small and in some cases, with reasonable
choice of the channel radius R, 4, even can be neglected.
It is important for analysis of the stripping to resonance
states because the external part in the post form doesn’t
converge. In this sense the usage of the prior form in
the external part has clear benefit. The main contribu-
tion to the prior form amplitude M PW (#rior) comes from

the internal part MZDW(p ") Since the internal part

is given by the volume integral, its calculation requires

the knowledge of Tgfzt)(f) in the internal region. The
model dependence of this function in the nuclear interior
(rna < Rpa), where different coupled channels do con-
tribute, brings one of the main problems and main uncer-
tainty in the calculation of the internal matrix element.
Using the surface integral we can rewrite the volume inte-
gral of the internal matrix element in terms of the volume
integral in the post form and dominant surface integral
taken over the sphere at r,4 = R,a. With reasonable
choice of the channel radius R, 4 the contribution from
the internal volume integral in the post form can be min-
imized to make it significantly smaller than the surface
matrix element. The latter can be expressed in terms of
the R-matrix parameters - the observable reduced width
amplitude (ANC), boundary condition and channel ra-
dius. Repeating the steps outlined in subsection [IB] we
get

MDW(prior) (P de)

nt

= MV PP kga) + MEV (P kaa).  (123)



DW (post . . .
Here, M, , ®ost) as been previously considered and is

given by Eqs. (I00) and (I0I) while MP"W takes the form
MEY (P, kqa)
= — <x\F T T - T pax() >

)
TnASRna

(124)

where YT(m)(-) =< \I/l%lt)(i)W’A >. The fact that the
volume integral in this equation is the internal one makes
transformation of this volume matrix element to the sur-
face one much easier than for the post form. The tran-
sition operator T = Tpp + T,a. Since rpa < Rpa at
rpp — oo the integrand in Eq. (@9) vanishes exponen-
tially due to the presence of 4. Hence, the operator T,
is Hermitian, that is, applying the integration by parts
over r,r twice we get

<xSF T Tor — Toprl0ax$y) >

TnA<Rna

= <X TR Tor — Tor lpax$y >

TnA<Rna
=0. (125)
Thus MEPW (P, kg4) reduces to
MZ™ (P, kqa)
=< XI(;’) ngt)(_” ?nA - ?nA |g0d X((;l) > .
rnAS<Rna
(126)

Using the Green’s theorem we can transform this vol-
ume integral into the surface one. Note that the volume
integral over r,4 is constrained by the sphere with the
radius r,4 = R,a. Hence, only one surface integral ap-
pears with r,4 = R,a. Here we see an important ad-
vantage of using the prior form versus the post one. In
the post form transformation of the external volume in-
tegral to the surface one led to two surface integrals at
Tna = Rpa and 74 = R;A — 00. It required an elabo-
rate proof, which included regularization, to demonstrate
that the surface integral at rp,4 = R;1 4 — oo vanishes.
After transformation to the surface integral we get

MSI')W(Pa de) == *‘?RI‘/ZA (Pv de)a
(127)

Eqs (1), (IT2) and (II3) determine this surface inte-
gral.

C. Stripping to resonance states. Post CDCC
formalism.

The CDCC approach for stripping to resonance states,
which takes into account the deuteron breakup in the
initial channel, definitely has advantage compared to a
standard DWBA. The application of the surface formu-
lation of the reaction theory for the DWBA has been
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done mainly for demonstration, but our main goal is the
CDCC.

Here we present the derivation of the post form CDCC
amplitude using the surface integral formulation. This
amplitude is

MCDCC(post) (ka , de)

—< P AT e (128)

This equation is an extension of the post CDCC ampli-
tude for stripping to bound states, see Eq. (54]), obtained

— P .
using replacement I — TflA). A fo; is defined by Eq.
[@0). Now, as usually, we split MEPCCPost) into the
internal and external parts in the subspace r, :

MCDCC(post)(P, kaa) = Mglfcc(pmt)(R 97
+ MEPCCwes (p ). (129)

CDCC (post)

The internal amplitude M, , is given by

MgltDCC(post) (P, de)
=< X TN AT w00 .
TnA<Rna

(130)
Correspondingly, the external amplitude is
MitDCC(post) (P, de)
=< X T ATV e > .
TnA>Rnpa
(131)

Now we repeat the steps outlined in subsection[[LTCl Tak-
ing into account Eqs (B8), (59) and (@) we arrive at
MCDCC(post) (1:,7 de) = MgDCC(post) (P, de)

ext

—< X;}) Tflejt)(f)|$ _ ?l \I]fDCC(+) S

b
TnA>Rna

(132)

where T' = Tp,p + Ty 4. It is shown in Appendix [C] that

MgDCC(pOSt) can be reduced to

MSC"DCC(post) (P, de) _ _]\4ASC"DC’C’(1)051€)(1:,7 de)

Rpa

—< X;(o;) Tglezt)(f”?nA _ ?nA| \IjiCDCC(Jr) S

TnA>Rna

(133)

This integral can be directly transformed into the surface
integral with r,4 = R, 4 encircling the internal volume,
while the integral over r,r is taken over all the coordi-
nate space. Thus we have shown that the post CDCC
amplitude for stripping to resonance states is given by
the difference of two terms, internal post CDCC ampli-
tude and the surface integral:
N CDCC (post) (P, kqa) = Mi(:ztDCC(pOSt)(P7 Kaa)

—MgRifC(pOSt) (kpr, kaa).

(134)



The internal amplitude Mgfcc(p °st) can be minimized

by a proper choice of U,r and the channel radius R, 4,
while the surface integral is dominant. If the channel
radius is larger than the n — A nuclear interaction ra-
dius the second term is parametrized in terms of the re-
duced width amplitude and the boundary condition at
na = Rna. Thus we succeeded to parametrize the post
form of the CDCC amplitude in terms of the R-matrix
parameters. It is one of the main results of this paper.
Eq. ([@34) is the most important result of this paper.
Due to the absence of the external term, which is present

27 ka
M_CDCC(post) P7 k _cn B
mt (P kaa) ko \| top Z
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in the DWBA and which causes the convergence issue,
the convergence problem in the post CDCC approach is
resolved: the integration in the surface matrix element
is performed over the full coordinate space only over one
coordinate rpr rather than over two coordinates, r, and
rnAa.

. cDec(
Expression for M, ,

be obtained from Eq.

Post) for different cases can
({0I) by replacing the
initial channel wave function ¢q(rp,) Xgi)(rdA) by

\I!iCDCC(Jr)(rpF, roa):

it < smyg Imy|Jp Mp >

Jrp Mp s’ Ul mg my my M,

N

x < 8'my U'my |Jp Mp > < Jo My Ja Mals'my > e 50 Y (<kop) Y Duonste (Bon)] 2 [A7,r

x < X;();') l/ljﬁrnl/ (f"ﬂA) Ig s’ Jp (TnA) |AVpF|\I],L

Note that the CDCC wave function itself also depends on
quantum numbers of p —n and d — A subsystems, which
we don’t specify here. It will be done in the following
up paper where concrete calculations will be presented.
Natural Jacobian variables for \IJ?DCC(JF) are rga and

I'pn, but we use here another set of Jacobian variables,

CDCC(+)

v,t=1

(tpr, Tna) > (135)

TnA<Rna

rpr and rp4.

To write down explicitly Mgffc(posw(kpp, kia) in
terms of the surface integral we can use Eq. ([III) re-

placing the initial channel wave function by the CDCC
one:

MgDCC(post) (ka, de) _ _MgRifC(pOSt) (ka, de)
R?, +) cpoc(+) O " e 09T e, Ta)
= Zma [ g A0, , [T na) —2A—— — Y —
2 i A / 'pF X k,p (rpr) / rna i (rpr, Tna) Orna nA orpa
(136)

We can extend corresponding equations from subsection
[T Alby replacing the initial channel wave function by the
CDCC one. In particular, for the nodiagonal transition

in the resonant subreaction ¢’ s’ I’ — ¢ s, where ¢ = b-+B
and ¢/ =n+ A, we get from Eq (ITH)

TnA=RnaA
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0S8 o8 2 Rn .
Mg’DCC(p t)(ka, Kaa) = _MgRLifC(p t)(P, kga) = \/% Z it

JFMFll,S/ml myr Mgs Mn
x <Ilmy smg|Jp Mp ><1'my 8 mg|Jp Mp > < J, My, Ja Mals'mg >
N

X letm (_RbB) e_iél}’zgl Z [Fu bBslJr (EbB)]l/2 [A_I]V‘r YrnAs'l Jp /drpF X(:E();.F (rpF) / ernA le’ myr (f'nA)
v,T=1
8\IJCDCC(+) "
v \I/Z-CDCC(—H(I'pFa rnA) (BnA _ 1) _ RnA i 5 (r;DF; r A) . (137)
TnA rmA=Rna

Correspondingly, the surface integral for the diagonal  transition ¢sl — c¢sl can be obtained from Eq. (II6):

MgDCC(post) (k

. m .
pF,de):Zi E it <lmlsms|JFMF><lml~ Sms//|JFMF>
/J'nAk:nA
JFMFlmlmlumSu Mn

~

X < Jp My Ja MA|smS~ > Yl*ml(—knA)
N

7 hs . —
X |:1 o 6_1257““ (1 +1 Z [FunAleF (EnA)]1/2 [A l]IJT FTnAleF (EnA)]l/2)} Ol(knAa RnA)
v,T=1
. owePeCH) , Ty
X /drpF X5, (o) / A, s Yim,, (Fna) [‘I’iCDCC(”(I‘pF, rna) (Bua = 1) = Bpa ——— (xpr A)} -
TnA TnA=Rna
(138)
[

Summing up two amplitudes Mgfcc(pOSt)(P, kga) (i) Resonant reaction n+ A — b+ B, that is ¢ = b+ B #
and Mgw(kpp, kia) = —M?RWA (kpr, kaa) we get the ¢ =n+ A. The total post form of the CDCC deuteron
total post CDCC amplitude for the (d, p) stripping. stripping amplitude can be obtained from Eq. (II7):

1
]\/[CDCC(;DOSt)(P7 de)(P, de):Qﬂ' Z il < SMg lml|JFMF><S/ms/l/ml/|JFMF>
V tos kvp
JF MF s’ll’ms/ mymys Mn
. hs N
X < Jy My Ja Mals'mg > e OB Y/, (—koB) Z Cuvmsiae(Epp)]? [A7,,
v,7=1

x { <X I g rad) [AV e[ PO (e 1 0) >

TnA<Rna

Rpa + T
2 tina YrnAs'l' Jp /drpF X(—k)pF (rPF) / er"A Yu my (r"A)

P \IJ_CDCC(Jr)(

X |:\I]1'CDCC(+)(I‘;)F7 rnA) (BnA - 1) - RnA

ryr, rnA)
OTna

. 139
TnA=Rna } ( )

Assuming in this equation b = n and B = A, that is c=c butl #1" and/or s # s’ we get the expression for



the post CDCC deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A);s - F —
(TL + A)l/ sl

MCDCC(pOSt) (P, de) — 97 Z il

JF MF lmsu my ml// Mn

- chs A
X < Jp M, Ja MA|S Mg > e Ona Yl*ml(_knA)

q

N
1 _ - S va (efslele]
Vi 2 onastse (B2 IA e <X 18 005 (rna) A Vi 077w, ) >
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(ii) Diagonal transition, ¢ = ¢/, 1 = I, s = s’. The
total post form of the CDCC amplitude is

< SMmg lml|JFMF > < smgr L myr |JFMF >

vr=t TnASRna
L 6712655‘” (1 +e Z [FV"ASIJF (EnA)]l/2 [Ail]UT FTTLASZJF (EHA)]I/Q)
v,7=1
1 i X
X m /drpFX(*k)pF(rPF) / ernA}/lmlu(rnA)
a\I/-CDCC(Jr) .
x [‘I’ic PO e, 10a) (Bua = 1) = Rpa — o, T A)} : (140)
8TnA rnA=Rna

Egs (I39) and ([I40) are the final main results of this
paper. Both matrix elements consist of only two terms,
the internal post CDCC and the surface term. The in-
ternal term contains the integration over r, 4 in the in-
ternal volume r,4 < R,a. Hence, at rp,p — oo vari-
ables rqqa ~ mpp — o0 and 7y, ~ rpr — o0o0. But
then \IJ?DCC(JF)(rpF, TnaA) ~ rglji’ [36] and the integral
over rpr does converge. The same conclusion is true
for the surface integral in which r,4 = R,a. Hence,
in this matrix element also \IJZ-CDCC(JF)(rpF, Tpa) ~ rglji’
and integral over r,r converges. Both amplitudes are
parametrized in terms of the parameters used in the con-
ventional R-matrix approach and allows us to analyze
the stripping into resonance states using generalized R-
matrix approach. Finally, both amplitudes, ([I39]) and
(I40), don’t have penetration factor in the entry channel
n 4+ A of the resonance formation in the resonant subre-
actions n+ A - b+ Band n+ A — n+ A. That is
why stripping to resonant states provides a powerful tool
to measure resonances in the subsystem n + A very close
to the threshold, which can be suppressed in the on-shell
binary resonance reactions but not in the stripping to
resonance states.

IV. SUMMARY

The theory of the deuteron stripping populating bound
and resonance states based on the surface integral for-
malism is presented. To demonstrate the theory I first
develop it for the DWBA. Since the DWBA is outdated
and, definitely, deficient compared to the CDCC, the the-
ory is extended to the CDCC formalism. The theory is

applied for stripping to bound and resonance states. The
eventual goal of this paper is to deliver the theory of the
deuteron stripping to resonance states within the CDCC
formalism using the surface integral formulation of the
reaction theory [32]. Transformation of the volume ma-
trix element to the surface one (in the subspace over r,, 4)
and R-matrix representation of the scattering wave func-
tion of the fragments formed by the resonance decay al-
lows one to parametrize the reaction amplitude in terms
of the R-matrix parameters used in the analysis of the
binary resonant reactions. Since the reaction under con-
sideration is the deuteron stripping, the presence of the
deuteron in the initial state and exiting proton causes
the distortions. That is why the reaction amplitude,
in addition to the R-matrix parameters describing the
binary subprocess, contains additional factors - CDCC
wave function describing the d — A scattering in the ini-
tial channel (coupled to the deuteron breakup channel)
and the proton distorted wave in the final state. Hence,
the approach can be called a generalized R matrix for the
stripping to resonance states. The advantage of the ap-
proach is that the reaction amplitude for stripping to res-
onance states in the post CDCC formalism doesn’t have
convergence problem and is parametrized in terms of the
same observables as binary resonant reactions. Hence,
the formalism provides experimentalists a consistent tool
to analyze binary resonant reactions and stripping re-
actions populating resonant states extracting the same
observable parameters, namely, reduced widths (ANCs).
The power of the method has been demonstrated in the
analysis of the Trojan Horse reaction *F(d, n «)10 [33].
The numerical application of the method will be demon-
strated in the following up papers.
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Appendix A: b + B scattering wave function \IISB)

In this Appendix we consider the representation of the
scattering \Ifl(;g,) wave function used in the R-matrix ap-

proach for binary resonance processes [39, 40]

1. Internal scattering wave function ‘1’1(53)

A general equation for the internal wave function con-
tains the sum over total angular momentum Jr and its
projection Mp. Since we are interested in a wave func-

tion \Ifl();) describing a resonance in the system F' = b+ B,
we consider only the internal wave function at given Jp,
at which resonance occurs. In the internal region in the
state with the total momentum Jg, channel spin s (its

projection myg) in the initial channel ¢ = b+ B the wave

function \Ifl(f];) can be written as [39]
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We consider only two coupled channels: ¢ = b+ B
and ¢ = n+ A. Also X/7Mr is an eigenfunction of
the Hamiltonian describing the compound system F' =
n+ A = b+ B in the internal region excited to the dis-
crete level 7 with the total angular momentum Jr and
its projection Mg |42]. A separable form for \I/C‘Jigfﬁt)(ﬂ
reflects the fact that we consider the b + B interaction
proceeding through resonance states. The entry channel
of this scattering is the channel ¢ = b + B. The inverse
level matrix contains contribution from all N resonance
levels. In a simple one level case it reduces to the well-
known Breit-Wigner resonance propagator. All the open
channels coupled to ¢ contribute to X /77 and deter-
mine possible exit channel contributions into resonance
scattering. Hence, in the internal region, where different
open channels are coupled, X/¥ Mr can be written as a
nonorthogonal sum of these channels [39]:

Jr Mp __
XJeMe =\

1 7\ Jr M
;wréjA{gé(b p Fu(;g[JFj}a
csimsj ¢

¢5lms
(Ad)

where &; is the product of the internal bound state wave
functions of the fragments in the channel ¢, ¢ = ¢, ¢/,
Ussj g, ;(re) is a set of the radial wave functions of the
relative motion of the fragments in the channel ¢ with
the channel spin s, orbital angular momentum [ and to-
tal angular momentum Jr in some adopted potential,
qﬁéjg ;‘Zf is the channel spin-angular wave function (in LS-
coupling) and mg; is the projection of 5. Also A is the
antisymmetrization operator between the nucleons of the

P r(int)(+) — 27 ke Z el il < smgs lmy|Jp Mp >fragments in the channel ¢. We consider only two cou-
\ e
Mlml

cSmg kc
N
X Vi (ke) 3 [Cocatay (B2 A, X7,
v,T=1

(A1)

Here, E. = Eyp and k. = k;p are the relative energy and
momentum of particles b and B, p. = tpp, Tvesi gy (Ee)
is the formal (R-matrix) partial resonance width of the
level v in the channel ¢slJp, ¢ = b+ B, A is the R-
matrix level matrix, N is the number of the levels in-
cluded, 6"% is the hard-sphere scattering phase shift in
the channel ¢ given by

Fi(ke, Re)

6?'; = —We; + arctan m,

(A2)

where Fj(k., r.) and Gi(k., r.) are regular and singular
Coulomb solutions of the radial Schrodinger equation,

l
Tle
W] =0¢] — Oco = E arctan —,
n

n=1

(A3)

0¢; is the Coulomb scattering phase shift in the channel
c and in the partial wave [, 7. is the Coulomb parameter
for the scattering of the fragments in the channel c.

pled channels, ¢ = b+ B and ¢/ = n+ A. Thus the initial
channel ¢ can propagate into two final channels ¢ and
¢’ via the intermediate resonances. Although Eq. (A4)
contains the sum over all channel spins § and its projec-
tions in each open channel, in what follows consider the
contribution to X/ Mr only from the channel with fixed
channel spin and its projection.

First, let us consider the contribution of the channel
cs" mgn into XJF Mr_ In this channel ¢, = ¢}, pp and

0L, = D < 8" e V| Jp Mp >
ml//
X Y” myr (i‘\C) ¢c s’ Mgrr (A5)
Ges my = Z < Jy My Jp Mp|s" mer >
M, Mz
X WYy, My, Vg Mp- (A6)

Here, ¢¢sm,, is the channel spin wave function in the
channel c¢s” mgr, j, a, is the spin wave function of
particle i, I"” (my) is the relative orbital angular mo-
mentum (its projection) of the fragments in the channel
¢, r. = rpp is the radius-vector connecting b and the
center-of-mass of B. We adopt the channel radius R,
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large enough to neglect antisymmetrization between nu-
cleons of b and B at r. = R, that is

7\ Jr M
A{§C¢C§// l'fvms// Ue s 1 Jr J}

re=Re
~ N, é.c ¢CSNZN Ues" " Jp j ) (A7)
re=Rc
~1/2
!
where N, = (bng,)' .

Assuming that the overlap of the channel ¢ at the chan-
nel radius R, with the channel ¢’ is negligible we get for

the component of X;Iiyfn ., projected on & = ¢y ¢p at
e = R [39]
57{12 5{\’/{1:71 " (Refe) =< §C|X7-]§”A§f " ro=R.
=5 Z ¢CJ§//]\5Fm ’ Urcs!, 1 JF(R )7
1z
(A8)

where

) = NC Z WrcjUcs 1" JFj(TC)'
J

(A9)

uTcs“,l” Jr (Tc
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At r. = R, by definition [39]

\/2Mc cVres” " Jpy

(A10)

Ur s Jp

where ;5717 g, is the reduced width amplitude of the
level 7 in the channel ¢ s” I” Jr. I remind that the system
of units & = ¢ = 1 is being used throughout the paper if
not specified otherwise. Then

=Jr M
‘:TI:: s“I:ns// ( Z 2 ,Uc cVres"l Jp
l//
JF MF
(bc s U mogn (All)
':‘JF MF

Thus we can express the component =27 5%  (r.)
taken at the channel radius r. = R¢ in terms of the
sum of the reduced width amplitudes, where the sum is
taken over all allowed in the channel ¢ partial waves [”
at given Jr and s”. Then the component of \I/C‘Jig,ift)(ﬂ
in the exit channel ¢s” my projected onto & = @y, ¢ at
r. = R, takes the form

N

. chs ~
= N_ Z e il < SMg lml|JF Mp > lml (k ) Z [FucleF(EC)]l/Q [A_l]w :iii\’{in ’ (RC f'c)

Jr(int)(+) -~ Jr( znt)(Jr)
Tcsms;cs”ms//(RCrC) <§C|\chsms cs' myn >
2 ke
ke R,
c Llc ¢ Mp lm
=27
ke R
¢ Mp, LU mymgn
N

x Z [FVCSI Jr (Ec)]1/2 [A_l]m- Yres" U Jp Yy myrn (/r\c) d)c s m -

v,T=1

Here, s” is any channel spin value in the channel ¢ = b+B
allowed by the spin and angular momentum conservation
law. In particular, s” may coincide with s, that is s” = s.

in R 2 _ i shs
et () (R.t.) =27 e=i0e1 gl Z

cslmgsieslm k R
c ¢

MF my myr

N

X Z [Fuclep (Ec)]l/2 [A_l]ur YreslJp lemlu (i‘\c) ¢csmsu'

v,T=1

A similar consideration can be applied when we con-

v,7=1

2 shs N
Z 6_1521 il < SMmg lml|JFMF > < S”ms// l”m[//|JFMF > letnl(kc)

(A12)

The diagonal component, I = [ and s” = s, which is
needed to determine the elastic scattering amplitude (see
below) is

< SMmg lm[|JFMF > Smgr lml//|JFMF > Yl’;m(f{c)

(A13)

sider the contribution of the channel ¢’ s’ mg, where



d = mn+ A, into XJrMr,
and

In this channel £ = ¢qa

(ZSJF Mg

cs'l'm

, = Z <s'ms/ l'ml/|JFMF >

mys

X Y’ mys (/r\c/) ¢c/ s’/ mgr (A]‘4)

¢c/s/ms/: Z <JnMn JAMA|S/’ITLS/>
A4n MA

Xy, M, VaaMy- (A15)
Here, ¢/ s'm_, is the channel spin wave function in the
channel ¢/ with the channel spin s’ and its projection m,
I (my) is the relative orbital angular momentum (its
projection) of the fragments in the channel ¢/, ros = 1,4
is the radius-vector connecting n and the center-of-mass
of A. We adopt the channel radius R, large enough to
neglect antisymmetrization between n and nucleons of A
at ro = Re, that is

J M
A{gc F s’ l/F " Uet g7 1! Jr J}
ro=R_.
Jr M
~ No € d)c/Fs/ l/F Ue' s Jp j ) (A16>
ro=R_.
~1/2
1
where N = % =(A+1)"Y2

Assuming that the overlap of the channel ¢’ at the
channel radius R. with the channel c is negligible we get
for the component of X7%7Mr  hrojected onto & = ¢4

‘rcsm/

TJF (Z’ﬂt) +) ( )

csmg;c’ s’ my
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2 4 _ ;i shs |
= 27T L Z e Z(scll

k. R
Fe Fe Lty i m,,

l

N

X leml (1; ) Z [Fuclep (Ec)]l/2 [A_l]u‘r Yre' sl Jp le’ myr (i‘\c’) (bc’ s’ mg -

v,T=1

T (int)(+)
cslmg;c’ sl my

The component T (Re Ter) is given by

TJF(int)(Jr)

cslmg;c’ s"l!'m

N

X }/ltnl (Rc) Z [Fvcsl Jr (Ec)]1/2 [Ail]m' Yre sl Jp }/l’ my, (/r\c/) ch/ s'm s+

v,7=1
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at Ter = Rc/
=Jr MF PN _ Jr MFp
=T s’mS/(RC’ I‘c/) =< A |XTC s’ m s >
ro=R.

_ 1 Jr MFp R

= — ¢C/S/l/m/urc’s’l’JF( c’)7

R Zl, :
(A17)

where

= Nc’ Z Wr e § Uc! s 1 JFj(TC')' (A18)
J

Ure sl Tp (Tc/)

At Ter = Rc/
Ure sl Jp (Rc’) - 2 He! Rc/ Yre sl Jps (Alg)

where o0 = pina, Vre s'tv g is the reduced width am-
plitude of the level 7 in the channel ¢’ s'I’ Jp. Then

—=Jr M
‘:‘TIZ’ s’I;nS/ (RC’ rC - 2 Nc’ ' Yre's'l Jp
Jr M.
X O, (A20)

that is it can be expressed in terms of the sum of the
reduced widths amplitudes in all allowed partial waves [’

in the channel ¢’ at given Jp and s’. Then the component
pr () (+)

csmg;c’ s' my

the form

projected on &, = w4 at ro = R takes

N

kc i onE . o — ~
=5 1/M— > e i < smy Ly|Jp Mp > Y, (k) > Moestae (B2 [A BN (Rebe)
e te! ¢ My, lmy

v,t=1

< SMg lml|JFMF > < S/msl l/ml/|JFMF >

(A21)

Z <smslml|JFMF><s/m5/ l/my|JFMF>

MF mymys

(A22)



2. External scattering wave function \IJ.E;];)

Now we proceed to the expression for the \IJ,(3+)

in the
external region, where r. > R, or ro» > Ry. In the
(ext)(

external region the wave function \I!csmf) with fixed
channel spin and its projection in the incident channel ¢
can be written as

Pt (+) —

csmsg

PerO) | glent)(+)

csmg;r? (A23)
where the first term is the incident wave and the second
term is the sum of the outgoing waves in all the open
channels. The incident term is

\chesmfrz 0 = 477—5 Z Z il <smslml|JFMF>
JFMF lmlm "

S Fi(ke, re

x < smgr Lmy|lJp Mp > Y5, (ke) e W”%

X }/lml (f‘c) ¢csmsu b (A24‘)

where the subscript ¢ means that the incident wave is in
the channel ¢. The sum over my~ is a formal because

Z < SMg lml|JFMF > Smgr lml|JFMF >
Jr MFp
(A25)

Note that here we use the incident wave with the unit
amplitude rather than with the unit flux density. The
component \IJ;I;D l(fit)((:?l m_,,» which corresponds to the exit

channel ¢ slmgy» and fixed Jp, projected on &, reduces to
TJF(GLEt)(O)

_ E l
cslms;cslms//(rc)_ i 7
M my

- 5m5 mogr -

X < smg lmy |JFMF > < Smgr lml|JFMF > Yl*ml(f(c)

3 E(kcu 'f'c)
tel —— % m csSMmgrr A26
e e LT (A26)
Now we take into account that
iwClO kcu c) _iwCZI kca c
_F‘l(kc, 'f'c): € l( T ) € l( T )' (A27)
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Here, O;(ke,r.) and I;(kc,r.) are the Coulomb Jost sin-
gular solution of the Schrodinger equation with outgoing

and ingoing asymptotic behavior (we follow the defini-
tions used in [39]):

Ol(kc, 'f‘c) rcgoo ei [kere—ne In(2kere)—lm/240, 0]7 (A28)
and
Il(km Tc) rczoo el [kere—me In(2kere),—l7/240, 0]' (A29)

Jr (ext)(0)

cslmaicslm., in the form

Then we can rewrite T

T (et) (0) (re) = i 2T

. 2 7
cslms;cslmn ke re

X Z < SMmg lm[|JFMF > Smgr lml|JFMF >

M’ITLL
X Vi (ko) [Tilhe, ) -
(A30)
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Thus the incident wave is the pure Coulomb scattering
wave function in the incident channel ¢. The second term
in Eq. ([(A23) is given by the sum of the outgoing waves
in the open channels [40]:

27 Ve 1
pleat)(+) — ;20 < ¢ il
2ry Loy

csms;T k
c ~
Jr Mp llm;mg

X < $Mg lml|JFMF > Yltnl(f{C) {eiQw” 5505555“
— S:]Ij~ } Ol*(kg, Tg) < §m§ ZmﬂJF MF > Y[ml_(f‘g)

¢slyesl
X gf)g Sms- (A31)
Here, & is the product of the bound state wave func-

tions in the channel ¢ = ¢, ¢/, S7 fl N is the S-matrix

element for transition ¢sl — ¢51. Note that we consider
the outgoing waves in the channel with given total angu-
lar momentum Jp, initial channel spin s (its projection
ms) and final channel spin § (its projection mgz). Since
only two open channels, ¢ and ¢/, are taken into account
here, we will write explicitly the outgoing waves in both
channels. First consider the elastic scattering, that is
the outgoing channel ¢ = ¢ = b+ B and the channel spin
and orbital angular momentum coincide with the incident
channel values, that is § = s and [ = [. The component
of the outgoing elastic scattered wave (csl — c¢sl) is

(exty(+)  _ .27
\chslms;CSlm; o zkc’l”c §c Z

JF MF my myr

X <Smslml|JFMF><Sm;lmln|JFMF>
X ' Yy, (ko) [€2900 = 875, 1OWke, 7e) Yim,, (£e)
X (bcsm;' (A32)

(ext)(+)

Hence, the projection of \I!cslm Jesim?

on &, leads to

2
lext)(+) (re) = i m Z

cslmg;eslmy k Te o
F leml//

X <smslml|JFMF><sm;lmlu|JFMF>
X il l*mz (RC) [ei2WCl Sgsl csl] Ol(k07 TC)lemL” (f‘c)

Correspondingly, for the inelastic scattering, ¢ = ¢ but
either s # s or [ # [ or both differ from the entry values,
we get

(ext)(+) _ ;2T 3
\chslms;cs”l”msu =t k.r gc
cTe

JF MF my myr

X < Smyg lml|JFMF > < Sllms// l”ml//|JFMF >

ei2w0l0l(kc7 TC) }/lml (/I'\C) (bcsms// - X il }/l*ﬂlz( ) SJ mesl Ol” (km Tc) }/l” myn (f'c) (bc s m -

(A34)



pleat) ()

cslmgycs” U mn

Then the projection of on &, is

ext ) 27
TiSl’z"Sf:)CS” U mgn (rC) =—1 k.r Z

Jrp Mp mymyn
X < smg lml|JFMF > < S/Imsw l”ml//|JFMF >

X il letnl( ) S::]s” Ucsl Ol” (k07 TC) Yl” my (f‘c) ¢C s mgr -
(A35)

Finally, for the outgoing scattered wave in the reaction
channel ¢ = ¢/ = n + A we have

(ext)(+) o 2T Ve 3
\chslms;c/s/l’ms/__lk ro 56/2
cTe

Vet

Jr Mp mymy

X < sSmg lm[|JFMF > < s’ms/ l’ml/|JFMF >

X [*ml( )SJ s'l';csl Ol’(kc’u rc’) n’mlz(f‘c’)¢c’s’ms/-
(A36)

It leads to its projection on &.:

C

k Ter C/

(ext)(+)
Tcslms;c/s’l/m /(I‘C -
Jr MF mymy

X < 8SMmg lml|JFMF > < S/ms/ l/ml/|JFMF >

X l*vm( )SJ sl cslol’(kc’u rc/)n’ml/(fc/)¢c/s’ms/-
(A37)

Now we can derive the expression for the matrix ele-
ments of the S matrix. Since the wave function \I!(Jr)

continuous using Eqs. (A13), (A30) and (A33) we get

the equality

Tgls:l(izts); cslmgn (RC fc) = Tiiﬁz:?io.s)lms// (RC fc)
+ Tieswltzrgj;)c slmgn (RC fc)’ (A38)
which boils down to
. ch N
eilécyl Z [Fuclep(Ec 1/2 TV 2k R YreslJr
v,T=1
— i [li(ke, R) = 77,0 Onlhes R (A39)
Taking into account that [39]
Ii(ke, Re) _ Gilke, Re) — i Fi(ke, Re) pi2wel _ g-2i8%
Ol(kCa Rc) Gl(km Rc) +iﬂ(k67 Rc)
(A40)
and
FTcleF(Ec):zpcl(Em Rc)ﬂyf—csl‘]pv (A41)
where
k. R,
Pcl(ECa Rc) = (A42)

E2(kcu Rc) + Glz(k& RC)
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is the Coulomb-centrifugal barrier penetrability, we get
the elastic scattering S-matrix element:

N
Sggl csl 6_2i6?f (1 +1 Z [FucleF(Ec)]l/z [A_l]lf‘r

v,T=1

X []‘—‘TCSlJF (EC)]1/2)'

From equality of Egs. (A22) and (A37) at given Jp and
’rc/ = Rc’

(A43)

Jr(int Py Jr(ext)(+ a

TCE;S“):/ s mgs (Rer For) = Tcgl(ms);(c’ Z’ Umg (Re £er)

(A44)
we obtain the reaction matrix element:
. N
Sc]sl c' sl :7;6_“5(:1 Zéc,ll Z [FVCSlJF(EC)]1/2
v,T=1

X [A_I]UT [FT c sl Jp (Ec’)]1/2' (A45)

Both obtained matrix elements coincide with the corre-
sponding matrix elements from [40]. The only difference
is in the definition of the solid scattering phase shifts.
The obtained matrix elements of the S matrix confirm
that the relative normalization of the internal and exter-
nal wave parts of \Illg;) are correct and we can use them
to calculate the reaction amplitude of the deuteron strip-
ping proceeding through resonance states.

Appendix B: Matrix element MSPW

Let us consider the DWBA surface (in the subspace
over I, 4 ) matrix element, which appears in the post form

(see subsection [[ITA)):

MEW (P, kaa) =< x (i T30

T T

+
. wdxl(iA) TpnA>Rna
= M&e (P, kaa) + ME A (Kpr, Kaa), (B1)

where TG0 =< g, @) >

Mgy (P kaa) =
rnA>Rna

X [?pF - ?pF](pd(rpn) X&;) (rdA) > (B2)

and

ME ) (P, kaga) = /drpF / dr,, 4 X;})*(I‘pF) Tglejt)(—

TnA>Rna

) [T on = T nala(tpn) X5 (ran) > . (B3)

M é)(%) can be written as

/ drya /drpFX( * (r pF)szejt)(i)*(rnA)
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MES (P ko) = [ v [ e o) 03 ) Ty = T peloatrn) 55 ()

- / drpa / drprxE (0pr) TR (000) Ty — T prlpa(tpn) X5 (xaa) >

TnA<RnaA

= [dran [ anen i ) T ) T = T elialiyn) 5 (), (B

We took into account that for any finite volume 7,4 <

R, 4 the matrix element containing 1", — T',r vanishes
as it has been discussed in Section IT A for deuteron strip-
ping to bound states. To estimate M S’/D(?;,) we need equa-
tions connecting different variables:

I‘dA=1/2I‘pn+I‘nA, (B5)
rpp = A/(A+1)rp4 + Tpp. (B6)
|
A+1 1
DW _ 31 2
Mg pr) (P, kaa) = (T) RI}FIQOO Rop 2 r

8X(_)*(r F) (e A+1
X [/erpF e /drpn palrpn) Y13 (=

8rpp

e 0 ext)(—)*
_/erpF X;(DF) (rpr) Orop /drpn ®d(Tpn) ngAt)( ) (

Due to the presence of the deuteron bound state wave
function the integration over 7, is limited. At rpp —
oo and 7p, < 00 we can replace the distorted waves in
the initial and final channels by their leading asymptotic
terms:

[tpr — Tpnl) Xga

A+1 (+)A+1
A

XS;;X) (raa) raAro0 jikaaraatinga In(kaa raa—kaa-raa)

(B8)

|

O etkaaTtaatinia In(kaaraa—kaaraa)

0 TpF

TpF —»00 A+1 “ ik (A1

— ZdeA'rpFe dA(A

and

0 e*ika'rpFJri Npr n(kpr rpr+kpr rpr)

8TpF
TpF—>00

~

~  —ikyp - tpp e KprTortingr W(kpr Tpr+kpr-rpr)

(B11)

A+
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Replacing the variable r,, 4 by r;,, and transforming the
integral over r,r is transformed to the surface integral we
get for for the matrix element

A+2
[ror = o) X (= T = g Ton)]

rpr=Ry,p—r00

(B7)

and

(<)x Tor=o0

XpF e*ika'rpFJri’?pF In(kpr TpFJrka'rpF)' (Bg)

Here, n;; is the Coulomb parameter of particles ¢ and j
in the continuum. Note that rgsq = % rpFp — % Tpn,

and at r,r — 0o and 7y, < 0o 734 — oo. Then

2

rpn)+inga In(kga raa—kaa-raa)

(B10)

For Tgfjt)(*)* (4 [r,p—Tpy]) we can take only the exter-
nal part, which contains the resonant S matrix element,
see Eq. (A37). Neglecting all the spin-dependent and



angular parts and leaving only its radial part, which is
Ona(rna)/rna, we get for its leading asymptotic term:

OnA(knAa TnA) TpF—00 A 1
P — % _
TnA A+1 TpF

- A
el%(k

% e*i[nnA In(2kna rna)+lna ™/2—0na0] (B12)
The leading term of its derivative at r,p — 00 is
aO’H,A(k’H,A7 TnA)/TnA TpF—00 1
— 1 knA —
anF TpF
X ei AXI (knA TpF_knA f'pF'rpn)
. A+1
X e_l[nnA ln(QTknA rpr)tlna m/2— UnAO]' (B13)

We also need the asymptotic behavior of the plane wave
TpEF—>00 2 ™

- —

1q4TpF

_ e—iqrpF 6(q+ f'pF)]a

eiq.rpp [eiqrpp 6(61—pr)

(B14)

where q = % kga — kpr. Then the matrix element
reduces to

lim fi(Ryr)e i Rpr

pF—N)O

M) (P, kaa) ~
+ fa(Rpr

Thus MJ) ( ) has no limit at R,r — oo but regular-
ization of this matrix element by integrating the matrix

Ye tafter], (B15)

1

MEW (P, kaa) = — nA Sy

lim R,

R’ A 00

nA TpF_knA f'pF'rpn)
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element over an infinitesimal bin in the momentum plane
leads to disappearance of M2 (pF)'

q+e

RPF%OO

1
2¢

sin (€ Ryr)
ERpF
q—Ee€

[ ) — e fy(Rye)] =0, (B16)

where € << gq.

Similarly we can estimate M2 S(n ) given by Eq. (B3).
Since the integral over r,, 4 is taken over external volume
with r,4 > R, the transformation of the volume inte-
gral into the surface one leads to two surface integrals:

ME ) (P, Kaa) = — (P kaa) + MEW (P, kqa).

(B17)

The first term is the surface integral encircling the in-
ner surface of the external volume at r,4 = R, 4, while
the second term is the surface integral taken at rpa =
R, , — oo. A negative sign in front of the first term
appears because the normal to the surface is directed in-
ward to the center of the volume, that is opposite to the
normal to the external surface (at infinitely large radius).
The surface integral over the infinitely large sphere in the
subspace over r,, 4 is

Y (1) ., A 1
X [/ernA /drpn ®d(Tpn) X;F) (A——l—lrnA +Tpn) Xt(;x)(i Tpn +Tpa)

(97‘7,,4

/ernA T (ext)(

Here, the Jacobian variable r,r is replaced by r;,. Due
to the presence of the deuteron bound state wave func-
tion the integration over 7, is limited. Hence, r,r — 00
and rgq4 — 00 at rpa4 — 00. At rpa4 — 00 and 1y, < 00
we can replace the distorted waves in the initial and final
channels by their leading asymptotic terms. The dis-
appearance of the matrix element (BIR) can be proved
similarly to the proof of the disappearance of M S(?})
Replacing the distorted waves by their leading asymp-
totic terms (BY) and (BJ), singling out the plane wave
containing r, 4 and using the asymptotic representation
of this plane wave, see Eq. (BI4), integrating over Q. ,

0
o

n

Oy, A 1
/drpn (pd(rpn) X;F) (A——Fl na + rpn) XEIZ) (5 Tpn + rnA)}

B18
rnA:R;lAﬁoo ( )
[
we eventually arrive at
MEW(P, kqa) ~ lim [ Rua gy (R )
R;A%oo
4ot Ra gy (R )] (B19)

Regularization of this matrix element by integrating it
over an infinitesimal bin in the momentum plane ¢’ leads
to disappearance of M EOZV, that is

Mgiay (P kaa) = =M} (P, kaa). (B20)



Appendix C: Matrix element MCDCC(’"M)(P kaa)

gDCC(post) into the

CDCC(post)

Here we show how to transform Mg

surface integral over the coordinate r,4. Mg

MgDCC(P, de) _
TnA>Rna
St € (P, kaa) — M§EC (P, kaa),

where

MEPCC (P kga) = /drnA /drpr(_i)pF(rpF)

< T 0u )T = TP (1 v00)  (C2)

/ drnA /drpFX(ji()pF (rpF)

TnASRnaA

(00 [T = T) PO (1 x,0). (C3)

and

Mgy © (P, kaa) =

T

Note that in the matrix element MSPCC the integra-

tion is carried over r,r and r,4 in all the coordinate

gftCC(C) P de /drnA /drpFX kyr rZDF

I'nA ?nA — ?

+/drm4 /drpF X—kp (rpp) T
i dQ dr,
Rpr—o0 2 ,U;DF / e / tna

= lim
a\I]_CDCC(Jr)(

n

/ dr,a /drppx(j()ﬂ

rnA) \I]»L'CCDCC(+)(

r'yr, rnA)

(+) (=)=
- X—kpp(rPF) TnA (r’ﬂA) 8TpF

+ lim
RnA—N)O
CDCC(+)
W v rpF, TpA
X ) Y ) BELTLL
TnA

Let us, first, consider the first term, in which R,r — 0.
Let us divide the integration region over r,4 into the
region rpa/Rpr — 0 and the region where r,4 2 Rpr —
co. In the first region we get that rqa ~ R,r — 0o and
Tpn ~ Rpr — oo. Taking into account the asymptotic

34

can be written as

() YOO ()T = T1OOPEC (10 1)

(C1)

space while in MSPCC the external region in the sub-

space over r, 4 is excluded. Let us first consider M gs?tccl
The CDCC wave function is given by Eq. G2). If
we substitute the first term,n = 0, which contains the
deuteron bound state wave function, the transformation
leads to the surface integrals with r,r = R,r — 00 and
rmAa = Rpa — o0o0. Both surface integrals vanish and
the proof is similar to the one presented in the previ-
ous section. For the rest of the CDCC wave function

corresponding to the sum with n > 0, which we call
Natetel

ie +), transformation to the surface integrals gives

C co(
rnA ?pF - ?pF P +) (rpF; rnA)

CDCC(+) (rpF rnA)

pF Lil) 9
p}

(97‘7“4

oY (rn
M A /er A /drpF lX k p(rp )‘I/CDCCH)( IpF, Tna) M

(C4)

behavior of \I/CDCC(+)(rpF, Tpa) ~ r;ﬁ and Eq. (BI4)

we get that the first term goes to zero as R;I? — 0. In
the remained region 7,4 ~ Ryr — oo and we consider it
later. The second term of Eq. (C4)), in which R, 4 — oo,



we also separate into two regions: rp,p/Rpa — 0 and
rpr 2, Rpa — oo. In the first region ry, ~ R4 — 00

CDCC _
and rqq ~ Rpa — oo and U, (Jr)(rpp, Tna) ~ rnj.

Hence the matrix element goes to zero as R;z — 0. To
consider the behavior of the first and second terms of
Eq. (C4) in the second regions, where rpa, rpp — 00,
it is more convenient to introduce the hyper-spherical
coordinates in the six-dimensional hyper-space:

_ [HnA o HpF o
p= m Tha + m TpF’
m . m
ThA = P/ Sl q, TpF = P ] — COS @,
HnA HpF
0<a<m/2 (C5)

Mo (P, kaa) =

W 0
X;SJF) (rPF) T;A) (rna) 3_p\IjiCDCC(+)(rpF7 TnA) —

Here, hyper-radius p is the parameter going to infinity.
The integrand contains highly oscillating (actually in-
finitely oscillating) functions. The behavior of the inte-
gral at p — oo depends on the asymptotic behavior of the
integrand. The integration over df,r can be performed
directly using the asymptotic form of x;})*(rpp). It is
given by the Coulomb distorted plane wave, but for sim-
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Here, m is the scaling mass parameter, for example,
the nucleon mass. Then M§SPCC in the region, where
Tna, TpF — 00, can be written as the integral over the
hypersphere encircling the volume integral with the ra-
dius of the hyper-sphere p — oo |32]:

/2

! m’ li / df / df / d
— 1im T r, O[Sln (6] COS @)
2 (:uan MpF 3/2 pP—r0 P pE A

yOPOCH)( 9

o, Tna) 5o X () T (ena) |- (C6)

plicity, what does not affect the final result, we neglect,
as in the previous section, the Coulomb effects. Then
the asymptotic form of the plane wave is given by Eq.
(BI4) and, hence, integration over ¥, using d-functions
is trivial leading to fpr = iﬁpp. After performing the
integration over dff,r only two integrals are left. From

Egs (B3), (BA) and (Ch) we get for

A2

T = 7’2 —QLI‘ I +77’2
pn pF A+1 pF I'nA (A+1)2 nA

m A?
= — cos?aF —— —zsta—i— —sm o Cc7
p\/upF jFA+1 \/unA A+10? n (€7)
and
1, N A+2 n (A+2)2
PTG T T g A ) PP AT g )2 A
1 A+2 (A+2
=p LI + 1/—zsm2o<—i— (A+2P m sin? . (C8)
4,leF A"’l HnA A+1) HnA

Here, z = an-RpF. We recall also that in Eq. (B2) at n >
0 1/1,(,71) (rpn) at 7, — oo contains the asymptotic terms

+ik T ik T
e pn Tpn . (’n,)(Jr) e’ ®dA TdA
T while x; (rga) ~ &~ where we, for



simplicity, neglected the Coulomb distortion. Then after
integration over dit,r the leading asymptotic form of the
integrand with omitted Coulomb effects is a product of
highly oscillating at p — co exponents:

eiika TpF ei knarna eiikpn Tpn ei kaaTaa
TpF TnA T2, TdA
r2oo 1 ipga,z)
~ p: e . (C9)

Thus we need to estimate a highly oscillatory integral:

1 /2
Ji ~ lim dz/dasin2a cos?a P9 (C10)
pP—00
21 0

Evidently that this integral and, hence, M$PCC (P, kya)
vanishes at p — oo, whether a stationary phase point
does exist or not, because the integration brings p to the
denominator.

Now we proceed to MGEPEC (P, kga). We rewrite is as

/ drpa /drppx;})*(rpp)

TnASRnaA

X Tffzt)(_)*(rnA) [?pF - ?pF} U PO (1)

+ / dr,4 /drppx;})*(rpp)

MSC';StCC(Pv de) =

TnA<RnaA
X Tszt)(_)*(rnA) [?nA - ?nA:I \I/iCDCC(-’_)(rZDF’ rnA)'
(C11)
|
MEPCE (P, keya) = —MEDCC (P, Kepn) — —
rnA<Rnpa
1

= 2 jima R2 4 / dryp Xj(o;’)*(rpF) {‘IJ?DCCH)(rpFa rna)

/ dr, 4 /drpp X;F) (rpr) T(mt

(97“” A
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Let us first consider the first matrix element containing
Tpr. It is easy to show that this matrix element vanishes.
After transforming it into the surface integral over rpp
we get

/ drya /drPFX;F) (pr) T3 (200)

TnA<Rna

{(TPF 71)4 P (e, 1)

_ (=)=
= _2p,pF Rplligoo RpF / erpF / dI‘nAT (I'nA)
TnA<Rna
o' (r
U, ) 250 )
TpF
CDCC(+)
()= oY, (rpr, Tna) } a
— 12
Xpr (Tpr) o S (C12)

The matrix element containing n = 0 term of the CDCC
wave function vanishes because in the subspace r,4 <
Rna at rp,p — oo the deuteron bound state wave func-
tion exponentially fades away. The terms of the CDCC
wave function with n > 1 also produce vanishing matrix
element because the CDCC wave function corresponding
to these terms in the subspace r,4 < Rpa at rpp — 00
decays as 1/r3p, that is the matrix element (CI2) van-

lim R2./R>. — 0. Thus we arrive at
pF —>00

ishes as

I‘nA ?nA - ?

CDCC (+) (

% 0
T( ) (rnA) m \I/iCDCC(Jr)(I'pF, rnA):|

(C13)
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