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There are two main reasons for absence of the practical theory of stripping to resonance states
which could be used by experimental groups: numerical problem of the convergence of the DWBA
matrix element when the full transition operator is included and it is unclear what spectroscopic
information can be extracted from the analysis of transfer reactions populating the resonance states.
The purpose of this paper is to address both questions. The theory of the deuteron stripping is
developed, which is based on the post continuum discretized coupled channels (CDCC) formalism
going beyond of the DWBA and surface integral formulation of the reaction theory [A. S. Kadyrov
et al., Ann. Phys. 324, 1516 (2009)]. First, the formalism is developed for the DWBA and
then extended to the CDCC formalism, which is ultimate goal of this work. The CDCC wave
function takes into account not only the initial elastic d + A channel but also its coupling to the
deuteron breakup channel p + n + A missing in the DWBA. Stripping to both bound states and
resonances are included. The convergence problem for stripping to resonance states is solved in
the post CDCC formalism. The reaction amplitude is parametrized in terms of the reduced width
amplitudes (ANCs), inverse level matrix, boundary condition and channel radius, that is the same
parameters which are used in the conventional R-matrix method. For stripping to resonance states
many-level, one and two-channel cases are considered. The theory provides a consistent tool to
analyze both binary resonant reactions and deuteron stripping in terms of the same parameters.

PACS numbers: 24.30-v, 25.45.-z, 25.45.Hi, 24.10.-i

I. INTRODUCTION

Production of unstable nuclei close to proton and neu-
tron drip lines has become possible in recent years, mak-
ing deuteron stripping reactions (d, p) and (d, n) on these
nuclei (in inverse kinematics) not only more and more
feasible as beam intensity increasing but also a unique
tool to study unstable nuclei and astrophysical (n, γ),
(p, γ) and (p, α) processes. The deuteron stripping re-
actions populating resonance states of final nuclei are
important and most challenging part of reactions on un-
statble nuclei. If for nucleon transfer reactions popu-
lating bound states for about fifty years experimental-
ists used the standard distorted waves Born approxima-
tion (DWBA), an adequate theory for transfer reactions
to resonance states yet to be developed. By standard
DWBA I mean the approach in which the one-step trans-
fer matrix element is evaluated with incoming and out-
going distorted waves calculated by fitting the deuteron
and proton elastic scattering with local optical potentials.
The transition operator contains finite range effects as
well as the full complex remnant term. The main idea
of the DWBA is that the transition matrix element is so
small that one can use the first order perturbation theory.
Since the nuclear potential is quite large by itself (∼ 100
MeV), the smallness of the transition operator can be
fulfilled only if the reaction is peripheral enough, so that
the non-diagonal matrix element, representing the trans-
fer reaction amplitude, becomes small. However, since
the resonance wave function is large in the nuclear inte-
rior and different channels are coupled in the nuclear in-
terior, the character of the stripping to resonances can be

quite different from the stripping to bound states. Nowa-
days the standard DWBA is gradually being replaced
by more advanced approaches like continuum dicretized
coupled channels (CDCC) [1–3], adiabatic distorted wave
(ADWA) [4], coupled reaction channels (CRC) and the
coupled channels in Born approximation (CCBA) avail-
able in FRESCO code [5]. There are two main reasons for
absence of the practical theory of stripping to resonance
states which could be used by experimental groups. First
one is the numerical problem of the convergence of the
DWBA matrix element when the full transition operator
is included. However, it is only a technical problem. The
second pure scientific unsolved problem is what spectro-
scopic information can be extracted from the analysis of
transfer reactions populating the resonance states. Be-
sides, since the standard DWBA is deficient to more ad-
vanced methods like CDCC or ADWA, a new approach
should go beyond of the DWBA.

Majority of theoretical works devoted to the develop-
ment of the theory of single-nucleon stripping into un-
bound states of the residual nucleus have been published
in 1970-s [6–21]. Great interest in these reactions at that
time stemmed primarily from the fact that they allow one
to extract reliable information on the properties of nu-
clear resonant states by means of the combined analysis
of the data on stripping and elastic resonant scattering
of nucleons from the target nucleus [8, 13, 15, 16]. In
most of the cited works the theory of stripping into reso-
nant states was developed within the standard DWBA
by analogy with usual stripping to bound states. In
this case the expression for the reaction amplitude ob-
tained instead of the bound-state wave function for the
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captured nucleon (form factor) contained a continuum
wave function which leads to slow convergence of the ra-
dial integrals or even to their divergence depending on
the choice of this wave function. In Refs. [6, 9, 11] the
form factor was taken to be a scattering wave function,
which described the resonant scattering of the nucleon
from the target nucleus. This wave function was calcu-
lated using a single-particle potential whose parameters
were adjusted to give a resonance with the correspond-
ing properties. The Gamov decaying-state wave function
and the Weinberg wave function which are regular at
the origin and purely outgoing at infinity were used in
Refs. [10] and [14], respectively. Various methods were
suggested to calculate radial integrals practically with
the above-mentioned form factors: (i) the introduction of
the convergence factor exp(−α r) into the integrand [6];
the integral obtained was calculated for various α > 0
and then its values were extrapolated numerically to the
limit of α = 0; (ii) the method of contour integration
in the complex r-plane (complex scaling) [9]; (iii) the
method based on the correct account of the boundary
conditions in the three-body scattering problem [11]; (iv)
the Zeldowich-Berggren method [20] of the regularization
of integrals containing the Gamov function in which the
convergence factor exp(−α r2) was introduced [10]; (v)
the pseudo-bound-states method [14]. The methods (ii)
and (iii) were most convenient for numerical calculations.
Although the above methods allow one to avoid formal
difficulties, nevertheless all the methods are rather com-
plicated because of cumbersome numerical calculations
and carry on the shortcomings of the standard DWBA
for stripping to bound states.

Even if we put aside the technical problem of conver-
gence of the matrix element for stripping to resonance
states, there is more important question remains: the
spectroscopic information which can be extracted from
analysis of deuteron stripping reactions (and other trans-
fer reactions) into resonant states. This is really a crucial
question because the answer determines the reason why
we measure nuclear reactions. For more than 50 years
transfer reactions to bound states, and deuteron strip-
ping in particular, have been used to determine the spec-
troscopic factors, which measure the weight of the single-
particle state in the overlap function of the initial and fi-
nal nuclei. That is why there was always a temptation to
develop a theory of stripping into resonant states which is
fully similar to stripping to bound states. For example, in
[13] it was assumed that the spectroscopic factor could be
extracted from deuteron stripping into resonance states.
In this case the spectroscopic factor is the ratio of the
observable and single-particle resonance widths. How-
ever, the spectroscopic factor is not observable and de-
pends on the single-particle potential used to calculate
the single-particle width. In [22] it has been shown that
spectroscopic factors are not invariant under finite-range
unitary transformations and, hence, in exact approach
nuclear reactions cannot be a tool to determine spectro-
scopic factors. In [22] it was called separation of nuclear

reactions and spectroscopic factors. However, there is a
model-independent information, which can be extracted
from deuteron stripping reactions. I mean the asymp-
totic normalization coefficients (ANCs), which are the
amplitudes of the tails of the overlap functions [23] and
are invariant under finite range unitary transformations.
The most model-independent definition of the ANC is
that it determines the residue of the elastic scattering
S matrix in the pole corresponding to bound, virtual or
resonance states. For the resonance state the ANC and
partial resonance widths are related [24, 25]:

[CF
A j l]

2 = (−1)le2φj l(kxA(0)j l)
µxA

kxA(0)j l
ΓxA j l. (1)

Here l and j are the orbital and total angular momentum
of particle x in the resonance state F = (Ax), µxA is the
reduced mass of x and A, kxA(0)j l is the real part of the
resonance relative momentum of x and A, φj l(kxA) is the
non-resonant scattering phase shift, CF

A j l and ΓxA j l are
the ANC and partial resonance width in the channel x+A
with the quantum numbers l and j. Eq. (1) stands for
narrow resonance, i.e. for kxA(I)j l << kxA(0)j l, where
kxA(I)j l is the imaginary part of the resonance momen-
tum kxA(R)j l = kxA(0)j l − i kxA(I)j l, which determines
the location of the resonance pole in the momentum
plane. Due to relation (1), the resonance width is also
invariant under finite-range unitary transformations and
can be determined from the experiment.
Nowadays, it is quite well understood that the ANCs

can be determined from peripheral transfer reactions,
see [26–31] and references therein. However, the ANC
method has been applied only for transfer reactions pop-
ulating bound states. It is well known that from bi-
nary resonance scattering and reactions using the con-
ventional R-matrix approach one can determine the res-
onance partial widths, which, as we have underscored are
related to the ANCs. R-matrix method is one of the most
popular tools among the experimental groups worldwide
because the approach is comparatively simple even for
many-body, many-channel cases and deals with the for-
mal partial resonance widths determined from the fit to
the experimental data. These formal widths can be eas-
ily related with the observable partial widths. Using the
R-matrix approach one can fit simultaneously data for
all available channels. It allows one to control the consis-
tency of the obtained physical parameters. The question
is whether the theory of stripping to resonance states can
be formulated in terms of the same parameters which are
used in the R-matrix analysis of the binary resonance re-
actions.
It is the purpose of this paper to address a theory of

the deuteron stripping, which will solve all the above
mentioned problems for the deuteron stripping into res-
onant states. The delivered theory is based on the post
CDCC formalism going beyond of the DWBA and sur-
face integral formulation of the reaction theory. The
CDCC wave function takes into account not only the
initial elastic d + A channel but also its coupling to the
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deuteron breakup channel p+n+Amissing in the DWBA.
The convergence problem is also resolved in this formal-
ism. The reaction amplitude is parametrized in terms of
the reduced width amplitudes (ANCs), inverse level ma-
trix, boundary condition and channel radius, that is the
same parameters which are used in the R-matrix method.
Thus the theory provides a consistent tool to analyze
both binary resonant reactions and deuteron stripping in
terms of the same parameters.

The theory is based on the surface-integral formula-
tion of nuclear reactions and valid for stripping to both
bound and resonance states. First, just for demonstra-
tion of the formalism, the transformation of the DWBA
amplitude for stripping to the bound state is presented.
The reaction matrix element is split into two parts: inter-
nal (over the relative coordinate between the transferred
nucleon and target) and external. The idea of such sep-
aration is based on the fact that in the post formalism
the main contribution to the stripping amplitude comes
from the nuclear exterior while the prior form amplitude
is dominated by the internal region. It will be shown
that the dominant external post (internal prior) ampli-
tude using the Green’s theorem can be written as the
dominant surface integral encircling the internal volume
plus small addition from the prior external (post internal)
part. Thus, both post and prior forms lead to the same
reaction amplitude given by the sum of small internal
post form, small external prior form and the dominant
surface integral. The contribution of the post internal
part can be minimized by a proper choice of the final-
state optical potential, and the other two amplitudes are
parameterized in terms of the reduced widths amplitudes
(ANCs). After that the theory is extended to the CDCC
formalism. Then the theory is applied for stripping to
resonance states. First it is developed for the standard
DWBA and then the post CDCC formalism based on the
surface integrals is developed. One of the most impor-
tant results of this paper is that the post CDCC form
for stripping into resonant states can be written as the
sum of the small internal (over the coordinate rnA) post
form and the dominant surface part. The absence of the
diverging (or poor converging) external part solves the
problem of convergence of the matrix element for strip-
ping to resonance state.

In the developed approach the information about the
resonance subprocess is contained in the scattering wave
function of the fragments formed by resonance decay.
This wave function is written in a standard R-matrix
form using its separation into the internal and external
parts. It allows us to generalize the R-matrix method
for binary reactions to stripping reactions. Since the
deuteron stripping into resonant states is 2 → 3 parti-
cles reaction, the excitation of the resonance occurs in
the subsystem, while the third particle causes the distor-
tion. The extracted partial resonance widths can be used
for calculation of the (n, γ) processes. If the cross section
for (n, γ) resonant capture is available, the simultaneous
fit to the deuteron stripping and (n, γ) resonance cap-

ture can be done. The method can be also applied for
analysis of the Trojan Horse reactions [32]. Concrete cal-
culations and the application of the theory for deuteron
stripping and Trojan Horse reactions will be presented
in the following up papers. In what follows we use the
system of units in which ~ = c = 1. We also neglect the
spins of the particles if not specified otherwise.

II. SURFACE INTEGRAL FORMULATION FOR

DEUTERON STRIPPING TO BOUND STATE.

Before the theory of the deuteron stripping to reso-
nant states will be outlined I will present a surface in-
tegral formulation of the theory for stripping populating
bound states. First, just for demonstration, I consider
the DWBA and then extend it by including the CDCC
wave functions. As it has been explained in Introduction,
the transfer reaction matrix element will be split into two
parts in the subspace determining the relative motion of
the transferred nucleon and target: internal and external
parts. After that replacing the potentials in the transi-
tion operators by the kinetic energy operators and using
the Green’s theorem the matrix element in terms of the
surface integral will be obtained.

A. Stripping to bound state. Post form of DWBA.

In this section we consider the post form DWBA am-
plitude, which we split into the internal and external part
in the subspace over the relative coordinate between the
transferred n and A. Due to the choice of the transition
operator in the post form, the internal part turns out to
be small. The external part, which is parameterized in
terms of the ANC, will be transformed into the dominant
surface integral encircling the internal volume and small
external prior DWBA amplitude.
We start consideration from the exact reaction ampli-

tude for the deuteron stripping to bound states

d+A→ p+ F, (2)

where F = (An) is the bound state. The post form of
the exact reaction amplitude

M (post)(kpF , kdA) =< Φ
(−)
f

∣∣∆VpF
∣∣Ψ(+)

i >, (3)

where Ψ
(+)
i is the exact scattering wave function in the

initial state with the two-body incident wave d + A,

Φ
(−)
f = χ

(−)
pF ϕ∗

F is the channel function in the exit state
p + F , ϕi is the bound-state wave function of nucleus

i, χ
(+)
ij ≡ χ

(+)
kij

(rij) is the distorted wave describing the

relative motion of particles i and j with the relative mo-
mentum kij ; ∆VpF = VpA + Vpn −UpF is the transition
operator in the post form, Vij is the microscopic interac-
tion potential between nuclei i and j, Uij is the optical
potential between nuclei i and j; rij is the radius-vector
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connecting the center of mass of particles i and j. I

remind that the exact wave function Ψ
(+)
i is fully anti-

symmetrized but the channel wave function Φ
(−)
f is not

antisymmetrized with respect to exchange of the exiting
proton and nucleons in F . However, the internal wave

function of F ϕF in Φ
(−)
f is fully antisymmetrized. The

reason why we can drop the antisymmetrization in the
channel wave function is the presence of the fully anti-
symmetrized exact wave function in the initial state and
fully symmetric transition operator what can be seen be-
low when the transition operator is expressed in terms of
the kinetic energy operators.
To obtain the post form of the DWBA from Eq. (3)

we replace Ψ
(+)
i by the channel wave function Φ

(+)
i =

ϕd ϕA χ
(+)
dA in the initial d+A state:

M̃ (post)(kpF , kdA) =< Φ
(−)
f |∆VpF |Φ(+)

i > . (4)

Then we use approximation

ϕF ≈ IFA ϕA, (5)

where IFA (rnA) is the overlap function of the bound state
wave functions of nuclei F and A:

IFA (rnA) =
〈
ϕA|ϕF

〉
. (6)

Note that the integration in Eq. (6) is taken over all the
internal coordinates of nucleus A. Then the transition
operator in Eq. (4) takes the form < ϕA|∆VpF |ϕA >=
< ϕA|VpA|ϕA > +Vpn − UpF . Potential < ϕA|VpA|ϕA >
is replaced by the optical potential UpA and we obtain a
standard post form of the DWBA amplitude:

MDW (post)(kpF , kdA) =< Φ
(−)
f |∆V pF |Φ(+)

i >, (7)

where ∆V pF = UpA+Vpn−UpF . Now we will transform
this volume integral into the surface one. First, we adopt
rnA and rpF as Jacobian variables and split the configura-
tion space over rnA into the internal and external regions,
while the integral over the second Jacobian variable, rpF ,
is taken over all the coordinate space. Splitting the reac-
tion amplitude into internal and external amplitudes we
get

MDW (post)(kpF , kdA) =M
DW (post)
int (kpF , kdA)

+M
DW (post)
ext (kpF , kdA), (8)

where the internal amplitude M
DW (post)
int is given by

M
DW (post)
int (kpF , kdA)

=< χ
(−)
pF IFA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

. (9)

Correspondingly, the external amplitude is given by

M
DW (post)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (10)

Here, RnA is the channel radius similar to the one in-
troduced in the R-matrix approach, which separates the
internal and external regions.

The splitting of the amplitude into the internal a nd
external parts in the subspace over the Jacobian variable
rnA is natural and evident. The overlap function IFA (rnA)
is the only object in the reaction amplitude which pro-
vides spectroscopic and structure information. In the ex-
ternal region the overlap function has a standard radial
shape given by the spherical Hankel function (for neu-
trons) with the amplitude called the ANC (see below).
To determine the behavior of the overlap function in the
nuclear interior, which bring one of the main uncertain-
ties in the analysis of the deuteron stripping, microscopic
calculations are required [33]. In a standard approach the
internal part of the overlap function is approximated by
the single-particle bound state wave function calculated
in the adopted mean field. The proportionality coeffi-
cient is the square root of the spectroscopic factor. Due
to the structure of the transition operator the external

matrix element M
DW (post)
ext in the post form is dominant

compared to a small contribution coming from the inter-

nal partM
DW (post)
int . This simple observation stems from

the following.

In the internal matrix element, rnA ≤ RnA, due ab-
sorption of the protons inside nucleus F , effective rpn ∼
rpA ≈ rpF > RF , where RF is the radius of nucleus
F . For the protons outside of F and neutrons inside or
on the surface of A each nuclear interaction in the op-
erator ∆V pF = UpA + Vpn − UpF is small. Potential
UpF is arbitrary and often UpF is chosen to compensate
for UpA so that the transition operator reduces to Vpn.
Since the DWBA is the first order perturbation theory,
the minimization of the whole transition operator ∆V pF

provides smaller higher order terms and, hence, better
serves the theory. This choice is more preferable in the
formalism presented here and we adopt UpF , which min-

imizes ∆V pF = UpA + Vpn − UpF at rnA ≤ RnA making
the contribution from the internal matrix element small
compared to the external one.

In the external matrix element (rnA > RnA), which is
dominant, the overlap function IFA can be replaced by

its asymptotic tail. Although M
DW (post)
ext can be eas-

ily calculated for stripping to the bound state, here we
transform this matrix element into an alternative form,
which has clear advantage in case of stripping to reso-
nance states discussed below where convergence becomes
a main impediment.

Now we proceed to the transformation of the volume
integral defining the external matrix element in terms
of the dominant surface integral encircling the sphere at
rnA = RnA and a small, due to the structure of the tran-
sition operator in the prior form (see Eq. (17)), external
volume integral in the prior form. Note that the trans-
formation is exact within the DWBA formalism.

To transform the external volume integral to the sur-
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face one, we rewrite the transition operator as

∆V pF = UpA + Vpn − UpF = [Vpn + UdA]− [UpF ]

+(UpA − UdA). (11)

The bracketed operators are the right-hand-side opera-
tors in the Schrödinger equations for the initial and final
channel wave functions in the external region:

(E − T )ϕd χ
(+)
dA = (Vpn + UdA)ϕd χ

(+)
dA (12)

and

(E − T ) IFA χ
(−)∗
pF = UpF I

F
A χ

(−)∗
pF . (13)

To derive Eq. (13) we took into account that at rnA >
RnA IFA satisfies the asymptotic Schrödinger equation
(εnA − TnA) IFA = 0, where εij is the binding energy of
the bound state (i j) and Ti j is the kinetic energy oper-
ator of the relative motion of i and j. These equations
imply the following connection between the external post
form DWBA amplitude and the matrix element MDW

S
containing the surface integral:

M
DW (post)
ext (kpF , kdA) =MDW

S (kpF , kdA)

+M
DW (prior)
ext (kpF , kdA), (14)

where

M
DW (prior)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

(15)

and

MDW
S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (16)

Here, the transition operator in the prior form ∆V dA in
the external region, where the nuclear n−A interaction
disappears, takes the form

∆V dA = UpA − UdA. (17)

The overlap function is given by

IFA (rnA) =
∑

jnA mjnA mlnA

< JAMA jnAmjnA
|JF MF >

× < JnMn lnAmlnA
|jnAmjnA

>

× YlnA mlnA
(r̂nA) IAjnA lnA

(rnA). (18)

Here, < j1m1 j2m2|j3m3 > is the Clebsch-Gordan co-
efficient, lnA (mlnA

) is the orbital angular momentum
(its projection) of the relative motion of n and A, jnA
(mjnA

) is the total angular momentum (its projection)
of n in the bound state F = (nA), Ji (Mi) is the spin
(its projection) of nucleus i; IFA lnA jnA

(rnA) is the radial

overlap function, which is a real function [23], Yl m(r̂) is

the spherical harmonics and r̂ = r/r is the unit vector.
We assume that only one value of lnA contributes to ex-
pansion (18). If the channel radius is taken larger than
the range of the nuclear interaction, the radial overlap
function can be replaced by its asymptotic term,

IFA jnA lnA
(RnA)

rnA>RnA≈ CF
A jnA lnA

ilnA+1

× κnA h(1)lnA
(i κnA rnA), (19)

where h
(1)
lnA

(i κnA rnA) is the spherical Hankel function

of the first order, CF
A jnA lnA

is the ANC of the overlap

function, κnA =
√
2µnA εnA is the bound state wave

number.
It is also useful to introduce the reduced-width ampli-

tude used in the R-matrix approach, which can be ex-
pressed in terms of the ANC [25]:

γnA jnA lnA
=

√
RnA

2µnA
IFA jnA lnA

(RnA)

=

√
RnA

2µnA
ilnA+1 κnAC

F
A jnA lnA

h
(1)
lnA

(i κnARnA). (20)

Correspondingly, the reduced width is

γ2nA jnA lnA
=

RnA

2µnA
[IFA jnA lnA

(RnA)]
2

=
RnA

2µnA
(−1)lnA+1κ2nA [CF

A jnA lnA
h
(1)
lnA

(iκnARnA)]
2.

(21)

It is worth mentioning that, due to the presence of the
channel radius RnA, the reduced width, in contrast to the
ANC, is model-dependent. The dependence on the chan-
nel radius becomes crucial with increase of the binding
energy. We are going to use also the boundary condi-
tion, which is the logarithmic derivative of the overlap
function at rnA = RnA:

BnA =
1

h
(1)
lnA

(iκnARnA)

d[rnAh
(1)
lnA

(iκnArnA)]

dr

∣∣∣
rnA=RnA

.

(22)

Due to Eq. (19), the amplitude M
DW (prior)
ext can be

parametrized in terms of the ANC. We note that this am-
plitude is also small. In the external region, rnA > RnA,
the nuclear n− A interaction can be neglected. Besides
in this region the overlap function exponentially fades
away. Also, if the proton absorption is strong in the in-
ternal region of A, the dominant contribution comes from
rpA > RA, where RA is the radius of nucleus A. If the
adopted radius channel RnA is larger than the n−A nu-
clear interaction radius we can neglect n−A nuclear inter-
action in the external region. In this region each nuclear
potential UN

pA and UN
dA and their difference UpA−UdA are

small. The Coulomb part UC
pA−UC

dA ≈ ZA e
2Rd/(2R

2
A),



6

where Rd is the deuteron size and ZA e is the charge
of nucleus A, is also too small compared to the nuclear
potential. Thus the dominant contribution to the post

DWBA amplitude M
DW (post)
ext , Eq. (14), and, hence, to

the total post form DWBA amplitude MDW (post) comes
from the surface integralMDW

S . Here and in what follows

all the amplitudes with the transition operator
←−
T − −→T

are assigned the subscript S, which is abbreviation of
”surface”, because the volume matrix elements of these
amplitudes can be transformed into the surface ones in
the subspace over variable rnA while over the second Ja-
cobian variable rpF we always keep the volume integral.
Now we express MDW

S in terms of the surface integral
over variable rnA and the same technique will be used
throughout the paper. The kinetic energy operator can
be written as T = TpF + TnA. TpF is a Hermitian oper-
ator in the subspace spanned by the bra and ket states
in Eq. (16). It can be proved if we take into account
that at rpF → ∞ the integrand in this equation van-
ishes exponentially due to the presence of the bound state
wave function ϕd(rpn) and the overlap function IFA (rnA).
Hence, integrating by parts twice the integral over rpF
we obtain

< χ
(−)
pF IFA |

←−
T pF −

−→
T pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

=< χ
(−)
pF IFA |

−→
T pF −

−→
T pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

= 0.

(23)

Then MDW
S reduces to

MDW
S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (24)

We apply now Green’s theorem to transform the vol-
ume integral into the surface one, which encircles the
inner volume over the coordinate r:

∫

r≤R

d r f(r)
[←−
T −−→T

]
g(r)

= − 1

2µ

∮

r=R

dS [g(r)∇r f(r) − f(r)∇r g(r)]

= − 1

2µ
R2

∫
dΩr

[
g(r)

∂f(r)

∂r
− f(r) ∂g(r)

∂r

]

r=R

.

(25)

Here, dS = R2 dΩ r̂, where Ω is the solid angle. Note
that the unit vector r̂ is the normal vector to the sphere
directed outside of the restricted by the surface volume.
The integration in Eq. (24) over rnA is taken over the
external volume restricted by two spherical surfaces: the
inner surface with the radius RnA and the external sur-
face with the radius R

′

nA →∞, that is

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA)

+MDW
S∞

(kpF , kdA). (26)

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rnA = RnA while the second term is the surface integral
taken at rnA = R

′

nA → ∞. A negative sign in front of
the first term appears because the normal to the surface
is directed inward to the center of the volume, i.e. op-
posite to the normal to the external surface (at infinitely
large radius). The second term vanishes because of the
presence of the overlap function IFA , which decreases ex-
ponentially at rnA →∞. Then for MDW

S we get

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA)

=
1

2µnA
R2

nA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

[
ϕd(rpn)χ

(+)
kdA

(rdA)
∂ [IFA (rnA)]

∗

∂ rnA
− [IFA (rnA)]

∗
∂ ϕd(rpn)χ

(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

.

(27)

Here we took into account that χ
(−)∗
k (r) = χ

(+)
−k (r). In-

voking Eqs. (18) and (19) we can rewrite MDW
S in the

form explicitly showing parametrization in terms of the

reduced width amplitude (ANC) and boundray condi-
tion, the quantities used in the R-matrix approach:
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MDW
S (kpF , kdA) =

1

2µnA
ilnA+1 κnARnA h

(1)
lnA

(i κnARnA)
∑

jnA mjnA
mlnA

Mn

< JAMA jnAmjnA
|JF MF >

× < JnMn lnAmlnA
|jnAmjnA

>< JpMp JnMn|JdMd > CF
A jnA lnA

×
∫

d rpF χ
(+)
−kpF

(rpF )

∫
dΩrnA

Y ∗
lnA mlnA

(r̂nA)

[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)− RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

] ∣∣∣
rnA=RnA

(28)

=

√
RnA

2µnA

∑

jnA mjnA
mlnA

Mn

< JAMA jnAmjnA
|JF MF >< JnMn lnAmlnA

|jnAmjnA
>

× < JpMp JnMn|JdMd > γnA jnA lnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Y ∗
lnA mlnA

(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)− RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (29)

Finally, the total post form DWBA amplitude is given
by

MDW (post)(kpF , kdA) =M
DW (post)
int (kpF , kdA)

+M
DW (prior)
ext (kpF , kdA) +MDW

S (kpF , kdA). (30)

Taking into account that MDW
S = M

DW (post)
ext −

M
DW (prior)
ext we can rewrite Eq. (30) in a different form:

MDW (post)(kpF , kdA) =M
DW (post)
int (kpF , kdA)

+M
DW (prior)
ext (kpF , kdA)

+
[
M

DW (post)
ext (kpF , kdA)−MDW (prior)

ext (kpF , kdA)
]
.

(31)

Thus, the main result of this section is that the post
form of the DWBA amplitude can be written as the sum

of the peripheral parts, M
DW (prior)
ext +MDW

S , and small

internal term M
DW (post)
int . The peripheral part itself con-

sists of the dominant surface amplitude MDW
S and small

external prior form M
DW (prior)
ext . The peripheral part is

parametrized in terms of the ANC (reduced width ampli-
tude), channel radius RnA and the logarithmic boundary
condition, that is in terms of the parameters used in the
R-matrix fitting. The model dependence of these two pe-
ripheral amplitudes is caused by the ambiguity of the op-
tical potentials and channel radius RnA. The strongest

model dependence comes from M
DW (post)
int , because, in

addition to the ambiguity of the optical potentials, to
calculate it one needs to know the behavior of the overlap
function in the internal region. For peripheral reactions

contribution of M
DW (post)
int can be neglected.

B. Prior form of DWBA. Stripping to bound state.

In subsection A the post form of the DWBA amplitude
has been considered. However, all the results hold also
for the prior form

MDW (prior)(kpF , kdA) =< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

=M
DW (prior)
int (kpF , kdA) +M

DW (prior)
ext (kpF , kdA)

(32)

where

M
DW (prior)
int (kpF , kdA)

=< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

. (33)

and

M
DW (prior)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (34)

with the transition operator

∆V dA = UpA + V nA − UdA. (35)

The n−A interaction potential V nA =< ϕA|VnA|ϕA > is
the mean field real potential supporting the bound state
(nA). The splitting of the amplitude into the internal
and external terms in the subspace over the coordinate
rnA helps us to further transform the prior DWBA ampli-
tude. Due to the structure of the transition operator the

external matrix element M
DW (prior)
ext in the prior form is

small (see the discussion in subsection IIA) and the main
contribution in the prior form comes from the internal

part M
DW (prior)
int . Since the internal part is given by the

volume integral, its calculation requires the knowledge of
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the overlap function in the internal region. The model
dependence of the overlap function in the nuclear inte-
rior (rnA ≤ RnA) brings one of the main problems and
main uncertainty in the calculation of the internal matrix
element. However, using the surface integral we can re-
distribute the internal contribution in terms of dominant
the surface term (over variable rnA) plus small internal
part written in terms of the volume integral in the post
form. With reasonable choice of the channel radius RnA

the contribution from the internal volume integral in the
post form can be significantly decreased compared the
surface matrix element. The latter can be expressed in
terms of the R-matrix parameters - the observable re-
duced width amplitude (ANC), boundary condition and

channel radius. To transform M
DW (prior)
int into the sur-

face integral in the subspace over variable rnA we rewrite
the transition operator in the internal region as

∆VdA = UpA + V nA − UdA

= [V nA + UpF ] + (UpA + Vpn − UpF )− [Vpn + UdA].
(36)

The bracketed transition operators are the potential op-
erators in the Schrödinger equations for the initial and
final channel wave functions. Hence, for the internal prior
form of the DWBA we obtain

M
DW (prior)
int (kpF , kdA)

=M
DW (post)
int (kpF , kdA) +M

DW (prior)
S (kpF , kdA),

(37)

where

MDW
S (kpF , kdA) = − < χ

(−)
pF IFA |

←−
T −−→T |ϕd χ

(+)
dA >

= − < χ
(−)
pF IFA |

←−
T nA −

−→
T nA|ϕd χ

(+)
dA >

= −MDW
SRnA

(kpF , kdA). (38)

Note that here MDW
SRnA

is the surface integral encircling

the border of the internal volume at rnA = RnA with the
normal directed outward. Thus we have demonstrated,
what should be expected from the very beginning, that
MDW (prior) = MDW (post). Hence all the equations ob-
tained in the previous subsection IIA are also valid in
the prior formalism.
It is worth mentioning that in the post formalism, in

contrast to the prior one, we have obtained two surface
integrals (in the subspace over rnA) with the radii rnA =

RnA and rnA = R
′

nA → ∞ and then proved that the
second integral is zero. From the equality of the post
and prior DWBA amplitudes we could conclude that the
surface matrix element over infinitely large sphere rnA =
R

′

nA → ∞, which appears only in the post formalism,
vanishes.
There is another interesting point to discuss which ex-

plains the advantage of the above outlined formulation
of the stripping. As we have discussed, due to differ-
ent structure of the transition operators in the post and

prior forms, the main contribution to the post (prior)
form comes from the external (internal) part (in the sub-
space over variable rnA). Since both forms give identical
amplitudes, that is, describe the same reaction mecha-
nism and the same physics, such redistribution of the
main contribution is possible only if the main contribu-
tion to each form comes from the border between external
and internal parts. In the post (prior) form this border
attributed to the external (internal) form and can be ex-
pressed in term of the surface integral. Let us rewrite
equalityMDW (prior) =MDW (post) in the following form:

M
DW (prior)
int (kpF , kdA) +M

DW (prior)
ext (kpF , kdA)

=M
DW (post)
int (kpF , kdA) +M

DW (post)
ext (kpF , kdA).

(39)

In this form the dominant terms are M
DW (prior)
int and

M
DW (post)
ext while the rest two terms, M

DW (prior)
ext and

M
DW (post)
int are smaller. From Eq. (39) we get

M
DW (post)
ext (kpF , kdA)−MDW (prior)

ext (kpF , kdA)

=M
DW (prior)
int (kpF , kdA)−MDW (post)

int (kpF , kdA)

=MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA). (40)

Thus the difference between the post and prior external
amplitudes (or the prior and post internal ones) is the
surface integral in the subspace over rnA.
There is one more point left to discuss. When deriving

the post form of the DWBA amplitude from Eq. (4) we
used approximation ϕF ≈ IFA ϕA neglecting the contri-
bution from the channels n+An, n > 0, where An is the
excited state of A. However, I will show now that the
surface integral formulation doesn’t require this approxi-
mation. To this end let us split M̃ (post) into the internal
and external parts in the subspace over variable rnA. In
the internal part we use a standard DWBA approxima-
tion ϕF ≈ IFA ϕA to arrive to the standard internal post
DWBA amplitude. In the external part we rewrite the
transition operator as

∆VpF = VpA + Vpn − UpF

= −
[
VA + UpF

]
+
[
Vpn + VA + UdA

]
+
(
VpA − UdA

)
.

(41)

The bracketed operators are the right-hand side opera-
tors of the Schrödinger equations

(
E − T

)
Φ

(+)
i =

(
Vpn + VA + UdA

)
Φ

(+)
i (42)

and
(
E − T

)
Φ

(−)∗
f =

(
VA + UpF

)
Φ

(−)∗
f . (43)

Hence, the external part of M̃ (post) reduces to

M̃
(post)
ext (kpF , kdA)

= M̃S(ext)(kpF , kdA) + M̃
(prior)
ext (kpF , kdA), (44)
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where

M̃
(prior)
ext (kpF , kdA)

=< Φ
(−)
f |VpA − UdA |Φ(+)

i >
∣∣∣
rnA>RnA

(45)

and

M̃S(ext)(kpF , kdA) =< Φ
(−)
f |
←−
T −−→T |Φ(+)

i >
∣∣∣
rnA>RnA

.

(46)

In the matrix element M̃
(prior)
ext we can use a standard

DWBA approximation ϕF ≈ IFA ϕA which leads to the
standard external prior DWBA amplitude. The matrix
element M̃S(ext) can be rewritten as

M̃S(ext)(kpF , kdA)

=< Φ
(−)
f |
←−
T nA −

−→
T nA |Φ(+)

i >
∣∣∣
rnA>RnA

=< χ
(−)
pF ϕF |

←−
T nA −

−→
T nA |ϕd ϕA χ

(+)
dA >

∣∣∣
rnA>RnA

=< χ
(−)
pF IFA |

←−
T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

= −MDW
SRnA

(kpF , kdA), (47)

We took into account that < Φ
(−)
f |
←−
T pF −

−→
T pF +

←−
T A −

−→
T A|Φ(+)

i >= 0, where TA is the internal motion kinetic
energy operator of nucleus A, and TnA ϕA = ϕA TnA .
Thus M̃S(ext) can be transformed to the surface inte-
gral over variable rnA encircling the inner volume with
the radius rnA = RnA without invoking approximation
ϕF ≈ IFA ϕA. It means that, when deriving the post form
of the DWBA amplitude, the approximation ϕF ≈ IFA ϕA

is required only to obtain two small terms, M
DW (post)
int

and M
DW (prior)
ext , but not the dominant surface term

−MDW
SRnA

. In this sense the surface integral formalism

is an improvement of the DWBA.

C. Deuteron stripping to bound states. Post

CDCC formalism

In the previous sections we succeeded to parametrize
the DWBA amplitude in terms of the ANC except for a

small term, M
DW (post)
int . The most serious shortcoming

of the DWBA is that it neglects the coupling to open
reaction and breakup channels. This coupling can be
taken into account if an exact wave function in the initial
or final states is used. However, the exact wave functions
are not yet available (if they would be available in the
whole configuration space, we don’t need to calculate the
matrix element because the asymptotic terms of the exact
wave functions provide the reaction amplitudes in all the
open channels). Here we use the CDCC formalism, which
takes into account the elastic d + A and the deuteron
breakup channel p+ n+A in the initial state.

In this subsection the surface integral formulation of
the reaction theory will be applied to the post form of the
CDCC amplitude for deuteron stripping to bound states.
It will allow us to parametrize the stripping amplitude in
the CDCC approach in terms of the R-matrix parameters
- the reduced width amplitude, boundary condition and
the channel radius. To obtain the CDCC wave function
describing the initial state of the stripping reaction, first

the exact initial scattering wave function Ψ
(+)
i is replaced

by the three-body wave function Ψ
3B(+)
i , which takes into

account the coupling of the initial channel d+A and the
deuteron breakup channel p + n + A [1–3] and satisfies
the Schrödinger equation (in the three-body p + n + A
model space)

(E − T − UpA − UnA − Vpn)Ψ3B(+)
i = 0 (48)

with the outgoing waves in the elastic channel d+A and
the breakup channel p + n + A. A general solution of
this equation with the d + A incident wave has outgo-
ing waves in the elastic, breakup and two rearrangement
channels, n+(pA) and p+(nA). To damp rearrangement
channels in the asymptotic behavior of the wave function

Ψ
3B(+)
i the optical potentials UpA and UnA with strong

imaginary terms can be used [34]. Ψ
3B(+)
i is given by

Ψ
3B(+)
i (rdA, rpn) = ϕd(rpn)χ

(+)
kdA

(rdA)

+

∫
dppn ψ

(+)
ppn

(rpn)χP(+)(ppn)(rdA). (49)

Here, ϕd(rpn) is the deuteron bound state wave function,

ψ
(+)
ppn(rpn) the p − n scattering wave function with the

relative momentum ppn, χ
(+)
kdA

(rdA) and χ
(+)
P(ppn)

(rdA)

are the expansion coefficients, EdA−εpn = P 2/(2µdA)+
p2pn/(2µpn).

In practical application the wave function Ψ
3B(+)
i is

replaced by the CDCC wave function, which is a solution
of the projected Schrödinger equation

(E − T − U (Ppn)
pA − U (Ppn)

nA − Vpn)ΨCDCC(+)
i = 0. (50)

Here, U
(Ppn)
iA = P̂pn UpA P̂pn, and

P̂pn =

lmax
pn∑

lpn=0

lpn∑

mlpn=−lpn

∫
dΩrpn Ylpn mlpn

(r̂pn)

× Y ∗
lpn mlpn

(r̂
′

pn) (51)

is the projection operator, which truncates the number of
the spherical harmonics Ylpn mlpn

(r̂pn) in the coordinate
rpn. Application of this operator to the three-body wave
function suppresses the rearrangement channels in the
asymptotic wave function. The CDCC wave function is
taken in the form

Ψ
CDCC(+)
i (rpn, rdA) = P̂pn

nmax∑

n=0

ψ(n)
pn (r

′

pn)χ
(n)(+)
i (rdA),

(52)
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where ψ
(0)
pn (rpn) = ϕd(rpn) is the deuteron bound state

wave function, ψ
(n)
pn (rpn), n ≥ 1, is the n-th discretized

continuum state of the p− n pair obtained by averaging

continuous breakup states in the n-th bin, χ
(n)(+)
i (rdA)

are the functions, which describe the relative motion of
the center-of-mass of the p−n pair in the n-th state and

A. Note that χ
(0)(+)
i (rdA) asymptotically behaves as the

incident Coulomb distorted d−A plane wave plus outgo-

ing scattered wave, while χ
(n)(+)
i (rdA) for n > 0 asymp-

totically do not contain any plane wave having only the
outgoing scattered wave.

To derive the post form of the CDCC amplitude from
the exact one, first we replace the initial exact scattering

wave function Ψ
(+)
i by ϕA Ψ

3B(+)
i . Note that Ψ

3B(+)
i is

the three-body model (p + n + A) wave function which
treats nucleus A as a constituent particle leaving its inter-
nal degrees of freedom intact. That is why the wave func-

tion Ψ
(+)
i is approximated by the product of the bound

state wave function ϕA and Ψ
3B(+)
i . Correspondingly,

the transition operator ∆VpF = VpA + Vpn − UpF is re-

placed by ∆V pF = UpA + Vpn − UpF . This replacement
of the microscopic potential VpA in the exact post form
amplitude by UpA is evident because the p−A interaction
potential in the transition operator should be the same
as the one in the Schrödinger equation for the initial scat-

tering wave function Ψ
3B(+)
i . Potential Vpn remains the

same when we approximate the initial exact scattering
wave function ny the three-body one. The final state
optical potential UpF is arbitrary and we discuss the op-
timal choice of this potential later on. These approxima-
tions lead to the expression for the post form stripping
amplitude in the three-body model in the initial state:

M3B(post)(kpF , kdA)

=< χ
(−)
pF ϕF |∆V pF |ϕA Ψ

3B(+)
i >

=< χ
(−)
pF IFA |∆V pF |Ψ3B(+)

i > ‘ (53)

Thus, even if we treat the d + A collision in the initial
channel in the three-body approach, the final state con-
tains the overlap function, which is essentually many-
body object. Eq. (53) is impractical to use because it
requires the knowledge of the three-body wave function

Ψ
3B(+)
i , Eq. (49), which contains unknown expansion co-

efficients χkdA
(rdA) and χP(ppn)(rdA). In practical appli-

cations the Ψ
3B(+)
i is approximated by the CDCC wave

function Ψ
CDCC(+)
i , which requires the knowledge of the

finite number of the expansion coefficients. They can be
found from the coupled equations. Correspondingly, the
transition operator ∆V pF = UpA+Vpn−UpF in Eq. (53)

is replaced by ∆V
Ppn

pF = U
Ppn

pA + Vpn − UpF . Note that

only the potential UpA(rpA), where rpA = rdA + 1/2 rpn
is affected by the projector P̂pn. Then the expression for

the post form of the CDCC amplitude takes the form:

MCDCC(post)(kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

pF |Ψ
CDCC(+)
i > .‘ (54)

Now we splitMCDCC into the internal and external parts
in the subspace rnA:

MCDCC(post)(kpF , kdA) =M
CDCC(post)
int (kpF , kdA)

+M
CDCC(post)
ext (kpF , kdA).

(55)

The internal amplitude M
CDCC(post)
int is given by

M
CDCC(post)
int (kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

. (56)

Correspondingly, the external amplitude is

M
CDCC(post)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA>RnA

. (57)

I remind that the integral over the second Jacobian vari-
able, rpF , is taken over all the coordinate space. Sim-
ilarly to the DWBA case, the internal part is small if
the channel radius RnA is not too large. Due to the
strong absorption of the proton inside A, which is con-
trolled by the imaginary part of the optical potential

U
Ppn

pA , the effective distances are rpA > RA. Besides,
in the internal region, rnA ≤ RnA, and large rpA, where

rpA ∼ rpn = |rpA − rnA|, UPpn

pA + Vpn can be well ap-
proximated by a properly chosen optical potential UpF

minimizing ∆V
Ppn

pF and the internal matrix element. The
next step is to transform the external matrix element to
the surface one. To this end we rewrite the transition
operator in the form

∆V
Ppn

pF = U
Ppn

pA + Vpn − UpF = [−UpF ] + [U
Ppn

pA + Vpn].

(58)

The bracketed operators in (58) are the right-hand-side
potential operators in the Schrödinger equations in the
external region rnA > RnA, where the nuclear n − A
interaction vanishes:

(E − T )ΨCDCC(+)
i = (U

Ppn

pA + Vpn)Ψ
CDCC(+)
i (59)

and

(E − T )χ(−)∗
pF IF ∗

A = UpF χ
(−)∗
pF IF ∗

A . (60)

Note that the second equation follows from

(−εnA − TnA) IFA =< ϕA|VnA|ϕF > . (61)



11

In the external region, rnA > RnA, the source term
on the right-hand-side disappears and Eq. (60) becomes
evident. Taking into account Eqs (59) and (60) we get

M
CDCC(post)
ext (kpF , kdA) ≡MCDCC(post)

S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T −−→T |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

,

(62)

where T = TpF + TnA. Here, as in the previous section,
for the surface integral we use the subscript ”S”. Since
the CDCC wave function doesn’t propagate into the final
state (its asymptotic terms have only elastic and breakup
terms) the operator TpF is Hermitian, i.e.

< χ
(−)
pF IFA |

←−
T pF −

−→
T pF |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

=< χ
(−)
pF IFA |

−→
T pF −

−→
T pF |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

= 0.

(63)

It can be also shown explicitly taking into account that
the volume integral over rpF can be transformed into
the surface integral over the sphere with the radius
rpF = RpF → ∞. Since the overlap function decays
exponentially at rnA → ∞, the integration over rnA is
limited. Hence, at rpF → ∞ using Eqs (B6) we get
that rdA ∼ rpF → ∞ and rpn ∼ rpF → ∞. The first
term of the CDCC wave function decays exponentially
at rpF → ∞ because of the presence of the deuteron
bound state wave function. The terms with n ≥ 1 decay

as 1/r3pF [35]. The distorted wave χ
(−)∗
pF (ppF ) decays as

1/rpF , see Eq. (B16). Hence the surface integral vanishes
at RpF →∞ as R2

pF /R
4
pF → 0.

Then M
CDCC(post)
S takes the form

M
CDCC(post)
S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T nA −

−→
T nA|ΨCDCC(+)

i >
∣∣∣
rnA>RnA

= −MCDCC(post)
SRnA

(kpF , kdA) +M
CDCC(post)
S∞

(kpF , kdA).

(64)

Thus, the volume integral at rnA > RnA in the ma-

trix element M
CDCC(post)
S can be written as the sum of

two surface integrals encircling the external volume, the
sphere with the radius rnA = RnA and the sphere with
rnA = R

′

nA → ∞. Note that the integral over rpF is
taken over all the coordinate space. Evidently that the
integral over the infinitely large sphere vanishes because
the overlap function IFA exponentially decreases. Hence,

M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA).

(65)

The negative sign in front of the inner surface integral
appears because the normal vector to the inner surface
is directed to the center, i.e. opposite to the direction of
the normal to the external surface at rnA = R

′

nA → ∞.
Now we can use equations from subsection A replacing
the initial channel wave function by the CDCC one. For

M
CDCC(post)
S we get

M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA)

=
R2

nA

2µnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

r̂nA

[
[IFA (rnA)]

∗(
←−∇rnA

−−→∇rnA
)Ψ

CDCC(+)
i (rpF , rnA)

] ∣∣∣
rnA>RnA

=
R2

nA

2µnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

[
Ψ

CDCC(+)
i (rpF , rnA)

∂ [IFA (rnA)]
∗

∂rnA
− [IFA (rnA)]

∗ ∂Ψ
CDCC(+)
i (rpF , rnA)

∂rnA

] ∣∣∣
rnA=RnA

.

(66)

Natural Jacobian variables for Ψ
CDCC(+)
i are rdA and

rpn, but here we use another set of Jacobian variables,
rpF and rnA. Taking into account Eq. (18) and (19) we
get
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M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA)

=

√
RnA

2µnA

∑

jnA mjnA
mlnA

Mn

< JAMA jnAmjnA
|JF MF >

× < JnMn lnAmlnA
|jnAmjnA

> γnA jnA lnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Y ∗
lnA mlnA

(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)− RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

] ∣∣∣
rnA=RnA

. (67)

Note that the CDCC wave function itself also depends on
quantum numbers of p− n and d−A subsystems, which
we don’t specify here. It will be done in the following up
paper where concrete calculations will be presented.

Thus we have obtained a remarkable result: the post
form of the CDCC amplitude, in contrast to the DWBA
one, is given by the sum of only two terms:

MCDCC(post)(kpF , kdA) =M
CDCC(post)
int (kpF , kdA)

−MCDCC(post)
SRnA

(kpF , kdA),

(68)

where the first term, which is the internal post form of the
CDCC amplitude, can be minimized by a proper choice
of UpF and the channel radius RnA, while the second
term, which is dominant, represents the surface integral
with the radius RnA, which encircles the internal volume
in the subspace over the coordinate rnA. If the channel
radius is larger than the n−A nuclear interaction radius
the second term is parametrized in terms of the reduced
width amplitude (ANC of the projection of the bound
state wave function of F on the two-body state n+A) and

the boundary condition at rnA = RnA. If M
CDCC(post)
int

is small enough,

MCDCC(post)(kpF , kdA) ≈ −MCDCC(post)
SRnA

(kpF , kdA).

(69)

Thus we succeeded to parametrize the post form of the
CDCC amplitude in terms of the R-matrix parameters.
Eq. (68) and parametrization of the surface term of the
post CDCC amplitude in terms of the R-matrix param-
eters, Eq. (67), are one of the main results of this paper.

Although it is assumed that M
CDCC(post)
int can be min-

imized so that the second term in Eq. (68) becomes
dominant, I would like to present a different form for

M
CDCC(post)
int (kpF , kdA), which leads to a different form

for the whole amplitude MCDCC(post)(kpF , kdA). To

this end, let us rewrite the transition operator ∆V
Ppn

pF

in M
CDCC(post)
int (kpF , kdA) as

∆V
Ppn

pF = U
Ppn

pA + Vpn − UpF

= [U
Ppn

pA + U
Ppn

nA + Vpn]− [V nA + UpF ] + V nA − UPpn

nA .

(70)

Here, V nA is the mean field potential supporting the

bound state (nA) while U
Ppn

nA is the projected optical
potential describing the n − A interaction in the initial
state of the reaction and entering the Schrödinger equa-
tion for the projected CDCC wave function in the initial
state. The bracketed potential operators are the right-
hand-side operators of the Schrödinger equations in the
internal region, rnA ≤ RnA,

(E − T )ΨCDCC(+)
i = (U

Ppn

pA + U
Ppn

nA + Vpn)Ψ
CDCC(+)
i

(71)
and

(E − T )χ(−)∗
pF IF ∗

A = (V nA + UpF )χ
(−)∗
pF IF ∗

A . (72)

Replacing the bracketed potential operators [U
Ppn

pA +

U
Ppn

nA + Vpn] and [V nA + UpF ] by E − −→T and E − ←−T ,

correspondingly, we get for M
CDCC(post)
int a new form:

M
CDCC(post)
int (kpF , kdA) =M

CDCC(post)
SRnA

(kpF , kdA)

+MCDCC(post)
aux (kpF , kdA), (73)

MCDCC(post)
aux (kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

nA |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

, (74)

∆V
Ppn

nA = V nA − UPpn

nA . (75)

Then the total post form of the CDCC amplitude can be
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written as

MCDCC(post)(kpF , kdA) =M
CDCC(post)
int (kpF , kdA)

−MCDCC(post)
SRnA

(kpF , kdA)

=M
CDCC(post)
SRnA

(kpF , kdA)−MCDCC(post)
SRnA

(kpF , kdA)

+MCDCC(post)
aux (kpF , kdA) =MCDCC(post)

aux (kpF , kdA)

=< χ
(−)
pF IFA |V nA − UPpn

nA |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

. (76)

Thus, we obtained another important result. The CDCC
amplitude in the post form is equal to the inner volume
integral over variable rnA with the transition operator

V nA − UPpn

nA . This transition operator is the difference

between the bound state potential V nA supporting the
final bound state (nA) and the projected optical poten-
tial describing the n − A interaction in the initial state.
It is worth mentioning that Eqs (68) and (76) are ex-

act within the CDCC approach. If M
CDCC(post)
int is small

enough, then

MCDCC(post)
aux (kpF , kdA) ≈ −MCDCC(post)

SRnA
(kpF , kdA).

(77)

However, I prefer Eq. (68) rather than (76). To calcu-

late M
CDCC(post)
aux one needs to know the overlap func-

tion in the internal region, where the overlap function is
model-dependent and requires microscopic calculations.
In contrast, in Eq. (68) the dominant part is the surface
integral, which is parametrized in terms of the reduced
width amplitude (ANC). The model dependence of the
surface part is related with the ambiguity of the optical
potentials and the value of the cut-off orbital angular mo-
mentum in the p− n subsystem in the CDCC approach.
Comparison with experiment allows one to extract the re-
duced width amplitude. The model-dependent internal
part in Eq. (68) is small. Eqs (68) and (76) is prelude
to the theory of the stripping to resonance, where the
convergence problem of the external part is one of the
main issue. As we have demonstrated in the post CDCC
formalism the external part doesn’t appear at all. It re-
solves the convergence problem related with the external
part.

D. Deuteron stripping to bound states. Prior

CDCC formalism

A priori, the amplitudes in the post and prior forms of
the CDCC formalism are not equal. That is why the ob-
tained equations using the surface integrals are expected
to be different in both formalisms. The prior form of the
CDCC stripping amplitude is

MCDCC(prior)(kpF , kdA)

=< Ψ
CDCC(−)
f |∆V

PnA

dA |ϕd χ
(+)
dA >, (78)

where

∆V
PnA

dA = UPnA

pA + VnA − UdA. (79)

The projected CDCC wave function in the final state is
a solution of the three-body Schrödinger equation

(E − T − UPnA

pA − VnA − V PnA
pn )Ψ

CDCC(−)∗
f = 0. (80)

Here,

P̂nA =

lmax
nA∑

lnA=0

lnA∑

mlnA
=−lnA

∫
dΩrnA

YlnA mlnA
(r̂nA)

× Y ∗
lnA mlnA

(r̂
′

nA). (81)

is the projection operator, which truncates the number of
the spherical harmonics YlnA mlnA

(r̂nA) in the coordinate
rnA.
Now, as usually, we split the amplitude MCDCC(prior)

into the internal and external parts in the subspace over
variable rnA:

MCDCC(prior)(kpF , kdA)

=M
CDCC(prior)
int (kpF , kdA) +M

CDCC(prior)
ext (kpF , kdA), ‘

(82)

where

MCDCC(prior)(kpF , kdA)

=< Ψ
CDCC(−)
f |UPnA

pA + VnA − UdA|ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

(83)

and

M
CDCC(prior)
ext (kpF , kdA)

=< Ψ
CDCC(−)
f |UPnA

pA − UdA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (84)

The external part of the prior amplitude (see discussion
in subsection II B), due to the structure of the transition
operator, is small and the dominant contribution comes
from the internal amplitude. We will rewrite this ampli-
tude singling out the surface integral over variable rnA.
To do it we rewrite the transition operator

∆V
PnA

dA = UPnA

pA + VnA − UdA

= [UPnA

pA + VnA + V PnA
pn ]− [Vpn + UdA].+ (Vpn − V PnA

pn )

(85)

The bracketed operators are the right-hand-side opera-
tors of the Schrödinger equations

(E − T )ΨCDCC(−)∗
f = (UPnA

pA + VnA + V PnA
pn )Ψ

CDCC(−)∗
f

(86)

and

(E − T )ϕd χ
(+)
dA = (Vpn + UdA)ϕd χ

(+)
dA . (87)



14

Taking into account these equations we can rewrite

M
CDCC(prior)
int (kpF , kdA) in the form:

M
CDCC(prior)
int (kpF , kdA) =M

CDCC(prior)
S (kpF , kdA)

+MCDCC(prior)
aux (kpF , kdA), (88)

where

MCDCC(prior)
aux (kpF , kdA)

=< Ψ
CDCC(−)
f |Vpn − V PnA

pn |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

(89)

and

M
CDCC(prior)
S (kpF , kdA)

= − < Ψ
CDCC(−)
f |←−T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

. (90)

Here, the kinetic energy operator T = TpF + TnA. In

M
CDCC(prior)
S the volume integral over rpF can be trans-

formed into the surface one taken over the sphere with the
infinitely large radius: rpF = RpF →∞. For rnA ≤ RnA,
due to the presence of the deuteron bound state wave
function, the integrand goes to zero exponentially, that
is this surface integral vanishes. Hence, only the sur-
face integral encircling the inner volume with the radius
rnA = RnA:

M
CDCC(prior)
S (kpF , kdA)

= − < Ψ
CDCC(−)
f |←−T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

= −MCDCC(post)
SRnA

(kpF , kdA). (91)

M
CDCC(post)
SRnA

is given by Eq. (67).

M
CDCC(prior)
aux (kpF , kdA) is an auxiliary internal part,

which is small because at rnA ≤ RnA and rpF > RF due
to the proton absorption in the nuclear interior, p − n
nuclear interaction is significantly depleted, and so the
difference Vpn − V PnA

pn . Then

MCDCC(prior)(kpF , kdA)

=MCDCC(prior)
aux (kpF , kdA)−MCDCC(post)

SRnA
(kpF , kdA)

+M
CDCC(prior)
ext (kpF , kdA), (92)

Thus the total prior form CDCC amplitude consists of
three terms, small auxiliary internal part, small external
prior form and the dominant surface term. We can see
that post and prior CDCC formalisms are not equivalent.
In the approach used in the paper the configuration space
over variable rnA was split into the internal and external
parts. As it has been discussed in Introduction, such a
splitting is natural because the main object of interest in
the analysis of deuteron stripping is the overlap function
IFA of the bound states wave functions of the target A
and final nucleus F . Its external part (rnA > RnA) is

parametrized in terms of the observable ANC while the
internal part is model-dependent.
In the post formalism the external part is domi-

nant. Invoking the post CDCC formalism allows us to
rewrite the external CDCC matrix element in the form
of the surface integral over variable rnA, which can be
parametrized in terms of the parameters used in the R-
matrix method for binary reactions, while the model-
dependent internal part gives small contribution. Thus
the volume part of the matrix element over variable rnA
is transformed to the surface integral. For transfer to
bound states such a transformation doesn’t bring any sig-
nificant advantages because the volume matrix element
converges. However, for stripping to resonance states
(see subsection III C) this transformation provides a de-
cisive benefit because it solves the convergence problem
of the matrix element. Here, the transformation of the
post CDCC matrix element has been presented mostly
for demonstration but the results will be used below in
subsection III C for stripping to resonance states.
The prior CDCC formalism would be preferable if we

split the matrix element into the internal and external
parts over variable rp n to separate the internal and pe-
ripheral parts of the deuteron bound state wave function.
But this wave function is well known and is not an ob-
ject of study. That is why below, when considering the
stripping to resonance states, we use only the post CDCC
formalism.

III. DEUTERON STRIPPING INTO

RESONANCE STATES

Now we proceed to the main goal of this paper, for-
mulation of the deuteron stripping into resonance states
using the surface integrals what will lead us to the gener-
alized R-matrix approach for the stripping into resonance
states. Let us consider the deuteron stripping

d+A→ p+ b+B. (93)

We assume that the resonance formed in the system
F = A + n can decay into channel B + b, which can
be different from the entry channel A+n. We start from
the post form and transform it to the surface integral
following the method applied for the stripping to bound
states. Now the application of the R-matrix approach
looks natural. Although we consider the deuteron strip-
ping leading to a specific final channel d+A→ p+b+B,
there can be a few open channels coupled to the chan-
nel n + A, which is formed after neutron is transferred
to the target A. As in the previous sections, follow the
R-matrix approach, we split the integration region over
rnA into two regions: internal and external. Internal re-
gion is determined as the one where all open channels are
coupled with each other, so that the transition from one
channel to another can occur only in the internal region.
The external region is the one where all the channels are
decoupled. We obtain new forms for the DWBA and
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then for the post form of the CDCC amplitude. For the
DWBA both post and prior approach will lead to the
same final expression. In the standard approach the post
form of the DWBA amplitude is mainly contributed by
the external part in the subspace rnA, where the con-
vergence question of the DWBA matrix element, which
contains the integration over rpF and rnA, becomes a
main issue. In the prior form the main contribution to
the DWBA matrix element mainly comes from the inter-
nal region in the subspace rnA, where a strong coupling
between different open channels becomes an issue. In a
new approach formulated below the DWBA amplitude
(in the post and prior forms) is written as the sum of
three amplitudes: small internal post and external prior
forms, and the dominant surface integral in the subspace
over rnA. This surface term is parametrized in terms
of the reduced width amplitudes, resonance energies and
boundary condition, that is the quantities used in a stan-
dard R-matrix approach. In the post CDCC approach
the amplitude is given by the sum of the small inter-
nal post form and the dominant surface term, that is, in
contract to the DWBA, no external prior form appears
in the CDCC method. This resolves the issue of the con-
vergence for stripping into resonant states.

A. Stripping to resonance states. Post form of

DWBA.

The post form of the DWBA amplitude can be ob-
tained by generalizing the corresponding equation for the
deuteron stripping to the bound state. As a starting
point, we use Eq. (7) in which, to get the amplitude
for the deuteron stripping to resonance states, we should
replace the overlap function IFA by the exact scattering

wave function Ψ
(−)
bB with the incident wave in the channel

b+B:

MDW (post)(P, kdA)

=< χ
(−)
pF Ψ

(int)(−)
bB | |∆V pF |ϕd ϕA χ

(+)
dA >, (94)

where ∆V pF = UpA + Vpn − UpF and

Ψ
(−)
bB ≡ Ψ

(−)
kbB

= Ψ
(+)∗
−kbB

. (95)

Since we consider the stripping to the resonance state,
which decays into two fragments b and B, there are three
particles, p, b and B, in the final state. Hence, the kine-
matics of the final state of the reaction depends on two
Jacobian momenta, for which we adopt the relative mo-
mentum of two fragments b and B and by the momen-
tum corresponding to the relative motion of the exit-
ing proton and the center of mass of the system b + B.
Thus the deuteron stripping reaction amplitude depends
on the momentum P = {kpF , kbB}, which is the six-
dimensional momentum conjugated to the Jacobian co-
ordinates of the system p+ b+B Y = {rpF , rbB}.

Then repeating the steps used in derivation of the ex-
pression for the post form of the DWBA amplitude for
deuteron stripping to the bound state we get

MDW (post)(P, kdA) =M
DW (post)
int (P, kdA)

+M
DW (prior)
ext (P, kdA) +MDW

S (P, kdA). (96)

Here, internal post amplitude M
DW (post)
int (P, kdA) and

external prior amplitude M
DW (prior)
ext (P, kdA) are given

by

M
DW (post)
int (P, kdA)

=< χ
(−)
pF Υ

(int)(−)
nA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

(97)

and

M
DW (prior)
ext (P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (98)

Here, Υ
(int)(−)
nA (rnA) =< ϕA|Ψ(int)(−)

bB > and

Υ
(ext)(−)
nA (rnA) =< ϕA|Ψ(ext)(−)

bB >.
The last term of Eq. (96), which will be transformed

to the surface integral, is

MDW
S (P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |←−T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (99)

Let us discuss the advantage of this new form of the
DWBA amplitude for the deuteron stripping to reso-

nance state(s). Since the internal part M
DW (post)
int is

given by the volume integral, its calculation requires

the knowledge of Ψ
(int)(−)
bB in the internal region. The

model dependence of this function in the nuclear inte-
rior (rnA ≤ RnA), where different coupled channels do
contribute, brings one of the main problems and main
uncertainty in the calculation of the internal matrix el-
ement. However, as it has been discussed in subsection
IIA, this matrix element gives a small contribution to
the total post form amplitude MDW (post) due to the
structure of the transition operator ∆V pF and constrain
rnA ≤ RnA. These arguments are also valid when con-
sidering the stripping into resonance states. A proper
choice of the optical potential UpF and the channel ra-
dius RnA may significantly reduce the contribution from
the internal post form DWBA amplitude. Due to the
structure of the transition operator ∆V dA, which has
been also discussed in subsection IIA, the external ma-

trix element M
DW (prior)
ext in the prior form is also small

and in some cases with reasonable choice of the channel
radius RnA even can be neglected. Note that in order to

keep small M
DW (post)
int the channel radius RnA cannot be

too large and in order to keep small M
DW (prior)
ext cannot

be too small. Thus with optimal choice of the chan-
nel radius the dominant part is the surface part MDW

S ,
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which contains only one volume integral over rpF . Eq.
(96), which presents a new form of the DWBA ampli-
tude for stripping to resonance states, is quite important
for analysis of the stripping to resonance In this sense

the usage of the external prior amplitude M
DW (prior)
ext

has clear benefit because it is small and better converges
the external post form. Also small is the internal ampli-

tude M
DW (post)
int . The main contribution to MDW (post)

comes from the surface term MDW
S . Using the R-matrix

representation of the scattering wave function Ψ
(−)∗
bB we

are able to express the total DWBA amplitude in terms
of the reduced width amplitudes, level matrix, bound-
ary condition and the channel radius, that is parameters
used in a standard R-matrix method to analyze binary
resonant reactions n+A→ b+B. Since the reaction un-
der consideration is the deuteron stripping, the presence

of the deuteron in the initial state and exiting proton
causes the distortions. That is why the reaction ampli-
tude, in addition to the R-matrix parameters describing
the binary subprocess, contains additional factors - dis-
torted waves in the initial and the final state. That is
why we can call the obtained expression for the DWBA
amplitude a generalized R-matrix for deuteron stripping
to resonance states.

Now we proceed to the derivation of the expressions for
each amplitude in the right-hand-side of Eq. (96) and the
total post form DWBA amplitude. Since the stripping
into resonance states can lead to rearrangement, the exit
channel b + B may differ from the entry channel n + A.

To proceed further we now use the equations for Ψ
(+)
bB

obtained in Appendix A. Taking into account Eqs. (95)
and (A1) we get

M
DW (post)
int (P, kdA) =

2 π

kbB

√
kbB
µbB

∑

JF MF , l ml Mn

< sms l ml|JF MF >< JnMn JpMp|JdMd >

e−i δhs
bB l il Y ∗

l ml
(−k̂bB)

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ < χ
(−)
pF ΞJF MF

τ nA |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

. (100)

In this equation we assume that the channel spin s and
its projection ms in the exit channel c = b+B are fixed
[41]. JF is the resonance spin (MF its projection) in the
subsystem F = n+A = b+B and l is the b+B orbital an-
gular momentum in the resonance state. The sum over
JF and l assumes that a few resonances with different
spins may contribute to the reaction. The subscript c
used in Appendix A for the channel b + B is replaced
here by bB. Also ΞJF MF

τ nA =< ϕA|XJF MF
τ > is projec-

tion of XJF MF
τ introduced in Appendix A on the bound

state ϕA. The bound-state like wave function XJF MF
τ

describes the system F = n+ A = b +B in the internal
region. A priori, it can be calculated using, for example,
the shell model approach [36]. In Appendix A XJF MF

τ is
written as a nonorthogonal sum of coupled channels, see
Eq. (A4). If we neglect the contribution from the chan-

nel c, then ΞJFMF

τ nA can be approximated by the internal
part of the overlap function, see Eq. (18). Taking into
account this equation (rewritten in LS-coupling scheme)
we get

M
DW (post)
int (P, kdA) =

2 π

kbB

√
kbB
µbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > e−i δhs
bB l Y ∗

l ml
(−k̂bB)

×
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ < χ
(−)
pF Y ∗

l′ ml′
(r̂nA) I

F
A s′ l′ JF

(rnA) |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

. (101)

Here we added the sum over the channel spin s′ (its pro-
jectionms′ in the entry channel c′ = n+A of the resonant
subreaction n+A→ F → b+B and over the n+A or-

bital angular momentum l′. The sum over Mn and s′

appears because the transferred neutron is intermediate
(virtual). It is important that with a proper choice of
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the optical potential UpF the matrix element M
DW (post)
int

can be minimized so that its model dependence wouldn’t
have impact on the total matrix element MDW (post).

To obtain the expression for M
DW (prior)
ext we use for

the external part Ψ
(ext)(−)
bB , which can be obtained from

Eq. (A31), assuming that the resonance contribution to
this wave function is dominant. In the sum over JF in
Eq. (A31) we keep only those total angular momenta at

which resonances contributing to the reaction occur. Let
us consider two possible cases.
(i) The exit channel c = b+B in the resonant sub-process
n+A→ b+B is different from channel c′ = n+A. In this
case the external resonant wave function is given by Eq.
(A36) and its projection on the bound state ξc′ = ϕA is

determined by Eq. (A37). Then M
DW (prior)
ext reduces to

M
DW (prior)
ext (P, kdA) = − i

2 π

kbB

√
vbB
vnA

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗
l ml

(−k̂bB)S
JF

bB s l;nAs′ l′

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA
Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (102)

Here, V dA is given by Eq. (35). In the external region
V nA = 0 and V dA = UpA − UdA. Also has been added
the sum over the orbital angular momentum l and its
projection ml (l′ and ml′) in the exit (entry) channel
c = b+B (c′ = n+A) of the resonant subreaction n+A→
b+B, the sum over the channel spin s′ and its projection
ms′ in the entry channel c′ = n + A of the resonance
subprocess n+A→ b+B and the sum overMn because

the neutron is transferred particle. The projections of the
spins of the incident deuteronMd, the exiting protonMp,
the channel spin s and its projection ms of the exiting
particles b and B are fixed. We also use the symmetry
of the S matrix: SJF

c′ s′ l′;c s l = SJF

c s l;c′ s′ l′ . The matrix

element SJF

bB s l;nAs′ l′ is given by Eq. (A45). Substituting

it into Eq. (102) gives

M
DW (prior)
ext (P, kdA) =

2 π

kbB

√
vbB
vnA

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗
l ml

(−k̂bB)

× e− i δhs
bB l e− i δhs

nA l′

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ [Γτ nAs′ l′ JF
(EnA)]

1/2 Ol′(knA, RnA)

RnA

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA

RnA

O∗
l′(knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (103)

Now we take into account that

Ol̃(kc̃, Rc̃) =
√
F 2
l̃
(kc̃, Rc̃) +G2

l̃
(kc̃, Rc̃)

× e− i ωc̃ l̃ e
i arctan

F
l̃
(kc̃, Rc̃)

G
l̃
(kc̃, Rc̃)

=
√
F 2
l̃
(kc̃, Rc̃) +G2

l̃
(kc̃, Rc̃) e

i δhs

c̃ l̃ , (104)

which for the channel c̃ = c′ = n+A and l̃ = l′ takes the
form

Ol′(knA, RnA) =
√
F 2
l′ (knA, RnA) +G2

l′(knA, RnA)

× e
i arctan

F
l′

(knA,RnA)

G
l′

(knA,RnA)

=
√
F 2
l′ (knA, RnA) +G2

l′(knA, RnA) e
i δhs

nA l′ , (105)

where in the absence of the Coulomb interac-
tion Fl(ρ) = (π ρ/2)1/2 Jl+1/2(ρ) and Gl(ρ) =

(−1)l (π ρ/2)1/2 J−(l+1/2)(ρ), J±(l+1/2)(ρ) are Bessel
functions.

Then using Eqs. (A41) and (105) we get
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M
DW (prior)
ext (P, kdA) = 2 π

√
2µnA

µbB kbB RnA

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB)

× e− i δhs
bB l

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ γτ nAs′ l′ J

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA

RnA

O∗
l′(knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (106)

(ii) If c = c′, that is b = n and B = A. Here two cases
are possible: non-diagonal transition for which s 6= s′

or/and l 6= l′ and diagonal transition with l = l′ and
s = s′. The amplitude for the nondiagonal transition can

be obtained from (102). Here we present the expression
for the diagonal transition (elastic scattering) amplitude,
which can be obtained taking into account Eq. (A33):

M
DW (prior)
ext (P, kdA) = i

2 π

knARnA

∑

JF MF l ms′ ml ml′ Mn

il < lml sms|JF MF >< lml′ sms′ |JF MF >

× < JnMn JpMp|JdMd >< JnMn JAMA|sms′ > Y ∗
l ml

(−k̂nA)
[
1− SJF

(nA) s l;(nA) s l

]
Ol(knA, RnA)

× < χ
(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (107)

Substituting the expression for the elastic scattering S-
matrix element SJF

(nA) s l;(nA) s l given by Eq. (A43) we
obtain

M
DW (prior)
ext (P, kdA) = i

2 π

knARnA

∑

JF MF l ms′ ml ml′ Mn

il < lml sms|JF MF >< lml′ sms′ |JF MF >

× < JnMn JpMp|JdMd >< JnMn JAMA|sms′ > Y ∗
l ml

(−k̂nA)

×
[
1− e−2 i δhs

nA l (1 + i
N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ [Γτ nAs l JF
(EnA)]

1/2)
]
Ol(knA, RnA)

× < χ
(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (108)

One-level, one channel case is the simplest one for which

M
DW (prior)
ext (P, kdA) boils down to
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M
DW (prior)
ext (P, kdA) = i

2 π

knARnA

∑

JF MF l ms′ ml ml′ Mn

il < lml sms|JF MF >< lml′ sms′ |JF MF >

× < JnMn JpMp|JdMd >< JnMn JAMA|sms′ > Y ∗
l ml

(−k̂nA)
[
1− e−2 i δhs

nA s l JF e2 i δnAs l JF

]
Ol(knA, RnA)

× < χ
(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

, (109)

where

δnAs l JF
= arctan

ΓnA s l JF
(EnA)

2(EnA(0) s l JF
− EnA)

,

EnA(0) s l JF
> EnA, (110)

is the resonant phase shift, EnA(0) s l JF
is the real part of

the complex resonance energy of the resonance with the
quantum numbers s l JF in the channel n + A. Now we

derive the equation forMDW
S by transforming it into the

surface integrals over variable rnA. We can repeat the
discussion in Section II A. The integration in Eq. (99)
over rnA is taken over the external volume restricted by
two spherical surfaces: the inner surface with the radius
RnA and the external surface with the radius R

′

nA →∞.
As it has been shown in Appendix B after regularization
the integral over the infinitely large sphere vanishes (see
Eq. (B22)) and

MDW
S (P, kdA) = −MDW

SRnA
(P, kdA) = R2

nA

1

2µnA

∫
d rpF

∫
dΩrnA

[ϕd(rpn)χ
(+)
kdA

(rdA)χ
(+)
−kpF

(rpF )
∂ [Υ

(ext)(−)
nA (rnA)]

∗

∂ rnA

− χ(+)
−kpF

(rpF ) [Υ
(ext)(−)
nA (rnA)]

∗
∂ ϕd(rpn)χ

(+)
kdA

)(rdA)

∂ rnA
]
∣∣∣
rnA=RnA

. (111)

Here, −MDW
SRnA

(P, kdA) is the surface integral encircling

the inner surface of the external volume at rnA = RnA.
A negative sign appears because the normal vector to the
surface is directed to the center of the volume, i.e. op-
posite to the normal vector to the external surface (at
infinitely large radius). For simplicity, we dropped the
quantum numbers in Eq. (111) but they will be recov-

ered below. Note that Eq. (111) can be obtained from

Eq. (27) by substituting Υ
(ext)(−)
nA (rnA) for the overlap

function IFA JF MF JA MA mnA
(rnA).

For the exit channel c = b + B in the resonant sub-
process n+A→ b+B different from channel c′ = n+A
using Eq. (A37) we get

MDW
S (kpF , kdA) = −MDW

SRnA
(P, kdA) = − i

2 π

kbB

√
vbB
vnA

R2
nA

1

2µnA

∑

JF MF l l′ ml ml′ s
′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JM >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB)S

JF

nA s′ l′;bB s l

∫
d rpF χ

(+)
−kpF

(rpF )

×
∫

dΩrnA
Yl′ ml′

(r̂nA)
[
ϕd(rpn)χ

(+)
kdA

(rdA)
∂ Ol′ (knA, rnA)

rnA

∂ rnA
− χ(+)

−kpF
(rpF )

Ol′ (knA, rnA)

rnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

= − i 2 π
kbB

√
vbB
vnA

1

2µnA

∑

JF M l l′ ml ml′ s
′ Mn

il < lml sms|JFM >< l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >

× < JnMn JpMp|JdMd > Y ∗
l ml

(−k̂bB)S
JF

bB s l;nA s′ l′ Ol′ (knA, RnA)

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (112)
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Here,

BnA = RnA

∂Ol′ (knA,rnA)
∂rnA

∣∣∣
rnA=RnA

Ol′(knA, RnA)
(113)

is the boundary condition. Sum over Mn is a for-

mal because Md and Mp are fixed. The coefficient
< JnMn JpMp|JdMd > appears from the vertex d →
p + n and the product < l′ml′ s

′ms′ |JF MF ><
JnMn JAMA|s′ms′ > from the vertex n+A→ F . The

matrix element SJF

bB s l;nAs′ l′ is given by Eq. (A45). Sub-

stituting it into Eq. (112) gives

MDW
S (kpF , kdA) = −MDW

SRnA
(P, kdA) =

π

kbB

√
vbB
vnA

1

µnA

∑

JF MF l l′ s′ ml ml′ ms′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB) e

− iδhs
bB l e− i δhs

c′ l′

×
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ [Γτ nAs′ l′ JF
(EnA)]

1/2Ol′(knA, RnA)

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (114)

Taking into account Eq. (A41) and Eq. (104) we arrive at the final form for MDW
S (kpF , kdA):

MDW
S (kpF , kdA) = −MDW

SRnA
(P, kdA) = π

√
2RnA

µbB µnA kbB

∑

JF MF l l′ s′ ml ml′ ms′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB) e

− i δhs
bB l

×
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ γτ nAs′ l′ J

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (115)

Now let us consider the diagonal transition c s l→ c s l,
where c = c′ = n+A. To get MDW

S once again we start

from Eq. (111). Now in this equation Υ
(ext)(−)
nA should

be replaced by Υ
J(ext)(0)
c s lms;c s lms′′

+Υ
J(ext)(−)
c s lms;c s lms′′

given by

Eqs. (A30) and (A33). Then the equation for surface
matrix element for the diagonal transition takes the form

MDW
S (kpF , kdA) = i

π

µnA knA

∑

JF MF l ml ml′′ ms′′ Mn

il < lml sms|JF MF >< lml′′ sms′′ |JF MF >

× < JnMn JAMA|sms′′ >< JnMn JpMp|JdMd > Y ∗
l ml

(−k̂nA)

×
[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ Γτ nA s l JF
(EnA)]

1/2
)]
Ol(knA, RnA)

×
∫

d rpF χ
(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

.

(116)
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Summing up all three amplitudes M
DW (post)
int (P, kdA),

M
DW (prior)
ext (P, kdA) and MDW

S (kpF , kdA) =
−MDW

SRnA
(kpF , kdA) we get the total post DWBA

for the (d, p) stripping.

(i) Resonant reaction n + A → b + B, that is
c = b + B 6= c′ = n + A. Then the total post
form of the DWBA deuteron stripping amplitude is

MDW (post)(P, kdA) = 2 π

√
1

µbB kbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > e−i δhs
bB l Y ∗

lml
(−k̂bB)

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ

×
{
< χ

(−)
pF IFA s′ l′ JF

(rnA) |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

+

√
2µnA

RnA
γτ nAs′ l′ J

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA

RnA

O∗
l′(knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

+

√
RnA

2µnA
γτ nAs′ l′ J

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

}
. (117)

Assuming in this equation b = n and B = A, that is
c = c′ but l 6= l′ and/or s 6= s′ we get the expression
for the DWBA deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A)l s → F →
(n+A)l′ s′ .
Equation (117) is very instructive for understanding

the difference between the stripping to resonance states
and on-shell binary resonant reactions. As we can see, the
transfer reaction amplitude contains the resonance fac-
tors determining the resonant subprocess n+A→ b+B,
the partial width amplitude [Γν bB s l JF

(EbB)]
1/2 of the

level ν for the decay to the exit channel b+B, the matrix
elements of the inverse R-matrix level matrix [A−1]ντ
and the reduced width amplitude γτ nA s′ l′ J of the level
τ for the entry channel n+A rather than the correspond-
ing partial width amplitude which would present if we
consider the corresponding on-shell binary resonant re-
action n+ A→ b + B. The difference is crucial because
the partial width amplitude [Γν bB s l JF

(EbB)]
1/2 contains

the penetrability factor, see Eq. (A41), which is missing
in the reduced width amplitude and, hence, in Eq. (117).
The lower is the energy of the resonance, the stronger is
its suppression due to the barrier penetrability in the en-

trance channel in the on-shell binary resonant reaction
n + A → b + B. Besides, if a few resonances do con-
tribute with the different l′, then the higher is l′, the
stronger is its suppression. However, it is not the case
if one tries to populate low-energy resonances with dif-
ferent l′ using transfer reaction. Missing penetrability
factor in the entry channel of the subresonance reaction
n + A → b + B in the transfer amplitude makes it pos-
sible to populate low-lying resonances. Moreover for the
same reason, the resonances with higher l′ are not sup-
pressed in the stripping. Hence, when a few resonances
are populated in the transfer reaction, the measured ex-
perimental spectrum of the fragments b and B can be
quite different from the one measured using the on-shell
binary resonant reaction. The missing penetrability fac-
tor in the entry channel n+A of the resonant subreaction
n+A→ b+B in the transfer reaction explains the power
of the Trojan Horse method as indirect technique in nu-
clear astrophysics (see [32, 37] and references therein).
(ii) Diagonal transition in the resonant subprocess (n+

A)l s → F → (n + A)l s, that is, c = c′, l = l′, s = s′.
The total post form of the deuteron stripping DWBA
amplitude is
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MDW (post)(P, kdA) = 2 π
∑

JF MF lms′′ ml ml′′ Mn

il < sms l ml|JF MF >< sms′′ l ml′′ |JF MF >

× < JnMn JAMA|sms′′ >< JnMn JpMp|JdMd > e−i δhs
nA l Y ∗

lml
(−k̂nA)

×
{√

1

µnA knA

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ < χ
(−)
pF IFA s l JF

(rnA) |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

+ i

[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ Γτ nA s l JF
(EnA)]

1/2
)]

×
(

1

knARnA
Ol(knA, RnA) < χ

(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l ml′′

(r̂nA)|∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

+
1

2µnA knA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

)}
. (118)

B. Stripping to resonance states. Prior form of

DWBA.

Here we show that starting from the prior form we are
able to obtain the generalized DWBA R-matrix ampli-
tude for the deuteron stripping to resonance states, Eq.
(96), much easier than from the post form. The prior
of the DWBA amplitude for deuteron stripping to reso-
nance states is

MDW (prior)(P, kdA)

=< χ
(−)
pF Ψ

(−)
bB | |∆V dA|ϕd ϕA χ

(+)
dA >, (119)

where ∆V dA is defined by Eq. (35). As usually, we split
the amplitude into internal and external parts

MDW (prior)(P, kdA) =M
DW (prior)
int (P, kdA)

+M
DW (prior)
ext (P, kdA). (120)

with

M
DW (prior)
int (P, kdA)

=< χ
(−)
pF Ψ

(int)(−)
bB |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

(121)

and

M
DW (prior)
ext (kpF , kdA)

=< χ
(−)
pF Ψ

(ext)(−)
bB |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (122)

The splitting of the amplitude into the internal and ex-
ternal parts in the subspace over the coordinate rnA is
necessary to rewrite the prior DWBA amplitude in the
generalized R-matrix approach for stripping to resonance

states. As we have discussed in subsections IIA and
IIIA, the external matrix element M

DW (prior)
ext in the

prior form is small and in some cases with reasonable
choice of the channel radius RnA even can be neglected.
It is important for analysis of the stripping to resonance
states because the external part in the post form doesn’t
converge. In this sense the usage of the prior form in
the external part has clear benefit. The main contribu-
tion to the prior form amplitude MDW (prior) comes from

the internal part M
DW (prior)
int . Since the internal part

is given by the volume integral, its calculation requires

the knowledge of Ψ
(int)(−)
bB in the internal region. The

model dependence of this function in the nuclear interior
(rnA ≤ RnA), where different coupled channels do con-
tribute, brings one of the main problems and main uncer-
tainty in the calculation of the internal matrix element.
Using the surface integral we can rewrite the volume inte-
gral of the internal matrix element in terms of the volume
integral in the post form and dominant surface integral
taken over the sphere at rnA = RnA. With reasonable
choice of the channel radius RnA the contribution from
the internal volume integral in the post form can be min-
imized to make it significantly smaller than the surface
matrix element. The latter can be expressed in terms of
the R-matrix parameters - the observable reduced width
amplitude (ANC), boundary condition and channel ra-
dius. Repeating the steps outlined in subsection II B we
get

M
DW (prior)
int (P, kdA)

=M
DW (post)
int (P, kdA) +MDW

S (P, kdA). (123)
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Here, M
DW (post)
int has been previously considered and is

given by Eqs. (100) and (101) whileMDW
S takes the form

MDW
S (P, kdA)

= − < χ
(−)
pF Υ

(ext)(−)
nA |←−T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

,

(124)

where Υ(ext)(−) =< Ψ
(ext)(−)
bB |ϕA >. The fact that the

volume integral in this equation is the internal one makes
transformation of this volume matrix element to the sur-
face one much easier than for the post form. The tran-
sition operator T = TpF + TnA. Since rnA ≤ RnA at
rpF → ∞ the integrand in Eq. (99) vanishes exponen-
tially due to the presence of ϕd. Hence, the operator TpF
is Hermitian, that is, applying the integration by parts
over rpF twice we get

< χ
(−)
pF Υ

(ext)(−)
nA |←−T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

=< χ
(−)
pF , < Ψ

(ext)(−)
bB |ϕA > | −→T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

= 0. (125)

Thus MDW
S (P, kdA) reduces to

MDW
S (P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |←−T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

.

(126)

Using the Green’s theorem we can transform this vol-
ume integral into the surface one. Note that the volume
integral over rnA is constrained by the sphere with the
radius rnA = RnA. Hence, only one surface integral ap-
pears with rnA = RnA. Here we see an important ad-
vantage of using the prior form versus the post one. In
the post form transformation of the external volume in-
tegral to the surface one led to two surface integrals at
rnA = RnA and rnA = R

′

nA → ∞. It required an elabo-
rate proof, which included regularization, to demonstrate
that the surface integral at rnA = R

′

nA → ∞ vanishes.
After transformation to the surface integral we get

MDW
S (P, kdA) = −MDW

SRnA
(P, kdA),

(127)

Eqs (111), (112) and (115) determine this surface inte-
gral.

C. Stripping to resonance states. Post CDCC

formalism.

The CDCC approach for stripping to resonance states,
which takes into account the deuteron breakup in the
initial channel, definitely has advantage compared to a
standard DWBA. The application of the surface formu-
lation of the reaction theory for the DWBA has been

done mainly for demonstration, but our main goal is the
CDCC.
Here we present the derivation of the post form CDCC

amplitude using the surface integral. This amplitude is

MCDCC(post)(kpF , kdA)

=< χ
(−)
pF Ψ

(ext)(−)
bB |∆V

Ppn

pF |Ψ
CDCC(+)
i > . (128)

This equation is an extension of the post CDCC am-
plitude for stripping to bound states, see Eq. (54).

∆V
Ppn

pF is defined by Eq. (70). Now, as usually, we split

MCDCC(post) into the internal and external parts in the
subspace rnA:

MCDCC(post)(P, kdA) =M
CDCC(post)
int (P, kdA)

+M
CDCC(post)
ext (P, kdA). (129)

The internal amplitude M
CDCC(post)
int is given by

M
CDCC(post)
int (P, kdA)

=< χ
(−)
pF Ψ

(ext)(−)
bB |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

.

(130)

Correspondingly, the external amplitude is

M
CDCC(post)
ext (P, kdA)

=< χ
(−)
pF Ψ

(ext)(−)
bB |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA>RnA

.

(131)

Now we repeat the steps outlined in subsection II C. Tak-
ing into account Eqs (58), (59) and (60) we arrive at

M
CDCC(post)
ext (P, kdA) ≡MCDCC(post)

S (P, kdA)

=< χ
(−)
pF Ψ

(ext)(−)
bB |←−T −−→T |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

,

(132)

where T = TpF + TnA. It is shown in Appendix C that

M
CDCC(post)
S can be reduced to

M
CDCC(post)
S (P, kdA) = −MCDCC(post)

SRnA
(P, kdA)

=< χ
(−)
pF Ψ

(ext)(−)
bB |←−T nA −

−→
T nA|ΨCDCC(+)

i >
∣∣∣
rnA≤RnA

.

(133)

This integral can be directly transformed into the surface
integral with rnA = RnA encircling the internal volume,
while the integral over rpF is taken over all the coordi-
nate space. Thus we have shown that the post CDCC
amplitude for stripping to resonance states is given by
the difference of two terms, internal post CDCC ampli-
tude and the surface integral:

MCDCC(post)(P, kdA) =M
CDCC(post)
int (P, kdA)

−MCDCC(post)
SRnA

(kpF , kdA). (134)
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The internal amplitude M
CDCC(post)
int can be minimized

by a proper choice of UpF and the channel radius RnA,
while the surface integral is dominant. If the channel
radius is larger than the n − A nuclear interaction ra-
dius the second term is parametrized in terms of the re-
duced width amplitude and the boundary condition at
rnA = RnA. Thus we succeeded to parametrize the post
form of the CDCC amplitude in terms of the R-matrix
parameters. It is one of the main results of this paper.
Eq. (134) is the most important result of this paper.
Due to the absence of the external term, which is present

in the DWBA and which causes the convergence issue,
the convergence problem in the post CDCC approach is
resolved: the integration in the surface matrix element
is performed over the full coordinate space only over one
coordinate rpF rather than over two coordinates, rpF and
rnA.

Expression for M
CDCC(post)
int for different cases can

be obtained from Eq. (101) by replacing the

initial channel wave function ϕd(rpn)χ
(+)
kdA

)(rdA) by

Ψ
CDCC(+)
i (rpF , rnA):

M
CDCC(post)
int (P, kdA) =

2 π

kbB

√
kbB
µbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >

× < s′ms′ l
′ml′ |JF MF >< JnMn JAMA|s′ms′ > e−i δhs

bB l Y ∗
lml

(−k̂bB)
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ

× < χ
(−)
pF IFA s′ l′ JF

(rnA) |∆V pF |ΨCDCC(+)
i (rpF , rnA) >

∣∣∣
rnA≤RnA

. (135)

Note that the CDCC wave function itself also depends on
quantum numbers of p− n and d−A subsystems, which
we don’t specify here. It will be done in the following
up paper where concrete calculations will be presented.

Natural Jacobian variables for Ψ
CDCC(+)
i are rdA and

rpn, but we use here another set of Jacobian variables,

rpF and rnA.

To write down explicitly M
CDCC(post)
SRnA

(kpF , kdA) in

terms of the surface integral we can use Eq. (111) re-
placing the initial channel wave function by the CDCC
one:

M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA)

=
R2

nA

2µnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

r̂nA

[
Υ

(ext)(−)∗
nA

(←−∇rnA
−−→∇rnA

)
Ψ

CDCC(+)
i (rpF , rnA)

] ∣∣∣
rnA<RnA

=
R2

nA

2µnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

[
Ψ

CDCC(+)
i (rpF , rnA)

∂Υ
(ext)(−)∗
nA

∂rnA
− Υ

(ext)(−)∗
nA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂rnA

] ∣∣∣
rnA=RnA

.

(136)

We can extend corresponding equations from subsection
IIIA by replacing the initial channel wave function by the
CDCC one. In particular, for the nodiagonal transition

in the resonant subreaction c′ s′ l′ → c s l, where c = b+B
and c′ = n+A, we get from Eq (115)
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M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(P, kdA) = π

√
2RnA

µbB µnA kbB

∑

JF MF l l′ s′ ml ml′ ms′ Mn

il

× < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >

× Y ∗
l ml

(−k̂bB) e
− i δhs

bB l

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ γτ nAs′ l′ J

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

. (137)

Correspondingly, the surface integral for the diagonal transition c s l→ c s l can be obtained from Eq. (116):

M
CDCC(post)
S (kpF , kdA) = i

π

µnA knA

∑

JF MF lml ml′′ ms′′ Mn

il < lml sms|JF MF >< lml′′ sms′′ |JF MF >

× < JnMn JAMA|sms′′ > Y ∗
l ml

(−k̂nA)

×
[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nA s l JF
(EnA)]

1/2 [A−1]ντ Γτ nAs l JF
(EnA)]

1/2
)]
Ol(knA, RnA)

×
∫

d rpF χ
(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

.

(138)

Summing up two amplitudes M
CDCC(post)
int (P, kdA)

and MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA) we get the

total post CDCC amplitude for the (d, p) stripping.

(i) Resonant reaction n+A→ b+B, that is c = b+B 6=
c′ = n + A. The total post form of the CDCC deuteron
stripping amplitude can be obtained from Eq. (117):

MCDCC(post)(P, kdA)(P, kdA) = 2 π

√
1

µbB kbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× < JnMn JAMA|s′ms′ > e−i δhs
bB l Y ∗

l ml
(−k̂bB)

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ

×
{
< χ

(−)
pF IFA s′ l′ JF

(rnA) |∆V pF |ΨCDCC(+)
i (rpF , rnA) >

∣∣∣
rnA≤RnA

+

√
RnA

2µnA
γτ nAs′ l′ J

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

}
. (139)

Assuming in this equation b = n and B = A, that is c = c′ but l 6= l′ and/or s 6= s′ we get the expression for
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the post CDCC deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A)l s → F →
(n+A)l′ s′ .

(ii) Diagonal transition, c = c′, l = l′, s = s′. The
total post form of the CDCC amplitude is

MCDCC(post)(P, kdA) = 2 π
∑

JF MF lms′′ ml ml′′ Mn

il < sms l ml|JF MF >< sms′′ l ml′′ |JF MF >

× < JnMn JAMA|sms′′ > e−i δhs
nA l Y ∗

lml
(−k̂nA)

×
{√

1

µnA knA

N∑

ν,τ=1

[Γν nA s l JF
(EnA)]

1/2 [A−1]ντ < χ
(−)
pF IFA s l JF

(rnA) |∆V pF |ΨCDCC(+)
i (rpF , rnA) >

∣∣∣
rnA≤RnA

+ i

[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ Γτ nAs l JF
(EnA)]

1/2
)]

× 1

2µnA knA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

}
. (140)

Eqs (139) and (140) are the final and main result of
this paper. Both matrix elements consist of only terms,
the internal post CDCC and the surface term. The in-
ternal term contains the integration over rnA in the in-
ternal volume rnA ≤ RnA. Hence, at rpF → ∞ vari-
ables rdA ∼ rpF → ∞ and rpn ∼ rpF → ∞. But then

Ψ
CDCC(+)
i (rpF , rnA) ∼ r−3

pF [35] the integral over rpF
does converge. The same conclusion is true for the sur-
face integral in which rnA = RnA. Hence, in this matrix

element also Ψ
CDCC(+)
i (rpF , rnA) ∼ r−3

pF and integral
over rpF converges. Both amplitudes are parametrized
in terms of the parameters used in the conventional R-
matrix approach and providea tool to analyze the strip-
ping into resonance states using generalized R-matrix
approach. Finally, both amplitudes, (139) and (140),
don’t have penetration factor in the entry channel n+A
of the resonance formation in the resonant subreactions
n+A→ b+B and n+A→ n+A. That is why stripping to
resonantstates provides a powerful tool to measure reso-
nances in the subsystem n+A very close to the threshold,
which can be suppressed in the on-shell binary resonant
reaction but not in the stripping to resonance states.

IV. SUMMARY

The theory of the deuteron stripping populating bound
and resonance states based on the surface integral for-
malism is presented. To demonstrate the theory I first
develop it for the DWBA. Since the DWBA is outdated
and, definitely, deficient compared to the CDCC, the the-
ory is extended to the CDCC formalism. The theory is
applied for stripping to bound and resonance states. The

eventual goal of this paper is to deliver the theory of the
deuteron stripping to resonance states within the CDCC
formalism using the surface integral formulation of the
reaction theory [38]. Transformation of the volume ma-
trix element to the surface one (in the subspace over rnA)
and R-matrix representation of the scattering wave func-
tion of the fragments formed by the resonance decay al-
lows one to parametrize the reaction amplitude in terms
of the R-matrix parameters used in the analysis of the
binary resonant reactions. Since the reaction under con-
sideration is the deuteron stripping, the presence of the
deuteron in the initial state and exiting proton causes
the distortions. That is why the reaction amplitude,
in addition to the R-matrix parameters describing the
binary subprocess, contains additional factors - CDCC
wave function describing the d−A scattering in the ini-
tial channel (coupled to the deuteron breakup channel)
and the proton distorted wave in the final state. Hence,
the approach can be called a generalized R matrix for the
stripping to resonance states. The advantage of the ap-
proach is that the reaction amplitude for stripping to res-
onance states in the post CDCC formalism doesn’t have
convergence problem and is parametrized in terms of the
same observables as binary resonant reactions. Hence,
the formalism provides experimentalists a consistent tool
to analyze binary resonant reactions and stripping re-
actions populating resonant states extracting the same
observable parameters, namely, reduced widths (ANCs).
The power of the method has been demonstrated in the
analysis of the Trojan Horse reaction 19F(d, n α)16O [32].
The numerical application of the method will be demon-
strated in the following up papers.
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Appendix A: b+B scattering wave function Ψ
(+)
bB

In this Appendix we consider the representation of the

scattering Ψ
(+)
bB wave function used in the R-matrix ap-

proach for binary resonance processes [39, 40]

1. Internal scattering wave function Ψ
(+)
bB

A general equation for the internal wave function con-
tains the sum over total angular momentum JF and its
projection MF . Since we are interested in a wave func-

tion Ψ
(+)
bB describing a resonance in the system F = b+B,

we consider only the internal wave function at given JF ,
at which resonance occurs. In the internal region in the
state with the total momentum JF , channel spin s (its
projection ms) in the initial channel c = b+B the wave

function Ψ
(+)
bB can be written as [39]

ΨJF (int)(+)
c sms

=
2 π

kc

√
kc
µc

∑

M lml

e−i δhs
c l il < sms l ml|JF MF >

× Y ∗
l ml

(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ X
JFMF
τ .

(A1)

Here, Ec = EbB and kc = kbB are the relative energy
and momentum of particles b and B, µc = µbB , Γν c(Ec)
is the formal (R-matrix) partial resonance width of the
level ν in the channel c = b+B, A is the R-matrix level
matrix, N is the number of the levels included, σc l is the
Coulomb scattering phase shift in the channel c and the
partial wave l, δhsc l is the hard-sphere scattering phase
shift in the channel c given by

δhsc l = −ωc l + arctan
Fl(kc, Rc)

Gl(kc, Rc)
, (A2)

where Fl(kc, rc) and Gl(kc, rc) are regular and singular
Coulomb solutions of the radial Schrödinger equation,

ωl = σc l − σc 0 =

l∑

n=1

arctan
ηc
n
, (A3)

σc l is the Coulomb scattering phase shift in the l-partial
wave, ηc is the Coulomb parameter for the scattering of
the fragments in the channel c.

We consider only two coupled channels c = b + B
and c′ = n + A. Also XJF MF

τ is an eigenfunction of
the Hamiltonian describing the compound system F =
n + A = b + B in the internal region excited to the dis-
crete level τ with the total angular momentum JF and

its projection MF [42]. A separable form for Ψ
JF (int)
c sms

reflects the fact that we consider the b + B interaction
proceeding through resonance states. The entry channel
of this scattering is the channel c = b + B. The inverse
level matrix contains contribution from all N resonance
levels. In a simple one level case it reduces to the well-
known Breit-Wigner resonance propagator. All the open
channels coupled to c contribute to XJF MF

τ and deter-
mine possible exit channel contributions into resonance
scattering. Hence, in the internal region, where different
open channels are coupled, XJF MF

τ can be written as a
nonorthogonal sum of these channels [39]:

XJF MF
τ =

∑

c̃ s̃ l̃ ms̃ j

1

rc̃
wτ c̃ j Â{ξc̃ φJF MF

c̃ s̃ l̃ ms̃
uc̃ s̃ l̃ JF j},

(A4)

where ξc̃ is the product of the internal bound state wave
functions of the fragments in the channel c̃, c̃ = c, c′,
uc̃ s̃ l̃ JF j(rc̃) is a set of the radial wave functions of the
relative motion of the fragments in the channel c̃ with
the channel spin s̃, orbital angular momentum l̃ and to-
tal angular momentum JF in some adopted potential,
φJF MF

c̃ s̃ l̃ ms̃
, where ms̃ is the projection of s̃, is the channel

wave function (in LS-coupling). Also Â is the antisym-
metrization operator between the nucleons of the frag-
ments in the channel c̃. We consider only two coupled
channels, c = b + B and c′ = n + A. Thus the initial
channel c can propagate into two final channels c and c′

via the intermediate resonances. Although Eq. (A4) con-
tains the sum over all channel spins s̃ and projections in
each open channel, in what follows consider the contribu-
tion to XJF MF

τ only from the channel with fixed channel
spin and its projection.
First, let us consider the contribution of the channel

c s′′ms′′ into X
JF MF
τ . In this channel ξc = ϕb ϕB and

φJF MF

c s′′ l′′ ms′′
=
∑

ml′′

< s′′ms′′ l
′′ml′′ | JF MF >

× Yl′′ ml′′
(r̂c)φc s′′ ms′′

, (A5)

φc s′′ ms′′
=

∑

Mb MB

< JbMb JB MB|s′′ms′′ >

× ψJb Mb
ψJB MB

. (A6)

Here, φc s′′ ms′′
is the channel spin wave function in the

channel c s′′ms′′ , ψJi Mi
is the spin wave function of

particle i, l′′ (ml′′ ) is the relative orbital angular mo-
mentum (its projection) of the fragments in the channel
c, rc = rbB is the radius-vector connecting b and the
center-of-mass of B. We adopt the channel radius Rc

http://arxiv.org/abs/de-sc/0004958


28

large enough to neglect antisymmetrization between nu-
cleons of b and B at rc = Rc, that is

Â{wτ c j ξcφ
JF MF

c s′′ l′′ ms′′
uc s′′ l′′ JF j}

∣∣∣
rc=Rc

≈ Nc ξc φ
JF MF

c s′′ l′′ uc s′′ l′′ JF j

∣∣∣
rc=Rc

, (A7)

where Nc =
(

(b+B)!
b!B!

)−1/2

.

Assuming that the overlap of the channel c at the chan-
nel radius Rc with the channel c′ is negligible we get for
the component of XJF MF

τ c s′′ ms′′
projected on ξc = ϕb ϕB at

rc = Rc [39]

ΞJF MF

τ c s′′ ms′′
(Rc r̂c) =< ξc|XJF MF

τ s′′ ms′′
>
∣∣∣
rc=Rc

=
1

Rc

∑

l′′

φJF MF

c s′′ l′′ ms′′
uτ c s′′, l′′ JF

(Rc),

(A8)

where

uτ c s′′, l′′ JF
(rc) = Nc

∑

j

wτ c j uc s′′, l′′ JF j(rc). (A9)

At rc = Rc by definition [39]

uτ c s′′ l′′ JF
(Rc) =

√
2µcRc γτ c s′′ l′′ JF

, (A10)

where γτ c s′′ l′′ JF
is the reduced width amplitude of the

level τ in the channel c s′′ l′′ JF . I remind that the system
of units ~ = c = 1 is being used throughout the paper if
not specified otherwise. Then

ΞJF MF

τ c s′′ ms′′
(Rc r̂c) =

1

Rc

∑

l′′

√
2µcRc γτ c s′′ l′′ JF

× φJF MF

c s′′ l′′ ms′′
. (A11)

Thus we can express the component ΞJF MF

τ c s′′ ms′′
(rc)

taken at the channel radius rc = RC in terms of the
sum of the reduced width amplitudes, where the sum is
taken over all allowed in the channel c partial waves l′′

at given JF and s′′. Then the component of Ψ
JF (int)
c sms in

the exit channel c s′′ms′′ projected onto ξc = ϕb ϕB at
rc = Rc takes the form

Υ
JF (int)(+)
c sms;c s′′ ms′′

(Rc r̂c) =< ξc|ΨJF (int)(+)
c sms

>

=
2 π

kcRc

√
kc
µc

∑

M, lml

e−i δhs
c l il < sms l ml|JF MF > Y ∗

l ml
(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ Ξ
JF MF

τ c s′′ ms′′
(Rc r̂c)

=
2 π

kcRc

√
kc
µc

∑

M, l l′′ ml ml′′

e−i δhs
c l il < sms l ml|JF MF >< s′′ms′′ l

′′ml′′ | JF MF > Y ∗
lml

(k̂c)

×
N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ
√
2µcRc γτ c s′′ l′′ JF

Yl′′ ml′′
(r̂c)φc s′′ ms′′

. (A12)

Here, s′′ is any channel spin value in the channel c = b+B
allowed by the spin and angular momentum conservation
law. In particular, s′′ may coincide with s, that is s′′ = s.

The diagonal component, l′′ = l and s′′ = s, which is
needed to determine the elastic scattering amplitude (see
below) is

Υ
JF (int)(+)
c s lms;c s lms′′

(Rc r̂c) =
2 π

kcRc

√
kc
µc
e−i δhs

c l il
∑

M ml ml′′

< sms l ml|JF MF >< sms′′ l ml′′ | JF MF > Y ∗
l ml

(k̂c)

×
N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ
√
2µcRc γτ c s l JF

Yl ml′′
(r̂c)φc sms′′

. (A13)

A similar consideration can be applied when we consider the contribution of the channel c′ s′ms′ into
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XJF MF
τ . In this channel ξc′ = ϕA and

φJF MF

c′ s′ l′ ms′
=
∑

ml′

< s′ms′ l
′ml′ | JF MF >

× Yl′ ml′
(r̂c′)φc′ s′ ms′

, (A14)

φc′ s′ ms′
=

∑

Mn MA

< JnMn JAMA|s′ms′ >

× ψJn Mn
ψJA MA

. (A15)

Here, φc′ s′ ms′
is the channel spin wave function in the

channel c′ with the channel spin s′ and its projectionms′ ,
l′ (ml′) is the relative orbital angular momentum (its
projection) of the fragments in the channel c′, rc′ = rnA
is the radius-vector connecting n and the center-of-mass
of A. We adopt the channel radius Rc′ large enough to
neglect antisymmetrization between n and nucleons of A
at rc′ = Rc′ , that is

Â{wτ c′ j ξc′φ
JF MF

c′ s′ l′ ms′
uc′ s′ l′ JF j}

∣∣∣
rc′=Rc′

≈ Nc′ ξc′ φ
JF MF

c′ s′ l′ uτ c′ s′ l′ JF j

∣∣∣
rc′=Rc′

, (A16)

where Nc′ =
(

(A+1)!
A!

)−1/2

= (A+ 1)−1/2.

Assuming that the overlap of the channel c′ at the
channel radius Rc′ with the channel c is negligible we get
for the component of XJF MF

τ c′ s′ ms′
projected onto ξc′ = ϕA

at rc′ = Rc′

ΞJF MF

τ c′ s′ ms′
(Rc′ r̂c′) =< ϕA|XJF MF

τ >
∣∣∣
rc′=Rc′

=
1

Rc′

∑

l′

φJF MF

c′ s′ l′ ms′
uτ c′ s′ l′ JF

(Rc′),

(A17)

where

uτ c′ s′ l′ JF
(rc′) = Nc′

∑

j

wτ c′ j uc′ s′ l′ JF j(rc′). (A18)

At rc′ = Rc′

uτ c′ s′ l′ JF
(Rc′) =

√
2µc′ Rc′ γτ c′ s′ l′ JF

, (A19)

where µc′ = µnA, γτ c′ s′ l′ JF
is the reduced width am-

plitude of the level τ in the channel c′ s′ l′ JF . Then

ΞJF MF

τ c′ s′ ms′
(Rc′ r̂c′) =

1

Rc′

∑

l′

√
2µc′ Rc′ γτ c′ s′ l′ JF

× φJF MF

c′ s′ l′ ms′
, (A20)

that is it can be expressed in terms of the sum of the
reduced widths amplitudes in all allowed partial waves l′

in the channel c′ at given JF and s′. Then the component

Ψ
JF (int)(+)
c sms; c′ s′ ms′

projected on ξc′ = ϕA at rc′ = Rc′ takes

the form

Υ
JF (int)(+)
c sms; c′ s′ ms′

(Rc′ r̂c′)

=
2 π

kc

√
kc
µc

∑

M, lml

e−i δhs
c l il < sms l ml|JF MF > Y ∗

lml
(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ Ξ
JF MF

τc′ s′ ms′
(Rc′ r̂c′)

=
2 π

kcRc′

√
kc
µc

∑

M l l′ ml ml′

e−i δhs
c l il < sms l ml|JF MF >< s′ms′ l

′ml′ | JF MF >

× Y ∗
l ml

(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ
√
2µc′ Rc′ γτ c′ s′ l′ JF

Yl′ ml′
(r̂c′)φc′ s′ ms′

. (A21)

The component Υ
JF (int)(+)
c s lms;c′ s′ l′ ms′

(Rc′ r̂c′) is given by

Υ
JF (int)(+)
c s lms; c′ s′ l′ ms′

(Rc′ r̂c′) =
2 π

kcRc′

√
kc
µc
e−i δhs

c l il
∑

M ml ml′

< sms l ml|JF MF >< s′ms′ l
′ml′ | JF MF >

× Y ∗
l ml

(k̂c)
N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ
√
2µc′ Rc′ γτ c′ s′ l′ JF

Yl′ ml′
(r̂c′)φc′ s′ ms′

. (A22)
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2. External scattering wave function Ψ
(+)
bB

Now we proceed to the expression for the Ψ
(+)
c in the

external region, where rc > Rc or rc′ > Rc′ . In the

external region the wave function Ψ
(ext)(+)
c sms with fixed

channel spin and its projection in the incident channel c
can be written as

Ψ(ext)(+)
c sms

= Ψ(0)
c sms

+Ψ(ext)(+)
c sms;r , (A23)

where the first term is the incident wave and the second
term is the sum of the outgoing waves in all the open
channels. The incident term is

Ψ(ext)(0)
c sms

= 4 π ξc
∑

JF MF

∑

l ml ms′′

il < sms l ml |JF MF >

× < sms′′ l ml|JF MF > Y ∗
l ml

(k̂c) e
i ωc l

Fl(kc, rc)

kc rc
× Yl ml

(r̂c)φc sms′′
, (A24)

where the subscript c means that the incident wave is in
the channel c. The sum over ms′′ is a formal because

∑

JF MF

< sms l ml |JF MF >< sms′′ l ml|JF MF >

= δms ms′′
. (A25)

Note that here we use the incident wave with the unit
amplitude rather than with the unit flux density. The

component Ψ
JF (ext)(0)
c s lms;c s lms′′

, which corresponds to the exit

channel c s lms′′ and fixed JF , projected on ξc reduces to

Υ
JF (ext)(0)
c s lms; c s lms′′

(rc) = 4 π
∑

M ml

il

× < sms l ml |JF MF >< sms′′ l ml|JF MF > Y ∗
l ml

(k̂c)

× ei ωc l
Fl(kc, rc)

kc rc
Yl ml

(r̂c)φc sms′′
. (A26)

Now we take into account that

Fl(kc, rc) =
ei ωc l Ol(kc, rc)− e−i ωc l Il(kc, rc)

2 i
. (A27)

Here, Ol(kc, rc) and Il(kc, rc) are the Coulomb Jost sin-
gular solution of the Schrödinger equation with outgoing
and ingoing asymptotic behavior (we follow the defini-
tions used in [39]):

Ol(kc, rc)
rc→∞≈ ei [kc rc−ηc ln(2 kc rc)−l π/2+σc 0], (A28)

and

Il(kc, rc)
rc→∞≈ e−i [kc rc−ηc ln(2 kc rc),−l π/2+σc 0]. (A29)

Then we can rewrite Υ
JF (ext)(0)
c s lms;c s lms′′

in the form

Υ
JF (ext)(0)
c s lms; c s lms′′

(rc) = i
2 π

kc rc
il

×
∑

M ml

< sms l ml |JF MF >< sms′′ l ml|JF MF >

× Y ∗
l ml

(k̂c)
[
Il(kc, rc)− ei 2ωc lOl(kc, rc)

]
Yl ml

(r̂c)φc sms′′
.

(A30)

Thus the incident wave is the pure Coulomb scattering
wave function in the incident channel c. The second term
in Eq. (A23) is given by the sum of the outgoing waves
in the open channels [40]:

Ψ(ext)(+)
c sms; r = i

2 π

kc

∑

c̃

√
vc
vc̃

1

rc̃
ξc̃

∑

JF MF l l̃ml ml̃

il

× < sms l ml|JF MF > Y ∗
lml

(k̂c)
[
ei 2ωc l δc̃ c δs̃ s δl̃ l

− SJF

c̃ s̃ l̃;c s l

]
Ol(kc, rc) < s̃ms̃ l̃ ml̃|JF MF > Yl̃ ml̃

(r̂c̃)

× φc̃ s̃ ms̃
. (A31)

Here, ξc̃ is the product of the bound state wave func-
tions in the channel c̃ = c, c′, SJF

c̃ s̃ l̃;c s l
is the S-matrix

element for transition c s l→ c̃ s̃ l̃. Note that we consider
the outgoing waves in the channel with given total angu-
lar momentum JF , initial channel spin s (its projection
ms) and final channel spin s̃ (its projection ms̃). Since
only two open channels are taken into account here, we
will write explicitly the outgoing waves in both channels.
First consider the elastic scattering, that is the outgoing
channel c̃ = c = b + B and the channel spin and orbital
angular momentum coincide with the incident channel
values, that is s̃ = s and l̃ = l. The component of the
outgoing elastic scattered wave (c s l→ c s l) is

Ψ
(ext)(+)

c s lms;c s lm”
s
= i

2 π

kc rc
ξc

∑

JF MF ml ml′′

× < sms l ml|JF MF >< sm”
s l ml′′ |JF MF >

× il Y ∗
l ml

(k̂c) [e
i 2ωc l − SJF

c s l;c s l]Ol(kc, rc)Yl ml′′
(r̂c)

× φc sm”
s
. (A32)

Hence, the projection of Ψ
(ext)(+)

c s lms; c s lm”
s
on ξc leads to

Υ
(ext)(+)

c s lms;c s lm”
s
(rc) = i

2 π

kc rc

∑

JF MF ml ml′′

× < sms l ml|JF MF >< sm”
s l ml′′ |JF MF >

× il Y ∗
l ml

(k̂c) [e
i 2ωc l − SJF

c s l;c s l]Ol(kc, rc)Yl ml′′
(r̂c)

× φc sm”
s
. (A33)

Correspondingly, for the inelastic scattering, c̃ = c but
either s̃ 6= s or l̃ 6= l or both differ from the entry values,
we get

Ψ
(ext)(+)
c s lms; c s′′ l′′ ms′′

= − i 2 π

kc rc
ξc

∑

JF MF ml ml′′

× < lml sms|JF MF >< l′′ml′′ s
′′ms′′ |JF MF >

× il Y ∗
l l
(k̂c)S

JF

c s′′ l′′;c s l Ol′′(kc, rc)Yl′′ ml′′
(r̂c)φc s′′ ms′′

.

(A34)
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Then the projection of Ψ
(ext)(+)
c s lms; c s′′ l′′ ms′′

on ξc is

Υ
(ext)(+)
c s lms;c s′′ l′′ ms′′

(rc) = − i
2 π

kc rc

∑

JF MF ml ml′′

× < lml sms|JF MF >< l′′ml′′ s
′′ms′′ |JF MF >

× il Y ∗
l l
(k̂c)S

JF

c s′′ l′′;c s lOl′′(kc, rc)Yl′′ ml′′
(r̂c)φc s′′ ms′′

.

(A35)

Finally, for the outgoing scattered wave in the reaction
channel c̃ = c′ = n+A we have

Ψ
(ext)(+)
c s lms;c′ s′ l′ ms′

= − i 2 π

kc rc′

√
vc
vc′

ξc′ i
l

∑

JF MF ml ml′

× < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >

× Y ∗
l ml

(k̂c)S
JF

c′ s′ l′;c s lOl′(kc′ , rc′)Yl′ ml′
(r̂c′)φc′ s′ ms′

.

(A36)

It leads to its projection on ξc′ :

Υ
(ext)(+)
c s lms; c′ s′ l′ ms′

(rc′) = − i
2 π

kc rc′

√
vc
vc′

il
∑

JF MF ml ml′

× < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >

× Y ∗
l ml

(k̂c)S
JF

c′ s′ l′;c s lOl′(kc′ , rc′)Yl′ ml′
(r̂c′)φc′ s′ ms′

.

(A37)

Now we can derive the expression for the matrix ele-

ments of the S matrix. Since the wave function Ψ
(+)
c is

continuous using Eqs. (A13), (A30) and (A33) we get
the equality

Υ
JF (int)
c s l ms; c s lms′′

(Rc r̂c) = Υ
JF (ext)(0)
c s lms; c s lms′′

(Rc r̂c)

+ Υ
(ext)(+)
c s lms;c s lms′′

(Rc r̂c), (A38)

which boils down to

e−i δhs
c l

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ
√
2 kcRc γτ c s l JF

= i
[
Il(kc, Rc)− SJF

c s l;c s lOl(kc, Rc)
]
. (A39)

Taking into account that [39]

Il(kc, Rc)

Ol(kc, Rc)
=
Gl(kc, Rc)− i Fl(kc, Rc)

Gl(kc, Rc) + i Fl(kc, Rc)
ei 2ωc l = e−2 i δhs

c l

(A40)

and

Γτ c s l JF
(Ec) = 2Pc l(Ec, Rc) γ

2
τ c s l JF

, (A41)

where

Pc l(Ec, Rc) =
kcRc

F 2
l (kc, Rc) +G2

l (kc, Rc)
(A42)

is the Coulomb-centrifugal barrier penetrability, we get
the elastic scattering matrix S-matrix element:

SJF

c s l; c s l = e−2 i δhs
c l (1 + i

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ

× [Γτ c s l JF
(Ec)]

1/2). (A43)

From equality of Eqs. (A22) and (A37) at rc′ = Rc′

Υ
JF (int)
c sms;c′ s′ ms′

(Rc′ r̂c′) = Υ
(ext)(+)
c s lms;c′ s′ l′ ms′

(Rc′ r̂c′)

(A44)

we obtain the reaction matrix element:

SJF

c s l; c′ s′ l′ = i e− i δhs
c l e− i δhs

c′ l′

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2

× [A−1]ντ [Γτ c′ s′ l′ JF
(Ec′)]

1/2. (A45)

Both obtained matrix elements coincide with the corre-
sponding matrix elements from [40]. The only difference
is in the definition of the solid scattering phase shifts.
The obtained matrix elements of the S matrix confirm
that the relative normalization of the internal and exter-
nal wave parts of Ψ

(+)
bB are correct and we can use them

to calculate the reaction amplitude of the deuteron strip-
ping proceeding through resonance states.

Appendix B: Matrix element MDW
S

Let us consider the DWBA surface (in the subspace
over rnA) matrix element

MDW
S (P, kdA) =< χ

(−)
pF Υ

(ext)(−)
nA |←−T −−→T |

× ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

=MDW
S(pF )(P, kdA) +MDW

S(nA)(kpF , kdA), (B1)

where Υ
(ext)(+)
nA =< ϕA|Ψ(ext)(+)

bB >,

MDW
S(pF )(P, kdA) =

∫

rnA>RnA

drnA

∫
drpFχ

(−)∗
pF Υ

(ext)(−)∗
nA (rnA)

× [
←−
T pF −

−→
T pF ]ϕd χ

(+)
dA > (B2)

and

MDW
S(nA)(P, kdA) =

∫
drpF

∫

rnA>RnA

drnA χ
(−)∗
pF Υ

(ext)(−)∗
nA (rnA)

× [
←−
T nA −

−→
T nA]ϕd χ

(+)
dA > . (B3)

MDW
S(pF ) can be written as
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MDW
S(pF )(P, kdA) =

∫
drnA

∫
drpFχ

(−)∗
pF Υ

(−)∗
nA (rnA)[

←−
T pF −

−→
T pF ]ϕd χ

(+)
dA

−
∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF Υ

(int)(−)∗
nA (rnA) [

←−
T pF −

−→
T pF ]ϕd χ

(+)
dA >

=

∫
drnA

∫
drpFχ

(−)∗
pF Υ

(ext)(−)∗
nA (rnA)[

←−
T pF −

−→
T pF ]ϕd χ

(+)
dA . (B4)

We took into account that for any finite volume rnA ≤
RnA the matrix element containing

←−
T pF −

−→
T pF vanishes

as it has been discussed in Section II A for deuteron strip-
ping to bound states. To estimate MDW

S(pF ) we need equa-

tions connecting different variables:

rdA = 1/2 rpn + rnA, (B5)

rpF = A/(A+ 1) rnA + rpn. (B6)

Now in the matrix element (B4) we replace the variable
rnA by rpn. Then we get

MDW
S(pF )(P, kdA) = −(

A+ 1

A
)3
∫

drpn

∫
drpF χ

(−)∗
pF (rpF )

×Υ
(ext)(−)∗
nA (

A+ 1

A
[rpF − rpn]) [

←−
T pF −

−→
T pF ]

× ϕd(rpn)χ
(+)
dA (

A+ 1

A
rpF −

A+ 2

2A
rpn). (B7)

This matrix element can be rewritten in the form, in
which the integral over rpF is transformed to the surface
integral:

MDW
S(pF )(P, kdA) = (

A+ 1

A
)3

A

A+ 1
lim

RpF→∞
R2

pF

1

2µpF

×
∫

drpn ϕd(rpn)

∫
dΩrpF

[
χ
(+)
dA (

A+ 1

A
rpF −

A+ 2

2A
rpn)

∂ χ
(−)∗
pF (rpF )Υ

(ext)(−)∗
nA (A+1

A [rpF − rpn])

∂ rpF

− χ(−)∗
pF (rpF )Υ

(ext)(−)∗
nA (

A+ 1

A
[rpF − rpn])

∂ χ
(+)
dA (A+1

A rpF − A+2
2A rpn)

∂ rpF

]∣∣∣
rpF=RpF→∞

. (B8)

Due to the presence of the deuteron bound state wave
function the integration over rpn is limited. At rpF →
∞ and rpn < ∞ we can replace the distorted waves in
the initial and final channels by their leading asymptotic
terms:

χ
(+)
dA (rdA)

rdA→∞∼ eikdA·rdA+i ηdA ln(kdA rdA−kdA·rdA).
(B9)

and

χ
(−)∗
pF

rpF→∞→ e−ikpF ·rpF+i ηpF ln(kpF rpF+kpF ·rpF ).

(B10)

Here, ηij is the Coulomb parameter of particles i and j

in the continuum. Note that rdA = A+1
A rpF − A+2

2A rpn,
and at rpF →∞ and rpn <∞ rdA →∞. Then
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∂ eikdA·rdA+i ηdA ln(kdA rdA−kdA·rdA)

∂ rpF
rpF→∞→ i

A+ 1

A
kdA · r̂pF eikdA·(A+1

A
·rpF−A+2

2A rpn)+i ηdA ln(kdA rdA−kdA·rdA) (B11)

and

∂ e−ikpF ·rpF+i ηpF ln(kpF rpF+kpF ·rpF )

∂ rpF
rpF→∞

≈ −ikpF · r̂pF e−ikpF ·rpF+i ηpF ln(kpF rpF+kpF ·rpF ).
(B12)

For Υ
(ext)(−)∗
nA (A+1

A [rpF−rpn]) we can take only the exter-
nal part, which contains the resonant S matrix element,
see Eq. (A37). Neglecting all the spin-dependent and
angular parts and leaving only its radial part, which is
OnA(rnA)/rnA, we get for its leading asymptotic term:

OnA(knA, rnA)

rnA

rpF→∞→ A

A+ 1

1

rpF
ei

A+1
A

(knA rpF−knA r̂pF ·rpn)

× e−i[ ηnA ln(2 knA rnA)+lnA π/2−σnA 0]. (B13)

The leading term of its derivative at rpF →∞ is

∂OnA(knA, rnA)/rnA
∂ rpF

rpF→∞→ i knA
1

rpF

× ei A+1
A

(knA rpF−knA r̂pF ·rpn)

× e−i [ ηnA ln(2 A+1
A

knA rpF )+ lnA π/2−σnA 0]. (B14)

Then MDW
S(pF ) reduces to

MDW
S(pF )(P, kdA) ∼ lim

RpF→∞
RpF

∫
drpn ϕd(rpn) e

−i A+2
2A kdA·rpn

∫
dΩrpF [(

A+ 1

A
kdA + kpF ) · r̂pF −

A+ 1

A
knA]

× ei (A+1
A

kdA−kpF )·r̂pF RpF ei
A+1
A

knA RpF ei ηdA ln
(
kdA rdA(RpF )−kdA·rdA(RpF )

)
+i ηpF ln(kpF RpF+kpF ·r̂pF RpF )

× e−i[ A+1
A

knA r̂pF ·rpn+ηnA ln(2 A+1
A

knA RpF )]. (B15)

Taking into account the asymptotic behavior of the plane
wave

eiq·rpF
rpF→∞→ 2 π

i q rpF
[ei q rpF δ(q̂ − r̂pF )

− e−i q rpF δ(q̂+ r̂pF )], (B16)

where q = A+1
A kdA − kpF we obtain that the matrix

element

MDW
S(pF )(P, kdA) ∼ lim

RpF→∞
f1(RpF ) e

i q RpF

+ f2(RpF ) e
−i q RpF ]. (B17)

ThusMDW
S(pF ) has no limit atRpF →∞ but regularization

of this matrix element by integrating the matrix element
over an infinitesimal bin in the momentum plane leads to

disappearance of MDW
S(pF ):

1

2 ǫ

q+ǫ∫

q−ǫ

dqMDW
S(pF )(P, kdA)→ lim

RpF→∞

sin (ǫRpF )

ǫRpF

×
[
ei q RpF f1(RpF )− e−i q RpF f2(RpF )

]
= 0, (B18)

where ǫ << q.
A similar prove can be applied to estimate MDW

S(nA)

given by Eq. (B3). Since the integral over rnA is taken
over external volume with rnA > RnA the transformation
of the volume integral into the surface one leads to two
surface integrals:

MDW
S(nA)(P, kdA) = −MDW

SRnA
(P, kdA) +MDW

S∞
(P, kdA).

(B19)

The first term is the surface integral encircling the in-
ner surface of the external volume at rnA = RnA, while
the second term is the surface integral taken at rnA =
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R
′

nA → ∞. A negative sign in front of the first term
appears because the normal to the surface is directed in-
ward to the center of the volume, that is opposite to the

normal to the external surface (at infinitely large radius).
The surface integral over the infinitely large sphere in the
subspace over rnA is

MDW
S∞

(P, kdA) = − lim
R

′

nA
→∞

R
′

nA

2 1

2µnA

∫
drpn ϕd(rpn) [χ

(+)
dA ((1/2) rpn + rnA)

∂ χ
(−)∗
pF (A/(A + 1) rnA + rpn)Υ

(ext)(−)∗
nA (rnA)

∂ rnA

− χ(−)∗
pF (A/(A+ 1) rnA + rpn)Υ

(ext)(−)∗
nA (rnA)

∂ χ
(+)
dA ((1/2) rpn + rnA)

∂ rnA
]
∣∣∣
rnA=R

′

nA
→∞

. (B20)

Here, the Jacobian variable rpF is replaced by rpn by
rpn = rpF − A/(A + 1) rnA. The disappearance of the
matrix element (B20) can be proved similarly to the proof
for MDW

S(pF ). Due to the presence of the bound state

ϕd(rpn) the integration over rpn is limited by finite dis-
tances. Hence, rpF → ∞ and rdA → ∞ at rnA → ∞.
Replacing the distorted waves by their leading asymp-
totic terms (B9) and (B10), singling out the plane wave
containing rnA and using the asymptotic representation
of this plane wave, see Eq. (B16), integrating over ΩrnA

we eventually arrive at

MDW
S∞

(P, kdA) ∼ lim
R

′

nA→∞

[ei q
′ R

′

nA g1(R
′

nA)

+ e−i q′ R
′

nA g2(R
′

nA)]. (B21)

Regularization of this matrix element by integrating it
over an infinitesimal bin in the momentum plane q′ leads
to disappearance of MDW

S∞
, that is

MDW
S(nA)(P, kdA) = −MDW

SRnA
(P, kdA). (B22)

Appendix C: Matrix element M
CDCC(post)
S (P, kdA)

Here we show how to transform M
CDCC(post)
S into the

surface integral over the coordinate rnA. M
CDCC(post)
S

can be written as

MCDCC
S (P, kdA) =

∫

rnA>RnA

drnA

∫
drpFχ

(+)
−kpF

(rpF )Υ
(ext)(−)∗
nA (rnA)[

←−
T −−→T ]Ψ

CDCC(+)
i (rpF , rnA)

=MCDCC
Stot (P, kdA)−MCDCC

Sint (P, kdA), (C1)

where

MCDCC
Stot (P, kdA) =

∫
drnA

∫
drpFχ

(+)
−kpF

(rpF )

× Υ
(−)∗
nA (rnA)[

←−
T −−→T ]Ψ

CDCC(+)
i (rpF , rnA) (C2)

and

MCDCC
Sint (P, kdA) =

∫

rnA≤RnA

drnA

∫
drpFχ

(+)
−kpF

(rpF )

×Υ
(int)(−)∗
nA (rnA) [

←−
T −−→T ] Ψ

CDCC(+)
i (rpF , rnA). (C3)

Note that in the matrix element MDW
Stot the integration is

carried over rpF and rnA in all the coordinate space while

in MDW
Sint the external region in the subspace over rnA is

excluded. Let us first consider MDW
Stot . The CDCC wave

function is given by Eq. (52). If we substitute the first
term,n = 0, which contains the deuteron bound state
wave function, the transformation leads to the surface
integrals with rpF = RpF → ∞ and rnA = RnA → ∞.
Both surface integrals vanish and the proof is similar to
the one presented in the previous section. For the rest of
the CDCC wave function corresponding to the sum with

n > 0, which we call Ψ
CDCC(+)
i c , transformation to the

surface integrals gives
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M
DW (c)
Stot (P, kdA) =

∫
drnA

∫
drpFχ

(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)[

←−
T pF −

−→
T pF ]Ψ

CDCC(+)
i c (rpF , rnA)

+

∫
drnA

∫
drpF χ

(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)[

←−
T nA −

−→
T nA]Ψ

CDCC(+)
i c (rpF , rnA)

= lim
RpF→∞

R2
pF

2µpF

∫
dΩrpF

∫
drnA

[
Υ

(−)∗
nA (rnA)Ψ

CDCC(+)
i c (rpF , rnA)

∂ χ
(+)
−kpF

(rpF )

∂ rpF

− χ(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)

∂Ψ
CDCC(+)
i c (rpF , rnA)

∂ rpF

]

+ lim
RnA→∞

R2
nA

2µnA

∫
dΩrnA

∫
drpF

[
χ
(+)
−kpF

(rpF )Ψ
CDCC(+)
i c (rpF , rnA)

∂Υ
(−)∗
nA (rnA)

∂ rnA

− χ(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)

∂Ψ
CDCC(+)
i c (rpF , rnA)

∂ rnA

]
. (C4)

Let us, first, consider the first term, in which RpF →∞.
Let us divide the integration region over rnA into the
region rnA/RpF → 0 and the region where rnA & RpF →
∞. In the first region we get that rdA ∼ RpF → ∞ and
rpn ∼ RpF → ∞. Taking into account the asymptotic

behavior of Ψ
CDCC(+)
i c (rpF , rnA) ∼ r−3

pF and Eq. (B16)

we get that the first term goes to zero as R−2
pF → 0. In

the remained region rnA ∼ RpF →∞ and we consider it
later. The second term of Eq. (C4), in which RnA →∞,
we also separate into two regions: rpF /RnA → 0 and
rpF & RnA → ∞. In the first region rpn ∼ RnA → ∞
and rdA ∼ RnA → ∞ and Ψ

CDCC(+)
i c (rpF , rnA) ∼ r−3

nA.

Hence the matrix element goes to zero as R−2
nA → 0. To

consider the behavior of the first and second terms of
Eq. (C4) in the second regions, where rnA, rpF → ∞,

it is more convenient to introduce the hyper-spherical
coordinates in the six-dimensional hyper-space:

ρ =

√
µnA

m
r2nA +

µpF

m
r2pF ,

rnA = ρ

√
m

µnA
sin α, rpF = ρ

√
m

µpF
cos α,

0 ≤ α ≤ π/2. (C5)

Here, m is the scaling mass parameter, for example,
the nucleon mass. Then MDW

Stot in the region, where
rnA, rpF →∞, can be written as the integral over the hy-
persphere encircling the volume integral with the radius
of the hyper-sphere ρ→∞ [38]:

MDW
Stot (P, kdA) =

1

2

m2

(µnA µpF )3/2
lim
ρ→∞

ρ5
∫

dr̂pF

∫
dr̂nA

π/2∫

0

dα sin2 α cos2 α

[
χ
(−)∗
pF (rpF )Υ

(−)∗
nA (rnA)

∂

∂ρ
Ψ

CDCC(+)
i (rpF , rnA)−Ψ

CDCC(+)
i (rpF , rnA)

∂

∂ρ
χ
(−)∗
pF (rpF )Υ

(−)∗
nA (rnA)

]
. (C6)

Here the hyper-radius ρ is the parameter going to infin-
ity. The integrand is contains highly oscillating (actually
infinitely oscillating) functions. The behavior of the inte-
gral at ρ→∞ depends on the asymptotic behavior of the
integrand. The integration over dr̂pF can be performed

directly using the asymptotic form of χ
(−)∗
pF (rpF ). It is

given by the Coulomb distorted plane wave, but for sim-

plicity, what does not affect the final result we neglect,
as in the previous section, the Coulomb effects. Then
the asymptotic form of the plane wave is given by Eq.
(B16) and, hence, integration over r̂pF using δ-functions

is trivial leading to r̂pF = ±k̂pF . After performing the
integration over dr̂pF only two integrals are left. From
Eqs (B5), (B6) and (C5) we get for



36

rpn =

√
r2pF − 2

A

A+ 1
rpF rnA +

A2

(A+ 1)2
r2nA

= ρ

√
m

µpF
cos2 α∓ A

A+ 1

√
m

µpF

√
m

µnA
z sin 2α+

A2

(A+ 1)2
m

µnA
sin2 α (C7)

and

rdA =

√
1

4
r2pF +

A+ 2

2 (A+ 1)
rpF rnA +

(A+ 2)2

4(A+ 1)2
r2nA

= ρ

√
1

4

m

µpF
cos2 α∓ A+ 2

4(A+ 1)

√
m

µpF

√
m

µnA
z sin 2α+

(A+ 2)2

4(A+ 1)2
m

µnA
sin2 α . (C8)

Here, z = r̂nA·k̂pF . We recall also that in Eq. (52) at n >

0 ψ
(n)
pn (rpn) at rpn → ∞ contains the asymptotic terms

e±i kpn rpn

r2pn
, while χ

(n)(+)
i (rdA) ∼ ei kdA rdA

rdA
, where we, for

simplicity, neglected the Coulomb distortion. Then after
integration over dr̂pF the leading asymptotic form of the
integrand with omitted Coulomb effects is a product of
highly oscillating at ρ→∞ exponents:

e± i kpF rpF

rpF

ei knA rnA

rnA

e± i kpn rpn

r2pn

ei kdA rdA

rdA

ρ→∞∼ 1

ρ5
ei ρ g(α, z). (C9)

Thus we need to estimate a highly oscillatory integral:

J1 ∼ lim
ρ→∞

1∫

−1

dz

π/2∫

0

dα sin2 α cos2 α ei ρ g(z, α). (C10)

Evidently that this integral and, hence, MDW
Stot (P, kdA)

vanishes at ρ → ∞, whether a stationary phase point
does exist or not, because the integration brings ρ to the
denominator.
Now we proceed to MDW

Sint(P, kdA). We rewrite is as

MDW
Sint(P, kdA) =

∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )

×Υ
(int)(−)∗
nA (rnA)

[←−
T pF −

−→
T pF

]
Ψ

CDCC(+)
i (rpF , rnA)

+

∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )

×Υ
(int)(−)∗
nA (rnA)

[←−
T nA −

−→
T nA

]
Ψ

CDCC(+)
i (rpF , rnA).

(C11)

Let first consider the first matrix element containing TpF .
It is easy to show that this matrix element vanishes. Af-
ter transforming it into the surface integral over rpF we
get

∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )Υ

(int)(−)∗
nA (rnA)

×
[←−
T pF −

−→
T pF

]
Ψ

CDCC(+)
i (rpF , rnA)

= − 1

2µpF
lim

RpF→∞
R2

pF

∫
dΩrpF

∫

rnA≤RnA

d rnA Υ
(−)∗
nA (rnA)

×
[
Ψ

CDCC(+)
i (rpF , rnA)

∂χ
(−)∗
pF (rpF )

∂rpF

− χ(−)∗
pF (rpF )

∂Ψ
CDCC(+)
i (rpF , rnA)

∂rpF

]∣∣∣
rpF=RpF

(C12)

The matrix element containing n = 0 term of the CDCC
wave function vanishes because in the subspace rnA ≤
RnA at rpF → ∞ the deuteron bound state wave func-
tion exponentially fades away. The terms of the CDCC
wave function with n ≥ 1 also produce vanishing matrix
element because the CDCC wave function corresponding
to these terms in the subspace rnA ≤ RnA at rpF → ∞
decays as 1/r3pF , that the whole matrix element vanishes

as lim
RpF→∞

R2
pF /R

3
pF → 0. Thus we arrive at
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MDW
S (P, kdA) = −MDW

Sint(P, kdA) = −
∫

rnA≤RnA

drnA

∫
drpF χ

(−)∗
pF (rpF )Υ

(int)(−)∗
nA (rnA) [

←−
T nA −

−→
T nA] Ψ

CDCC(+)
i (rpF , rnA)

=
1

2µnA
R2

nA

∫
d rpF χ

(−)∗
pF (rpF )

[
Ψ

CDCC(+)
i (rpF , rnA)

∂

∂rnA
Υ

(−)∗
nA (rnA)−Υ

(−)∗
nA (rnA)

∂

∂rnA
Ψ

CDCC(+)
i (rpF , rnA)

]∣∣∣
rnA=RnA

.

(C13)
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Theory of deuteron stripping. From surface integrals to generalized R-matrix

approach.
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There are two main reasons for absence of the practical theory of stripping to resonance states
which could be used by experimental groups: numerical problem of the convergence of the DWBA
matrix element when the full transition operator is included and it is unclear what spectroscopic
information can be extracted from the analysis of transfer reactions populating the resonance states.
The purpose of this paper is to address both questions. The theory of the deuteron stripping is
developed, which is based on the post continuum discretized coupled channels (CDCC) formalism
going beyond of the DWBA and surface integral formulation of the reaction theory [A. S. Kadyrov
et al., Ann. Phys. 324, 1516 (2009)]. First, the formalism is developed for the DWBA and
then extended to the CDCC formalism, which is ultimate goal of this work. The CDCC wave
function takes into account not only the initial elastic d + A channel but also its coupling to the
deuteron breakup channel p + n + A missing in the DWBA. Stripping to both bound states and
resonances are included. The convergence problem for stripping to resonance states is solved in
the post CDCC formalism. The reaction amplitude is parametrized in terms of the reduced width
amplitudes (ANCs), inverse level matrix, boundary condition and channel radius, that is the same
parameters which are used in the conventional R-matrix method. For stripping to resonance states
many-level, one and two-channel cases are considered. The theory provides a consistent tool to
analyze both binary resonant reactions and deuteron stripping in terms of the same parameters.

PACS numbers: 24.30-v, 25.45.-z, 25.45.Hi, 24.10.-i

I. INTRODUCTION

Production of unstable nuclei close to proton and neu-
tron drip lines has become possible in recent years, mak-
ing deuteron stripping reactions (d, p) and (d, n) on these
nuclei (in inverse kinematics) not only more and more
feasible as beam intensity increasing but also a unique
tool to study unstable nuclei and astrophysical (n, γ),
(p, γ) and (p, α) processes. The deuteron stripping re-
actions populating resonance states of final nuclei are
important and most challenging part of reactions on un-
statble nuclei. If for nucleon transfer reactions popu-
lating bound states for about fifty years experimental-
ists used the standard distorted waves Born approxima-
tion (DWBA), an adequate theory for transfer reactions
to resonance states yet to be developed. By standard
DWBA I mean the approach in which the one-step trans-
fer matrix element is evaluated with incoming and out-
going distorted waves calculated by fitting the deuteron
and proton elastic scattering with local optical potentials.
The transition operator contains finite range effects as
well as the full complex remnant term. The main idea
of the DWBA is that the transition matrix element is so
small that one can use the first order perturbation theory.
Since the nuclear potential is quite large by itself (∼ 100
MeV), the smallness of the transition operator can be
fulfilled only if the reaction is peripheral enough, so that
the non-diagonal matrix element, representing the trans-
fer reaction amplitude, becomes small. However, since
the resonance wave function is large in the nuclear inte-
rior and different channels are coupled in the nuclear in-
terior, the character of the stripping to resonances can be

quite different from the stripping to bound states. Nowa-
days the standard DWBA is gradually being replaced
by more advanced approaches like continuum dicretized
coupled channels (CDCC) [1–3], adiabatic distorted wave
(ADWA) [4], coupled reaction channels (CRC) and the
coupled channels in Born approximation (CCBA) avail-
able in FRESCO code [5]. There are two main reasons for
absence of the practical theory of stripping to resonance
states which could be used by experimental groups. First
one is the numerical problem of the convergence of the
DWBA matrix element when the full transition operator
is included. However, it is only a technical problem. The
second pure scientific unsolved problem is what spectro-
scopic information can be extracted from the analysis of
transfer reactions populating the resonance states. Be-
sides, since the standard DWBA is deficient to more ad-
vanced methods like CDCC or ADWA, a new approach
should go beyond of the DWBA.

Majority of theoretical works devoted to the develop-
ment of the theory of single-nucleon stripping into un-
bound states of the residual nucleus have been published
in 1970-s [6–21]. Great interest in these reactions at that
time stemmed primarily from the fact that they allow one
to extract reliable information on the properties of nu-
clear resonant states by means of the combined analysis
of the data on stripping and elastic resonant scattering
of nucleons from the target nucleus [8, 13, 15, 16]. In
most of the cited works the theory of stripping into reso-
nant states was developed within the standard DWBA
by analogy with usual stripping to bound states. In
this case the expression for the reaction amplitude ob-
tained instead of the bound-state wave function for the

http://arxiv.org/abs/1108.4663v5
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captured nucleon (form factor) contained a continuum
wave function which leads to slow convergence of the ra-
dial integrals or even to their divergence depending on
the choice of this wave function. In Refs. [6, 9, 11] the
form factor was taken to be a scattering wave function,
which described the resonant scattering of the nucleon
from the target nucleus. This wave function was calcu-
lated using a single-particle potential whose parameters
were adjusted to give a resonance with the correspond-
ing properties. The Gamov decaying-state wave function
and the Weinberg wave function which are regular at
the origin and purely outgoing at infinity were used in
Refs. [10] and [14], respectively. Various methods were
suggested to calculate radial integrals practically with
the above-mentioned form factors: (i) the introduction of
the convergence factor exp(−α r) into the integrand [6];
the integral obtained was calculated for various α > 0
and then its values were extrapolated numerically to the
limit of α = 0; (ii) the method of contour integration
in the complex r-plane (complex scaling) [9]; (iii) the
method based on the correct account of the boundary
conditions in the three-body scattering problem [11]; (iv)
the Zeldowich-Berggren method [20] of the regularization
of integrals containing the Gamov function in which the
convergence factor exp(−α r2) was introduced [10]; (v)
the pseudo-bound-states method [14]. The methods (ii)
and (iii) were most convenient for numerical calculations.
Although the above methods allow one to avoid formal
difficulties, nevertheless all the methods are rather com-
plicated because of cumbersome numerical calculations
and carry on the shortcomings of the standard DWBA
for stripping to bound states.

Even if we put aside the technical problem of conver-
gence of the matrix element for stripping to resonance
states, there is more important question remains: the
spectroscopic information which can be extracted from
analysis of deuteron stripping reactions (and other trans-
fer reactions) into resonant states. This is really a crucial
question because the answer determines the reason why
we measure nuclear reactions. For more than 50 years
transfer reactions to bound states, and deuteron strip-
ping in particular, have been used to determine the spec-
troscopic factors, which measure the weight of the single-
particle state in the overlap function of the initial and fi-
nal nuclei. That is why there was always a temptation to
develop a theory of stripping into resonant states which is
fully similar to stripping to bound states. For example, in
[13] it was assumed that the spectroscopic factor could be
extracted from deuteron stripping into resonance states.
In this case the spectroscopic factor is the ratio of the
observable and single-particle resonance widths. How-
ever, the spectroscopic factor is not observable and de-
pends on the single-particle potential used to calculate
the single-particle width. In [22] it has been shown that
spectroscopic factors are not invariant under finite-range
unitary transformations and, hence, in exact approach
nuclear reactions cannot be a tool to determine spectro-
scopic factors. In [22] it was called separation of nuclear

reactions and spectroscopic factors. However, there is a
model-independent information, which can be extracted
from deuteron stripping reactions. I mean the asymp-
totic normalization coefficients (ANCs), which are the
amplitudes of the tails of the overlap functions [23] and
are invariant under finite range unitary transformations.
The most model-independent definition of the ANC is
that it determines the residue of the elastic scattering
S matrix in the pole corresponding to bound, virtual or
resonance states. For the resonance state the ANC and
partial resonance widths are related [24, 25]:

[CF
A j l]

2 = (−1)le2φj l(kxA(0)j l)
µxA

kxA(0)j l
ΓxA j l. (1)

Here l and j are the orbital and total angular momentum
of particle x in the resonance state F = (Ax), µxA is the
reduced mass of x and A, kxA(0)j l is the real part of the
resonance relative momentum of x and A, φj l(kxA) is the
non-resonant scattering phase shift, CF

A j l and ΓxA j l are
the ANC and partial resonance width in the channel x+A
with the quantum numbers l and j. Eq. (1) stands for
narrow resonance, i.e. for kxA(I)j l << kxA(0)j l, where
kxA(I)j l is the imaginary part of the resonance momen-
tum kxA(R)j l = kxA(0)j l − i kxA(I)j l, which determines
the location of the resonance pole in the momentum
plane. Due to relation (1), the resonance width is also
invariant under finite-range unitary transformations and
can be determined from the experiment.
Nowadays, it is quite well understood that the ANCs

can be determined from peripheral transfer reactions,
see [26–31] and references therein. However, the ANC
method has been applied only for transfer reactions pop-
ulating bound states. It is well known that from bi-
nary resonance scattering and reactions using the con-
ventional R-matrix approach one can determine the res-
onance partial widths, which, as we have underscored are
related to the ANCs. R-matrix method is one of the most
popular tools among the experimental groups worldwide
because the approach is comparatively simple even for
many-body, many-channel cases and deals with the for-
mal partial resonance widths determined from the fit to
the experimental data. These formal widths can be eas-
ily related with the observable partial widths. Using the
R-matrix approach one can fit simultaneously data for
all available channels. It allows one to control the consis-
tency of the obtained physical parameters. The question
is whether the theory of stripping to resonance states can
be formulated in terms of the same parameters which are
used in the R-matrix analysis of the binary resonance re-
actions.
It is the purpose of this paper to deliver a theory of the

deuteron stripping, which will solve all the above men-
tioned problems for the deuteron stripping into resonant
states. This theory is based on the post CDCC formalism
going beyond of the DWBA and surface integral formula-
tion of the reaction theory [32]. The CDCC wave function
takes into account not only the initial elastic d+A chan-
nel but also its coupling to the deuteron breakup chan-
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nel p + n + A missing in the DWBA. The convergence
problem is also resolved in this formalism. The reaction
amplitude is parametrized in terms of the reduced width
amplitudes (ANCs), inverse level matrix, boundary con-
dition and channel radius, that is the same parameters
which are used in the R-matrix method. Thus the the-
ory provides a consistent tool to analyze both binary res-
onant reactions and deuteron stripping in terms of the
same parameters.

The theory is based on the surface-integral formula-
tion of nuclear reactions and valid for stripping to both
bound and resonance states. First, just for demonstra-
tion of the formalism, the transformation of the DWBA
amplitude for stripping to the bound state is presented.
The reaction matrix element is split into two parts: inter-
nal (over the relative coordinate between the transferred
nucleon and target) and external. The idea of such sep-
aration is based on the fact that in the post formalism
the main contribution to the stripping amplitude comes
from the nuclear exterior while the prior form amplitude
is dominated by the internal region. It will be shown
that the dominant external post (internal prior) ampli-
tude using the Green’s theorem can be written as the
dominant surface integral encircling the internal volume
plus small addition from the prior external (post internal)
part. Thus, both post and prior forms lead to the same
reaction amplitude given by the sum of small internal
post form, small external prior form and the dominant
surface integral. The contribution of the post internal
part can be minimized by a proper choice of the final-
state optical potential, and the other two amplitudes are
parameterized in terms of the reduced widths amplitudes
(ANCs). After that the theory is extended to the CDCC
formalism. Then the theory is applied for stripping to
resonance states. First it is developed for the standard
DWBA and then the post CDCC formalism based on the
surface integrals is developed. One of the most impor-
tant results of this paper is that the post CDCC form
for stripping into resonant states can be written as the
sum of the small internal (over the coordinate rnA) post
form and the dominant surface part. The absence of the
diverging (or poor converging) external part solves the
problem of convergence of the matrix element for strip-
ping to resonance state.

In the developed approach the information about the
resonance subprocess is contained in the scattering wave
function of the fragments formed by resonance decay.
This wave function is written in a standard R-matrix
form using its separation into the internal and external
parts. It allows us to generalize the R-matrix method
for binary reactions to stripping reactions. Since the
deuteron stripping into resonant states is 2 → 3 parti-
cles reaction, the excitation of the resonance occurs in
the subsystem, while the third particle causes the distor-
tion. The extracted partial resonance widths can be used
for calculation of the (n, γ) processes. If the cross section
for (n, γ) resonant capture is available, the simultaneous
fit to the deuteron stripping and (n, γ) resonance cap-

ture can be done. The method can be also applied for
analysis of the Trojan Horse reactions [33]. Concrete cal-
culations and the application of the theory for deuteron
stripping and Trojan Horse reactions will be presented
in the following up papers. In what follows we use the
system of units in which ~ = c = 1. We also neglect the
spins of the particles if not specified otherwise.

II. SURFACE INTEGRAL FORMULATION FOR

DEUTERON STRIPPING TO BOUND STATE.

Before the theory of the deuteron stripping to reso-
nant states will be outlined I will present a surface in-
tegral formulation of the theory for stripping populating
bound states. First, just for demonstration, I consider
the DWBA and then extend it by including the CDCC
wave functions. As it has been explained in Introduction,
the transfer reaction matrix element will be split into two
parts in the subspace determining the relative motion of
the transferred nucleon and target: internal and external
parts. After that replacing the potentials in the transi-
tion operators by the kinetic energy operators and using
the Green’s theorem the matrix element in terms of the
surface integral will be obtained.

A. Stripping to bound state. Post form of DWBA.

In this section we consider the post form DWBA am-
plitude, which we split into the internal and external part
in the subspace over the relative coordinate between the
transferred n and A. Due to the choice of the transition
operator in the post form, the internal part turns out to
be small. The external part, which is parameterized in
terms of the ANC, will be transformed into the dominant
surface integral encircling the internal volume and small
external prior DWBA amplitude.
We start consideration from the exact reaction ampli-

tude for the deuteron stripping to bound states

d+A→ p+ F, (2)

where F = (An) is the bound state. The post form of
the exact reaction amplitude

M (post)(kpF , kdA) =< Φ
(−)
f

∣∣∆VpF
∣∣Ψ(+)

i >, (3)

where Ψ
(+)
i is the exact scattering wave function in the

initial state with the two-body incident wave d + A,

Φ
(−)
f = χ

(−)
pF ϕ∗

F is the channel function in the exit state
p + F , ϕi is the bound-state wave function of nucleus

i, χ
(+)
ij ≡ χ

(+)
kij

(rij) is the distorted wave describing the

relative motion of particles i and j with the relative mo-
mentum kij ; ∆VpF = VpA + Vpn −UpF is the transition
operator in the post form, Vij is the microscopic interac-
tion potential between nuclei i and j, Uij is the optical
potential between nuclei i and j; rij is the radius-vector
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connecting the center of mass of particles i and j. I

remind that the exact wave function Ψ
(+)
i is fully anti-

symmetrized but the channel wave function Φ
(−)
f is not

antisymmetrized with respect to exchange of the exiting
proton and nucleons in F . However, the internal wave

function of F ϕF in Φ
(−)
f is fully antisymmetrized. The

reason why we can drop the antisymmetrization in the
channel wave function is the presence of the fully anti-
symmetrized exact wave function in the initial state and
fully symmetric transition operator what can be seen be-
low when the transition operator is expressed in terms of
the kinetic energy operators.
To obtain the post form of the DWBA from Eq. (3)

we replace Ψ
(+)
i by the channel wave function Φ

(+)
i =

ϕd ϕA χ
(+)
dA in the initial d+A state:

M̃ (post)(kpF , kdA) =< Φ
(−)
f |∆VpF |Φ(+)

i > . (4)

Then we use approximation

ϕF ≈ IFA ϕA, (5)

where IFA (rnA) is the overlap function of the bound state
wave functions of nuclei F and A:

IFA (rnA) =
〈
ϕA|ϕF

〉
. (6)

Note that the integration in Eq. (6) is taken over all the
internal coordinates of nucleus A. Then the transition
operator in Eq. (4) takes the form < ϕA|∆VpF |ϕA >=
< ϕA|VpA|ϕA > +Vpn − UpF . Potential < ϕA|VpA|ϕA >
is replaced by the optical potential UpA and we obtain a
standard post form of the DWBA amplitude:

MDW (post)(kpF , kdA) =< Φ
(−)
f |∆V pF |Φ(+)

i >, (7)

where ∆V pF = UpA+Vpn−UpF . Now we will transform
this volume integral into the surface one. First, we adopt
rnA and rpF as Jacobian variables and split the configura-
tion space over rnA into the internal and external regions,
while the integral over the second Jacobian variable, rpF ,
is taken over all the coordinate space. Splitting the reac-
tion amplitude into internal and external amplitudes we
get

MDW (post)(kpF , kdA) =M
DW (post)
int (kpF , kdA)

+M
DW (post)
ext (kpF , kdA), (8)

where the internal amplitude M
DW (post)
int is given by

M
DW (post)
int (kpF , kdA)

=< χ
(−)
pF IFA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

. (9)

Correspondingly, the external amplitude is given by

M
DW (post)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (10)

Here, RnA is the channel radius similar to the one in-
troduced in the R-matrix approach, which separates the
internal and external regions.

The splitting of the amplitude into the internal a nd
external parts in the subspace over the Jacobian variable
rnA is natural and evident. The overlap function IFA (rnA)
is the only object in the reaction amplitude which pro-
vides spectroscopic and structure information. In the ex-
ternal region the overlap function has a standard radial
shape given by the spherical Hankel function (for neu-
trons) with the amplitude called the ANC (see below).
To determine the behavior of the overlap function in the
nuclear interior, which bring one of the main uncertain-
ties in the analysis of the deuteron stripping, microscopic
calculations are required [34]. In a standard approach the
internal part of the overlap function is approximated by
the single-particle bound state wave function calculated
in the adopted mean field. The proportionality coeffi-
cient is the square root of the spectroscopic factor. Due
to the structure of the transition operator the external

matrix element M
DW (post)
ext in the post form is dominant

compared to a small contribution coming from the inter-

nal partM
DW (post)
int . This simple observation stems from

the following.

In the internal matrix element, rnA ≤ RnA, due ab-
sorption of the protons inside nucleus F , effective rpn ∼
rpA ≈ rpF > RF , where RF is the radius of nucleus
F . For the protons outside of F and neutrons inside or
on the surface of A each nuclear interaction in the op-
erator ∆V pF = UpA + Vpn − UpF is small. Potential
UpF is arbitrary and often UpF is chosen to compensate
for UpA so that the transition operator reduces to Vpn.
Since the DWBA is the first order perturbation theory,
the minimization of the whole transition operator ∆V pF

provides smaller higher order terms and, hence, better
serves the theory. This choice is more preferable in the
formalism presented here and we adopt UpF , which min-

imizes ∆V pF = UpA + Vpn − UpF at rnA ≤ RnA making
the contribution from the internal matrix element small
compared to the external one.

In the external matrix element (rnA > RnA), which is
dominant, the overlap function IFA can be replaced by

its asymptotic tail. Although M
DW (post)
ext can be eas-

ily calculated for stripping to the bound state, here we
transform this matrix element into an alternative form,
which has clear advantage in case of stripping to reso-
nance states discussed below where convergence becomes
a main impediment.

Now we proceed to the transformation of the volume
integral defining the external matrix element in terms
of the dominant surface integral encircling the sphere at
rnA = RnA and a small, due to the structure of the tran-
sition operator in the prior form (see Eq. (17)), external
volume integral in the prior form. Note that the trans-
formation is exact within the DWBA formalism.

To transform the external volume integral to the sur-
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face one, we rewrite the transition operator as

∆V pF = UpA + Vpn − UpF = [Vpn + UdA]− [UpF ]

+(UpA − UdA). (11)

The bracketed operators are the right-hand-side opera-
tors in the Schrödinger equations for the initial and final
channel wave functions in the external region:

(E − T )ϕd χ
(+)
dA = (Vpn + UdA)ϕd χ

(+)
dA (12)

and

(E − T ) IFA χ
(−)∗
pF = UpF I

F
A χ

(−)∗
pF . (13)

To derive Eq. (13) we took into account that at rnA >
RnA IFA satisfies the asymptotic Schrödinger equation
(εnA − TnA) IFA = 0, where εij is the binding energy of
the bound state (i j) and Ti j is the kinetic energy oper-
ator of the relative motion of i and j. These equations
imply the following connection between the external post
form DWBA amplitude and the matrix element MDW

S
containing the surface integral:

M
DW (post)
ext (kpF , kdA) =MDW

S (kpF , kdA)

+M
DW (prior)
ext (kpF , kdA), (14)

where

M
DW (prior)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

(15)

and

MDW
S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (16)

Here, the transition operator in the prior form ∆V dA in
the external region, where the nuclear n−A interaction
disappears, takes the form

∆V dA = UpA − UdA. (17)

The overlap function is given by

IFA (rnA) =
∑

jnA mjnA mlnA

< JAMA jnAmjnA
|JF MF >

× < JnMn lnAmlnA
|jnAmjnA

>

× YlnA mlnA
(r̂nA) IAjnA lnA

(rnA). (18)

Here, < j1m1 j2m2|j3m3 > is the Clebsch-Gordan co-
efficient, lnA (mlnA

) is the orbital angular momentum
(its projection) of the relative motion of n and A, jnA
(mjnA

) is the total angular momentum (its projection)
of n in the bound state F = (nA), Ji (Mi) is the spin
(its projection) of nucleus i; IFA lnA jnA

(rnA) is the radial

overlap function, which is a real function [23], Yl m(r̂) is

the spherical harmonics and r̂ = r/r is the unit vector.
We assume that only one value of lnA contributes to ex-
pansion (18). If the channel radius is taken larger than
the range of the nuclear interaction, the radial overlap
function can be replaced by its asymptotic term,

IFA jnA lnA
(RnA)

rnA>RnA≈ CF
A jnA lnA

ilnA+1

× κnA h(1)lnA
(i κnA rnA), (19)

where h
(1)
lnA

(i κnA rnA) is the spherical Hankel function

of the first order, CF
A jnA lnA

is the ANC of the overlap

function, κnA =
√
2µnA εnA is the bound state wave

number.
It is also useful to introduce the reduced-width ampli-

tude used in the R-matrix approach, which can be ex-
pressed in terms of the ANC [25]:

γnA jnA lnA
=

√
RnA

2µnA
IFA jnA lnA

(RnA)

=

√
RnA

2µnA
ilnA+1 κnAC

F
A jnA lnA

h
(1)
lnA

(i κnARnA). (20)

Correspondingly, the reduced width is

γ2nA jnA lnA
=

RnA

2µnA
[IFA jnA lnA

(RnA)]
2

=
RnA

2µnA
(−1)lnA+1κ2nA [CF

A jnA lnA
h
(1)
lnA

(iκnARnA)]
2.

(21)

It is worth mentioning that, due to the presence of the
channel radius RnA, the reduced width, in contrast to the
ANC, is model-dependent. The dependence on the chan-
nel radius becomes crucial with increase of the binding
energy. We are going to use also the boundary condi-
tion, which is the logarithmic derivative of the overlap
function at rnA = RnA:

BnA =
1

h
(1)
lnA

(iκnARnA)

d[rnAh
(1)
lnA

(iκnArnA)]

dr

∣∣∣
rnA=RnA

.

(22)

Due to Eq. (19), the amplitude M
DW (prior)
ext can be

parametrized in terms of the ANC. We note that this am-
plitude is also small. In the external region, rnA > RnA,
the nuclear n− A interaction can be neglected. Besides
in this region the overlap function exponentially fades
away. Also, if the proton absorption is strong in the in-
ternal region of A, the dominant contribution comes from
rpA > RA, where RA is the radius of nucleus A. If the
adopted radius channel RnA is larger than the n−A nu-
clear interaction radius we can neglect n−A nuclear inter-
action in the external region. In this region each nuclear
potential UN

pA and UN
dA and their difference UpA−UdA are

small. The Coulomb part UC
pA−UC

dA ≈ ZA e
2Rd/(2R

2
A),
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where Rd is the deuteron size and ZA e is the charge
of nucleus A, is also too small compared to the nuclear
potential. Thus the dominant contribution to the post

DWBA amplitude M
DW (post)
ext , Eq. (14), and, hence, to

the total post form DWBA amplitude MDW (post) comes
from the surface integralMDW

S . Here and in what follows

all the amplitudes with the transition operator
←−
T − −→T

are assigned the subscript S, which is abbreviation of
”surface”, because the volume matrix elements of these
amplitudes can be transformed into the surface ones in
the subspace over variable rnA while over the second Ja-
cobian variable rpF we always keep the volume integral.
Now we express MDW

S in terms of the surface integral
over variable rnA and the same technique will be used
throughout the paper. The kinetic energy operator can
be written as T = TpF + TnA. TpF is a Hermitian oper-
ator in the subspace spanned by the bra and ket states
in Eq. (16). It can be proved if we take into account
that at rpF → ∞ the integrand in this equation van-
ishes exponentially due to the presence of the bound state
wave function ϕd(rpn) and the overlap function IFA (rnA).
Hence, integrating by parts twice the integral over rpF
we obtain

< χ
(−)
pF IFA |

←−
T pF −

−→
T pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

=< χ
(−)
pF IFA |

−→
T pF −

−→
T pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

= 0.

(23)

Then MDW
S reduces to

MDW
S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (24)

We apply now Green’s theorem to transform the vol-
ume integral into the surface one, which encircles the
inner volume over the coordinate r:

∫

r≤R

d r f(r)
[←−
T −−→T

]
g(r)

= − 1

2µ

∮

r=R

dS [g(r)∇r f(r) − f(r)∇r g(r)]

= − 1

2µ
R2

∫
dΩr

[
g(r)

∂f(r)

∂r
− f(r) ∂g(r)

∂r

]

r=R

.

(25)

Here, dS = R2 dΩr r̂, where Ωr is the solid angle. Note
that the unit vector r̂ is the normal vector to the sphere
directed outside of the restricted by the surface volume.
The integration in Eq. (24) over rnA is taken over the
external volume restricted by two spherical surfaces: the
inner surface with the radius RnA and the external sur-
face with the radius R

′

nA →∞, that is

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA)

+MDW
S∞

(kpF , kdA). (26)

The first term in this equation is the surface integral
encircling the inner surface of the external volume at
rnA = RnA while the second term is the surface integral
taken at rnA = R

′

nA → ∞. A negative sign in front of
the first term appears because the normal to the surface
is directed inward to the center of the volume, i.e. op-
posite to the normal to the external surface (at infinitely
large radius). The second term vanishes because of the
presence of the overlap function IFA , which decreases ex-
ponentially at rnA →∞. Then for MDW

S we get

MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA)

=
1

2µnA
R2

nA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

[
ϕd(rpn)χ

(+)
kdA

(rdA)
∂ [IFA (rnA)]

∗

∂ rnA
− [IFA (rnA)]

∗
∂ ϕd(rpn)χ

(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

.

(27)

Here we took into account that χ
(−)∗
k (r) = χ

(+)
−k (r). In-

voking Eqs. (18) and (19) we can rewrite MDW
S in the

form explicitly showing parametrization in terms of the

reduced width amplitude (ANC) and boundray condi-
tion, the quantities used in the R-matrix approach:
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MDW
S (kpF , kdA) =

1

2µnA
ilnA+1 κnARnA h

(1)
lnA

(i κnARnA)
∑

jnA mjnA
mlnA

Mn

< JAMA jnAmjnA
|JF MF >

× < JnMn lnAmlnA
|jnAmjnA

>< JpMp JnMn|JdMd > CF
A jnA lnA

×
∫

d rpF χ
(+)
−kpF

(rpF )

∫
dΩrnA

Y ∗
lnA mlnA

(r̂nA)

[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)− RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

] ∣∣∣
rnA=RnA

(28)

=

√
RnA

2µnA

∑

jnA mjnA
mlnA

Mn

< JAMA jnAmjnA
|JF MF >< JnMn lnAmlnA

|jnAmjnA
>

× < JpMp JnMn|JdMd > γnA jnA lnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Y ∗
lnA mlnA

(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)− RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (29)

Finally, the total post form DWBA amplitude is given
by

MDW (post)(kpF , kdA) =M
DW (post)
int (kpF , kdA)

+M
DW (prior)
ext (kpF , kdA) +MDW

S (kpF , kdA). (30)

Taking into account that MDW
S = M

DW (post)
ext −

M
DW (prior)
ext we can rewrite Eq. (30) in a different form:

MDW (post)(kpF , kdA) =M
DW (post)
int (kpF , kdA)

+M
DW (prior)
ext (kpF , kdA)

+
[
M

DW (post)
ext (kpF , kdA)−MDW (prior)

ext (kpF , kdA)
]
.

(31)

Thus, the main result of this section is that the post
form of the DWBA amplitude can be written as the sum

of the peripheral parts, M
DW (prior)
ext +MDW

S , and small

internal term M
DW (post)
int . The peripheral part itself con-

sists of the dominant surface amplitude MDW
S and small

external prior form M
DW (prior)
ext . The peripheral part is

parametrized in terms of the ANC (reduced width ampli-
tude), channel radius RnA and the logarithmic boundary
condition, that is in terms of the parameters used in the
R-matrix fitting. The model dependence of these two pe-
ripheral amplitudes is caused by the ambiguity of the op-
tical potentials and channel radius RnA. The strongest

model dependence comes from M
DW (post)
int , because, in

addition to the ambiguity of the optical potentials, to
calculate it one needs to know the behavior of the overlap
function in the internal region. For peripheral reactions

contribution of M
DW (post)
int can be neglected.

B. Prior form of DWBA. Stripping to bound state.

In subsection A the post form of the DWBA amplitude
has been considered. However, all the results hold also
for the prior form

MDW (prior)(kpF , kdA) =< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

=M
DW (prior)
int (kpF , kdA) +M

DW (prior)
ext (kpF , kdA),

(32)

where

M
DW (prior)
int (kpF , kdA)

=< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

. (33)

and

M
DW (prior)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (34)

with the transition operator

∆V dA = UpA + V nA − UdA. (35)

The n−A interaction potential V nA =< ϕA|VnA|ϕA > is
the mean field real potential supporting the bound state
(nA). The splitting of the amplitude into the internal
and external terms in the subspace over the coordinate
rnA helps us to further transform the prior DWBA ampli-
tude. Due to the structure of the transition operator the

external matrix element M
DW (prior)
ext in the prior form is

small (see the discussion in subsection IIA) and the main
contribution in the prior form comes from the internal

part M
DW (prior)
int . Since the internal part is given by the

volume integral, its calculation requires the knowledge of
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the overlap function in the internal region. The model
dependence of the overlap function in the nuclear inte-
rior (rnA ≤ RnA) brings one of the main problems and
main uncertainty in the calculation of the internal matrix
element. However, using the surface integral we can re-
distribute the internal contribution in terms of dominant
the surface term (over variable rnA) plus small internal
part written in terms of the volume integral in the post
form. With reasonable choice of the channel radius RnA

the contribution from the internal volume integral in the
post form can be significantly decreased compared the
surface matrix element. The latter can be expressed in
terms of the R-matrix parameters - the observable re-
duced width amplitude (ANC), boundary condition and

channel radius. To transform M
DW (prior)
int into the sur-

face integral in the subspace over variable rnA we rewrite
the transition operator in the internal region as

∆VdA = UpA + V nA − UdA

= [V nA + UpF ] + (UpA + Vpn − UpF )− [Vpn + UdA].
(36)

The bracketed transition operators are the potential op-
erators in the Schrödinger equations for the initial and
final channel wave functions. Hence, for the internal prior
form of the DWBA we obtain

M
DW (prior)
int (kpF , kdA)

=M
DW (post)
int (kpF , kdA) +M

DW (prior)
S (kpF , kdA),

(37)

where

MDW
S (kpF , kdA) = − < χ

(−)
pF IFA |

←−
T −−→T |ϕd χ

(+)
dA >

= − < χ
(−)
pF IFA |

←−
T nA −

−→
T nA|ϕd χ

(+)
dA >

= −MDW
SRnA

(kpF , kdA). (38)

Note that here MDW
SRnA

is the surface integral encircling

the border of the internal volume at rnA = RnA with the
normal directed outward. Thus we have demonstrated,
what should be expected from the very beginning, that
MDW (prior) = MDW (post). Hence all the equations ob-
tained in the previous subsection IIA are also valid in
the prior formalism.
It is worth mentioning that in the post formalism, in

contrast to the prior one, we have obtained two surface
integrals (in the subspace over rnA) with the radii rnA =

RnA and rnA = R
′

nA → ∞ and then proved that the
second integral is zero. From the equality of the post
and prior DWBA amplitudes we could conclude that the
surface matrix element over infinitely large sphere rnA =
R

′

nA → ∞, which appears only in the post formalism,
vanishes.
There is another interesting point to discuss which ex-

plains the advantage of the above outlined formulation
of the stripping. As we have discussed, due to differ-
ent structure of the transition operators in the post and

prior forms, the main contribution to the post (prior)
form comes from the external (internal) part (in the sub-
space over variable rnA). Since both forms give identical
amplitudes, that is, describe the same reaction mecha-
nism and the same physics, such redistribution of the
main contribution is possible only if the main contribu-
tion to each form comes from the border between external
and internal parts. In the post (prior) form this border
attributed to the external (internal) form and can be ex-
pressed in term of the surface integral. Let us rewrite
equalityMDW (prior) =MDW (post) in the following form:

M
DW (prior)
int (kpF , kdA) +M

DW (prior)
ext (kpF , kdA)

=M
DW (post)
int (kpF , kdA) +M

DW (post)
ext (kpF , kdA).

(39)

In this form the dominant terms are M
DW (prior)
int and

M
DW (post)
ext while the rest two terms, M

DW (prior)
ext and

M
DW (post)
int are smaller. From Eq. (39) we get

M
DW (post)
ext (kpF , kdA)−MDW (prior)

ext (kpF , kdA)

=M
DW (prior)
int (kpF , kdA)−MDW (post)

int (kpF , kdA)

=MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA). (40)

Thus the difference between the post and prior external
amplitudes (or the prior and post internal ones) is the
surface integral in the subspace over rnA.
There is one more point left to discuss. When deriving

the post form of the DWBA amplitude from Eq. (4) we
used approximation ϕF ≈ IFA ϕA neglecting the contri-
bution from the channels n+An, n > 0, where An is the
excited state of A. However, I will show now that the
surface integral formulation doesn’t require this approxi-
mation. To this end let us split M̃ (post) into the internal
and external parts in the subspace over variable rnA. In
the internal part we use a standard DWBA approxima-
tion ϕF ≈ IFA ϕA to arrive to the standard internal post
DWBA amplitude. In the external part we rewrite the
transition operator as

∆VpF = VpA + Vpn − UpF

= −
[
VA + UpF

]
+
[
Vpn + VA + UdA

]
+
(
VpA − UdA

)
.

(41)

The bracketed operators are the right-hand side opera-
tors of the Schrödinger equations

(
E − T

)
Φ

(+)
i =

(
Vpn + VA + UdA

)
Φ

(+)
i (42)

and
(
E − T

)
Φ

(−)∗
f =

(
VA + UpF

)
Φ

(−)∗
f . (43)

Hence, the external part of M̃ (post) reduces to

M̃
(post)
ext (kpF , kdA)

= M̃S(ext)(kpF , kdA) + M̃
(prior)
ext (kpF , kdA), (44)
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where

M̃
(prior)
ext (kpF , kdA)

=< Φ
(−)
f |VpA − UdA |Φ(+)

i >
∣∣∣
rnA>RnA

(45)

and

M̃S(ext)(kpF , kdA) =< Φ
(−)
f |
←−
T −−→T |Φ(+)

i >
∣∣∣
rnA>RnA

.

(46)

In the matrix element M̃
(prior)
ext we can use a standard

DWBA approximation ϕF ≈ IFA ϕA which leads to the
standard external prior DWBA amplitude. The matrix
element M̃S(ext) can be rewritten as

M̃S(ext)(kpF , kdA)

=< Φ
(−)
f |
←−
T nA −

−→
T nA |Φ(+)

i >
∣∣∣
rnA>RnA

=< χ
(−)
pF ϕF |

←−
T nA −

−→
T nA |ϕd ϕA χ

(+)
dA >

∣∣∣
rnA>RnA

=< χ
(−)
pF IFA |

←−
T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

= −MDW
SRnA

(kpF , kdA), (47)

We took into account that < Φ
(−)
f |
←−
T pF −

−→
T pF +

←−
T A −

−→
T A|Φ(+)

i >= 0, where TA is the internal motion kinetic
energy operator of nucleus A, and TnA ϕA = ϕA TnA .
Thus M̃S(ext) can be transformed to the surface inte-
gral over variable rnA encircling the inner volume with
the radius rnA = RnA without invoking approximation
ϕF ≈ IFA ϕA. It means that, when deriving the post form
of the DWBA amplitude, the approximation ϕF ≈ IFA ϕA

is required only to obtain two small terms, M
DW (post)
int

and M
DW (prior)
ext , but not the dominant surface term

−MDW
SRnA

. In this sense the surface integral formalism

is an improvement of the DWBA.

C. Deuteron stripping to bound states. Post

CDCC formalism

In the previous sections we succeeded to parametrize
the DWBA amplitude in terms of the ANC except for a

small term, M
DW (post)
int . The most serious shortcoming

of the DWBA is that it neglects the coupling to open
reaction and breakup channels. This coupling can be
taken into account if an exact wave function in the initial
or final states is used. However, the exact wave functions
are not yet available (if they would be available in the
whole configuration space, we don’t need to calculate the
matrix element because the asymptotic terms of the exact
wave functions provide the reaction amplitudes in all the
open channels). Here we use the CDCC formalism, which
takes into account the elastic d + A and the deuteron
breakup channel p+ n+A in the initial state.

In this subsection the surface integral formulation of
the reaction theory will be applied to the post form of the
CDCC amplitude for deuteron stripping to bound states.
It will allow us to parametrize the stripping amplitude in
the CDCC approach in terms of the R-matrix parameters
- the reduced width amplitude, boundary condition and
the channel radius. To obtain the CDCC wave function
describing the initial state of the stripping reaction, first

the exact initial scattering wave function Ψ
(+)
i is replaced

by the three-body wave function Ψ
3B(+)
i , which takes into

account the coupling of the initial channel d+A and the
deuteron breakup channel p + n + A [1–3] and satisfies
the Schrödinger equation (in the three-body p + n + A
model space)

(E − T − UpA − UnA − Vpn)Ψ3B(+)
i = 0 (48)

with the outgoing waves in the elastic channel d+A and
the breakup channel p + n + A. A general solution of
this equation with the d + A incident wave has outgo-
ing waves in the elastic, breakup and two rearrangement
channels, n+(pA) and p+(nA). To damp rearrangement
channels in the asymptotic behavior of the wave function

Ψ
3B(+)
i the optical potentials UpA and UnA with strong

imaginary terms can be used [35]. Ψ
3B(+)
i is given by

Ψ
3B(+)
i (rdA, rpn) = ϕd(rpn)χ

(+)
kdA

(rdA)

+

∫
dppn ψ

(+)
ppn

(rpn)χP(+)(ppn)(rdA). (49)

Here, ϕd(rpn) is the deuteron bound state wave function,

ψ
(+)
ppn(rpn) the p − n scattering wave function with the

relative momentum ppn, χ
(+)
kdA

(rdA) and χ
(+)
P(ppn)

(rdA)

are the expansion coefficients, EdA−εpn = P 2/(2µdA)+
p2pn/(2µpn).

In practical application the wave function Ψ
3B(+)
i is

replaced by the CDCC wave function, which is a solution
of the projected Schrödinger equation

(E − T − U (Ppn)
pA − U (Ppn)

nA − Vpn)ΨCDCC(+)
i = 0. (50)

Here, U
(Ppn)
iA = P̂pn UpA P̂pn, and

P̂pn =

lmax
pn∑

lpn=0

lpn∑

mlpn=−lpn

∫
dΩrpn Ylpn mlpn

(r̂pn)

× Y ∗
lpn mlpn

(r̂
′

pn) (51)

is the projection operator, which truncates the number of
the spherical harmonics Ylpn mlpn

(r̂pn) in the coordinate
rpn. Application of this operator to the three-body wave
function suppresses the rearrangement channels in the
asymptotic wave function. The CDCC wave function is
taken in the form

Ψ
CDCC(+)
i (rpn, rdA) = P̂pn

nmax∑

n=0

ψ(n)
pn (r

′

pn)χ
(n)(+)
i (rdA),

(52)
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where ψ
(0)
pn (rpn) = ϕd(rpn) is the deuteron bound state

wave function, ψ
(n)
pn (rpn), n ≥ 1, is the n-th discretized

continuum state of the p− n pair obtained by averaging

continuous breakup states in the n-th bin, χ
(n)(+)
i (rdA)

are the functions, which describe the relative motion of
the center-of-mass of the p−n pair in the n-th state and

A. Note that χ
(0)(+)
i (rdA) asymptotically behaves as the

incident Coulomb distorted d−A plane wave plus outgo-

ing scattered wave, while χ
(n)(+)
i (rdA) for n > 0 asymp-

totically do not contain any plane wave having only the
outgoing scattered wave.

To derive the post form of the CDCC amplitude from
the exact one, first we replace the initial exact scattering

wave function Ψ
(+)
i by ϕA Ψ

3B(+)
i . Note that Ψ

3B(+)
i is

the three-body model (p + n + A) wave function which
treats nucleus A as a constituent particle leaving its inter-
nal degrees of freedom intact. That is why the wave func-

tion Ψ
(+)
i is approximated by the product of the bound

state wave function ϕA and Ψ
3B(+)
i . Correspondingly,

the transition operator ∆VpF = VpA + Vpn − UpF is re-

placed by ∆V pF = UpA + Vpn − UpF . This replacement
of the microscopic potential VpA in the exact post form
amplitude by UpA is evident because the p−A interaction
potential in the transition operator should be the same
as the one in the Schrödinger equation for the initial scat-

tering wave function Ψ
3B(+)
i . Potential Vpn remains the

same when we approximate the initial exact scattering
wave function ny the three-body one. The final state
optical potential UpF is arbitrary and we discuss the op-
timal choice of this potential later on. These approxima-
tions lead to the expression for the post form stripping
amplitude in the three-body model in the initial state:

M3B(post)(kpF , kdA)

=< χ
(−)
pF ϕF |∆V pF |ϕA Ψ

3B(+)
i >

=< χ
(−)
pF IFA |∆V pF |Ψ3B(+)

i > ‘ (53)

Thus, even if we treat the d + A collision in the initial
channel in the three-body approach, the final state con-
tains the overlap function, which is essentually many-
body object. Eq. (53) is impractical to use because it
requires the knowledge of the three-body wave function

Ψ
3B(+)
i , Eq. (49), which contains unknown expansion co-

efficients χkdA
(rdA) and χP(ppn)(rdA). In practical appli-

cations the Ψ
3B(+)
i is approximated by the CDCC wave

function Ψ
CDCC(+)
i , which requires the knowledge of the

finite number of the expansion coefficients. They can be
found from the coupled equations. Correspondingly, the
transition operator ∆V pF = UpA+Vpn−UpF in Eq. (53)

is replaced by ∆V
Ppn

pF = U
Ppn

pA + Vpn − UpF . Note that

only the potential UpA(rpA), where rpA = rdA + 1/2 rpn
is affected by the projector P̂pn. Then the expression for

the post form of the CDCC amplitude takes the form:

MCDCC(post)(kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

pF |Ψ
CDCC(+)
i > .‘ (54)

Now we splitMCDCC into the internal and external parts
in the subspace rnA:

MCDCC(post)(kpF , kdA) =M
CDCC(post)
int (kpF , kdA)

+M
CDCC(post)
ext (kpF , kdA).

(55)

The internal amplitude M
CDCC(post)
int is given by

M
CDCC(post)
int (kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

. (56)

Correspondingly, the external amplitude is

M
CDCC(post)
ext (kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA>RnA

. (57)

I remind that the integral over the second Jacobian vari-
able, rpF , is taken over all the coordinate space. Sim-
ilarly to the DWBA case, the internal part is small if
the channel radius RnA is not too large. Due to the
strong absorption of the proton inside A, which is con-
trolled by the imaginary part of the optical potential

U
Ppn

pA , the effective distances are rpA > RA. Besides,
in the internal region, rnA ≤ RnA, and large rpA, where

rpA ∼ rpn = |rpA − rnA|, UPpn

pA + Vpn can be well ap-
proximated by a properly chosen optical potential UpF

minimizing ∆V
Ppn

pF and the internal matrix element. The
next step is to transform the external matrix element to
the surface one. To this end we rewrite the transition
operator in the form

∆V
Ppn

pF = U
Ppn

pA + Vpn − UpF = [−UpF ] + [U
Ppn

pA + Vpn].

(58)

The bracketed operators in (58) are the right-hand-side
potential operators in the Schrödinger equations in the
external region rnA > RnA, where the nuclear n − A
interaction vanishes:

(E − T )ΨCDCC(+)
i = (U

Ppn

pA + Vpn)Ψ
CDCC(+)
i (59)

and

(E − T )χ(−)∗
pF IF ∗

A = UpF χ
(−)∗
pF IF ∗

A . (60)

Note that the second equation follows from

(−εnA − TnA) IFA =< ϕA|VnA|ϕF > . (61)
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In the external region, rnA > RnA, the source term
on the right-hand-side disappears and Eq. (60) becomes
evident. Taking into account Eqs (59) and (60) we get

M
CDCC(post)
ext (kpF , kdA) ≡MCDCC(post)

S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T −−→T |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

,

(62)

where T = TpF + TnA. Here, as in the previous section,
for the surface integral we use the subscript ”S”. Since
the CDCC wave function doesn’t propagate into the final
state (its asymptotic terms have only elastic and breakup
terms) the operator TpF is Hermitian, i.e.

< χ
(−)
pF IFA |

←−
T pF −

−→
T pF |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

=< χ
(−)
pF IFA |

−→
T pF −

−→
T pF |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

= 0.

(63)

It can be also shown explicitly taking into account that
the volume integral over rpF can be transformed into
the surface integral over the sphere with the radius
rpF = RpF → ∞. Since the overlap function decays
exponentially at rnA → ∞, the integration over rnA is
limited. Hence, at rpF → ∞ using Eqs (B6) we get
that rdA ∼ rpF → ∞ and rpn ∼ rpF → ∞. The first
term of the CDCC wave function decays exponentially
at rpF → ∞ because of the presence of the deuteron
bound state wave function. The terms with n ≥ 1 decay

as 1/r3pF [36]. The distorted wave χ
(−)∗
pF (ppF ) decays as

1/rpF , see Eq. (B14). Hence the surface integral vanishes
at RpF →∞ as R2

pF /R
4
pF → 0.

Then M
CDCC(post)
S takes the form

M
CDCC(post)
S (kpF , kdA)

=< χ
(−)
pF IFA |

←−
T nA −

−→
T nA|ΨCDCC(+)

i >
∣∣∣
rnA>RnA

= −MCDCC(post)
SRnA

(kpF , kdA) +M
CDCC(post)
S∞

(kpF , kdA).

(64)

Thus, the volume integral at rnA > RnA in the ma-

trix element M
CDCC(post)
S can be written as the sum of

two surface integrals encircling the external volume, the
sphere with the radius rnA = RnA and the sphere with
rnA = R

′

nA → ∞. Note that the integral over rpF is
taken over all the coordinate space. Evidently that the
integral over the infinitely large sphere vanishes because
the overlap function IFA exponentially decreases. Hence,

M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA).

(65)

The negative sign in front of the inner surface integral
appears because the normal vector to the inner surface
is directed to the center, i.e. opposite to the direction of
the normal to the external surface at rnA = R

′

nA → ∞.
Now we can use equations from subsection A replacing
the initial channel wave function by the CDCC one. For

M
CDCC(post)
S we get

M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA)

=
R2

nA

2µnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

r̂nA

[
[IFA (rnA)]

∗(
←−∇rnA

−−→∇rnA
)Ψ

CDCC(+)
i (rpF , rnA)

] ∣∣∣
rnA>RnA

=
R2

nA

2µnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

[
Ψ

CDCC(+)
i (rpF , rnA)

∂ [IFA (rnA)]
∗

∂rnA
− [IFA (rnA)]

∗ ∂Ψ
CDCC(+)
i (rpF , rnA)

∂rnA

] ∣∣∣
rnA=RnA

.

(66)

Natural Jacobian variables for Ψ
CDCC(+)
i are rdA and

rpn, but here we use another set of Jacobian variables,
rpF and rnA. Taking into account Eq. (18) and (19) we
get
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M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA)

=

√
RnA

2µnA

∑

jnA mjnA
mlnA

Mn

< JAMA jnAmjnA
|JF MF >

× < JnMn lnAmlnA
|jnAmjnA

> γnA jnA lnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Y ∗
lnA mlnA

(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)− RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

] ∣∣∣
rnA=RnA

. (67)

Note that the CDCC wave function itself also depends on
quantum numbers of p− n and d−A subsystems, which
we don’t specify here. It will be done in the following up
paper where concrete calculations will be presented.

Thus we have obtained a remarkable result: the post
form of the CDCC amplitude, in contrast to the DWBA
one, is given by the sum of only two terms:

MCDCC(post)(kpF , kdA) =M
CDCC(post)
int (kpF , kdA)

−MCDCC(post)
SRnA

(kpF , kdA),

(68)

where the first term, which is the internal post form of the
CDCC amplitude, can be minimized by a proper choice
of UpF and the channel radius RnA, while the second
term, which is dominant, represents the surface integral
with the radius RnA, which encircles the internal volume
in the subspace over the coordinate rnA. If the channel
radius is larger than the n−A nuclear interaction radius
the second term is parametrized in terms of the reduced
width amplitude (ANC of the projection of the bound
state wave function of F on the two-body state n+A) and

the boundary condition at rnA = RnA. If M
CDCC(post)
int

is small enough,

MCDCC(post)(kpF , kdA) ≈ −MCDCC(post)
SRnA

(kpF , kdA).

(69)

Thus we succeeded to parametrize the post form of the
CDCC amplitude in terms of the R-matrix parameters.
Eq. (68) and parametrization of the surface term of the
post CDCC amplitude in terms of the R-matrix param-
eters, Eq. (67), are one of the main results of this paper.

Although it is assumed that M
CDCC(post)
int can be min-

imized so that the second term in Eq. (68) becomes
dominant, I would like to present a different form for

M
CDCC(post)
int (kpF , kdA), which leads to a different form

for the whole amplitude MCDCC(post)(kpF , kdA). To

this end, let us rewrite the transition operator ∆V
Ppn

pF

in M
CDCC(post)
int (kpF , kdA) as

∆V
Ppn

pF = U
Ppn

pA + Vpn − UpF

= [U
Ppn

pA + U
Ppn

nA + Vpn]− [V nA + UpF ] + V nA − UPpn

nA .

(70)

Here, V nA is the mean field potential supporting the

bound state (nA) while U
Ppn

nA is the projected optical
potential describing the n − A interaction in the initial
state of the reaction and entering the Schrödinger equa-
tion for the projected CDCC wave function in the initial
state. The bracketed potential operators are the right-
hand-side operators of the Schrödinger equations in the
internal region, rnA ≤ RnA,

(E − T )ΨCDCC(+)
i = (U

Ppn

pA + U
Ppn

nA + Vpn)Ψ
CDCC(+)
i

(71)
and

(E − T )χ(−)∗
pF IF ∗

A = (V nA + UpF )χ
(−)∗
pF IF ∗

A . (72)

Replacing the bracketed potential operators [U
Ppn

pA +

U
Ppn

nA + Vpn] and [V nA + UpF ] by E − −→T and E − ←−T ,

correspondingly, we get for M
CDCC(post)
int a new form:

M
CDCC(post)
int (kpF , kdA) =M

CDCC(post)
SRnA

(kpF , kdA)

+MCDCC(post)
aux (kpF , kdA), (73)

MCDCC(post)
aux (kpF , kdA)

=< χ
(−)
pF IFA |∆V

Ppn

nA |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

, (74)

∆V
Ppn

nA = V nA − UPpn

nA . (75)

Then the total post form of the CDCC amplitude can be
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written as

MCDCC(post)(kpF , kdA) =M
CDCC(post)
int (kpF , kdA)

−MCDCC(post)
SRnA

(kpF , kdA)

=M
CDCC(post)
SRnA

(kpF , kdA)−MCDCC(post)
SRnA

(kpF , kdA)

+MCDCC(post)
aux (kpF , kdA) =MCDCC(post)

aux (kpF , kdA)

=< χ
(−)
pF IFA |V nA − UPpn

nA |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

. (76)

Thus, we obtained another important result. The CDCC
amplitude in the post form is equal to the inner volume
integral over variable rnA with the transition operator

V nA − UPpn

nA . This transition operator is the difference

between the bound state potential V nA supporting the
final bound state (nA) and the projected optical poten-
tial describing the n − A interaction in the initial state.
It is worth mentioning that Eqs (68) and (76) are ex-

act within the CDCC approach. If M
CDCC(post)
int is small

enough, then

MCDCC(post)
aux (kpF , kdA) ≈ −MCDCC(post)

SRnA
(kpF , kdA).

(77)

However, I prefer Eq. (68) rather than (76). To calcu-

late M
CDCC(post)
aux one needs to know the overlap func-

tion in the internal region, where the overlap function is
model-dependent and requires microscopic calculations.
In contrast, in Eq. (68) the dominant part is the surface
integral, which is parametrized in terms of the reduced
width amplitude (ANC). The model dependence of the
surface part is related with the ambiguity of the optical
potentials and the value of the cut-off orbital angular mo-
mentum in the p− n subsystem in the CDCC approach.
Comparison with experiment allows one to extract the re-
duced width amplitude. The model-dependent internal
part in Eq. (68) is small. Eqs (68) and (76) is prelude
to the theory of the stripping to resonance, where the
convergence problem of the external part is one of the
main issue. As we have demonstrated in the post CDCC
formalism the external part doesn’t appear at all. It re-
solves the convergence problem related with the external
part.

D. Deuteron stripping to bound states. Prior

CDCC formalism

A priori, the amplitudes in the post and prior forms of
the CDCC formalism are not equal. That is why the ob-
tained equations using the surface integrals are expected
to be different in both formalisms. The prior form of the
CDCC stripping amplitude is

MCDCC(prior)(kpF , kdA)

=< Ψ
CDCC(−)
f |∆V

PnA

dA |ϕd χ
(+)
dA >, (78)

where

∆V
PnA

dA = UPnA

pA + VnA − UdA. (79)

The projected CDCC wave function in the final state is
a solution of the three-body Schrödinger equation

(E − T − UPnA

pA − VnA − V PnA
pn )Ψ

CDCC(−)∗
f = 0. (80)

Here,

P̂nA =

lmax
nA∑

lnA=0

lnA∑

mlnA
=−lnA

∫
dΩrnA

YlnA mlnA
(r̂nA)

× Y ∗
lnA mlnA

(r̂
′

nA). (81)

is the projection operator, which truncates the number of
the spherical harmonics YlnA mlnA

(r̂nA) in the coordinate
rnA.
Now, as usually, we split the amplitude MCDCC(prior)

into the internal and external parts in the subspace over
variable rnA:

MCDCC(prior)(kpF , kdA)

=M
CDCC(prior)
int (kpF , kdA) +M

CDCC(prior)
ext (kpF , kdA), ‘

(82)

where

MCDCC(prior)(kpF , kdA)

=< Ψ
CDCC(−)
f |UPnA

pA + VnA − UdA|ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

(83)

and

M
CDCC(prior)
ext (kpF , kdA)

=< Ψ
CDCC(−)
f |UPnA

pA − UdA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (84)

The external part of the prior amplitude (see discussion
in subsection II B), due to the structure of the transition
operator, is small and the dominant contribution comes
from the internal amplitude. We will rewrite this ampli-
tude singling out the surface integral over variable rnA.
To do it we rewrite the transition operator

∆V
PnA

dA = UPnA

pA + VnA − UdA

= [UPnA

pA + VnA + V PnA
pn ]− [Vpn + UdA].+ (Vpn − V PnA

pn )

(85)

The bracketed operators are the right-hand-side opera-
tors of the Schrödinger equations

(E − T )ΨCDCC(−)∗
f = (UPnA

pA + VnA + V PnA
pn )Ψ

CDCC(−)∗
f

(86)

and

(E − T )ϕd χ
(+)
dA = (Vpn + UdA)ϕd χ

(+)
dA . (87)
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Taking into account these equations we can rewrite

M
CDCC(prior)
int (kpF , kdA) in the form:

M
CDCC(prior)
int (kpF , kdA) =M

CDCC(prior)
S (kpF , kdA)

+MCDCC(prior)
aux (kpF , kdA), (88)

where

MCDCC(prior)
aux (kpF , kdA)

=< Ψ
CDCC(−)
f |Vpn − V PnA

pn |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

(89)

and

M
CDCC(prior)
S (kpF , kdA)

= − < Ψ
CDCC(−)
f |←−T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

. (90)

Here, the kinetic energy operator T = TpF + TnA. In

M
CDCC(prior)
S the volume integral over rpF can be trans-

formed into the surface one taken over the sphere with the
infinitely large radius: rpF = RpF →∞. For rnA ≤ RnA,
due to the presence of the deuteron bound state wave
function, the integrand goes to zero exponentially, that
is this surface integral vanishes. Hence, only the sur-
face integral encircling the inner volume with the radius
rnA = RnA:

M
CDCC(prior)
S (kpF , kdA)

= − < Ψ
CDCC(−)
f |←−T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

= −MCDCC(post)
SRnA

(kpF , kdA). (91)

M
CDCC(post)
SRnA

is given by Eq. (67).

M
CDCC(prior)
aux (kpF , kdA) is an auxiliary internal part,

which is small because at rnA ≤ RnA and rpF > RF due
to the proton absorption in the nuclear interior, p − n
nuclear interaction is significantly depleted, and so the
difference Vpn − V PnA

pn . Then

MCDCC(prior)(kpF , kdA)

=MCDCC(prior)
aux (kpF , kdA)−MCDCC(post)

SRnA
(kpF , kdA)

+M
CDCC(prior)
ext (kpF , kdA), (92)

Thus the total prior form CDCC amplitude consists of
three terms, small auxiliary internal part, small external
prior form and the dominant surface term. We can see
that post and prior CDCC formalisms are not equivalent.
In the approach used in the paper the configuration space
over variable rnA was split into the internal and external
parts. As it has been discussed in Introduction, such a
splitting is natural because the main object of interest in
the analysis of deuteron stripping is the overlap function
IFA of the bound states wave functions of the target A
and final nucleus F . Its external part (rnA > RnA) is

parametrized in terms of the observable ANC while the
internal part is model-dependent.
In the post formalism the external part is domi-

nant. Invoking the post CDCC formalism allows us to
rewrite the external CDCC matrix element in the form
of the surface integral over variable rnA, which can be
parametrized in terms of the parameters used in the R-
matrix method for binary reactions, while the model-
dependent internal part gives small contribution. Thus
the volume part of the matrix element over variable rnA
is transformed to the surface integral. For transfer to
bound states such a transformation doesn’t bring any sig-
nificant advantages because the volume matrix element
converges. However, for stripping to resonance states
(see subsection III C) this transformation provides a de-
cisive benefit because it solves the convergence problem
of the matrix element. Here, the transformation of the
post CDCC matrix element has been presented mostly
for demonstration but the results will be used below in
subsection III C for stripping to resonance states.
The prior CDCC formalism would be preferable if we

split the matrix element into the internal and external
parts over variable rp n to separate the internal and pe-
ripheral parts of the deuteron bound state wave function.
But this wave function is well known and is not an ob-
ject of study. That is why below, when considering the
stripping to resonance states, we use only the post CDCC
formalism.

III. DEUTERON STRIPPING INTO

RESONANCE STATES

Now we proceed to the main goal of this paper, for-
mulation of the deuteron stripping into resonance states
using the surface integrals what will lead us to the gener-
alized R-matrix approach for the stripping into resonance
states. Let us consider the deuteron stripping

d+A→ p+ b+B. (93)

We assume that the resonance formed in the system
F = A + n can decay into channel B + b, which can
be different from the entry channel A+n. We start from
the post form and transform it to the surface integral
following the method applied for the stripping to bound
states. Now the application of the R-matrix approach
looks natural. Although we consider the deuteron strip-
ping leading to a specific final channel d+A→ p+b+B,
there can be a few open channels coupled to the chan-
nel n + A, which is formed after neutron is transferred
to the target A. As in the previous sections, follow the
R-matrix approach, we split the integration region over
rnA into two regions: internal and external. Internal re-
gion is determined as the one where all open channels are
coupled with each other, so that the transition from one
channel to another can occur only in the internal region.
The external region is the one where all the channels are
decoupled. We obtain new forms for the DWBA and
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then for the post form of the CDCC amplitude. For the
DWBA both post and prior approach will lead to the
same final expression. In the standard approach the post
form of the DWBA amplitude is mainly contributed by
the external part in the subspace rnA, where the con-
vergence question of the DWBA matrix element, which
contains the integration over rpF and rnA, becomes a
main issue. In the prior form the main contribution to
the DWBA matrix element mainly comes from the inter-
nal region in the subspace rnA, where a strong coupling
between different open channels becomes an issue. In a
new approach formulated below the DWBA amplitude
(in the post and prior forms) is written as the sum of
three amplitudes: small internal post and external prior
forms, and the dominant surface integral in the subspace
over rnA. This surface term is parametrized in terms
of the reduced width amplitudes, resonance energies and
boundary condition, that is the quantities used in a stan-
dard R-matrix approach. In the post CDCC approach
the amplitude is given by the sum of the small inter-
nal post form and the dominant surface term, that is, in
contrast to the DWBA, no external prior form appears
in the CDCC method. This resolves the issue of the con-
vergence for stripping into resonant states.

A. Stripping to resonance states. Post form of

DWBA.

The post form of the DWBA amplitude can be ob-
tained by generalizing the corresponding equation for the
deuteron stripping to the bound state. As a starting
point, we use Eq. (7) in which, to get the amplitude
for the deuteron stripping to resonance states, we should
replace the overlap function IFA by the exact scattering

wave function Ψ
(−)
bB with the incident wave in the channel

b+B:

MDW (post)(P, kdA)

=< χ
(−)
pF Ψ

(int)(−)
bB | |∆V pF |ϕd ϕA χ

(+)
dA >, (94)

where ∆V pF = UpA + Vpn − UpF and

Ψ
(−)
bB ≡ Ψ

(−)
kbB

= Ψ
(+)∗
−kbB

. (95)

Since we consider the stripping to the resonance state,
which decays into two fragments b and B, there are three
particles, p, b and B, in the final state. Hence, the kine-
matics of the final state of the reaction depends on two
Jacobian momenta, for which we adopt the relative mo-
mentum of two fragments b and B and by the momen-
tum corresponding to the relative motion of the exit-
ing proton and the center of mass of the system b + B.
Thus the deuteron stripping reaction amplitude depends
on the momentum P = {kpF , kbB}, which is the six-
dimensional momentum conjugated to the Jacobian co-
ordinates of the system p+ b+B Y = {rpF , rbB}.

Then repeating the steps used in derivation of the ex-
pression for the post form of the DWBA amplitude for
deuteron stripping to the bound state we get

MDW (post)(P, kdA) =M
DW (post)
int (P, kdA)

+M
DW (prior)
ext (P, kdA) +MDW

S (P, kdA). (96)

Here, internal post amplitude M
DW (post)
int (P, kdA) and

external prior amplitude M
DW (prior)
ext (P, kdA) are given

by

M
DW (post)
int (P, kdA)

=< χ
(−)
pF Υ

(int)(−)
nA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

(97)

and

M
DW (prior)
ext (P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |∆V pF |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (98)

Here, Υ
(int)(−)
nA (rnA) =< ϕA|Ψ(int)(−)

bB > and

Υ
(ext)(−)
nA (rnA) =< ϕA|Ψ(ext)(−)

bB >.
The last term of Eq. (96), which will be transformed

to the surface integral, is

MDW
S (P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |←−T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (99)

Let us discuss the advantage of this new form of the
DWBA amplitude for the deuteron stripping to reso-

nance state(s). Since the internal part M
DW (post)
int is

given by the volume integral, its calculation requires

the knowledge of Ψ
(int)(−)
bB in the internal region. The

model dependence of this function in the nuclear inte-
rior (rnA ≤ RnA), where different coupled channels do
contribute, brings one of the main problems and main
uncertainty in the calculation of the internal matrix el-
ement. However, as it has been discussed in subsection
IIA, this matrix element gives a small contribution to
the total post form amplitude MDW (post) due to the
structure of the transition operator ∆V pF and constrain
rnA ≤ RnA. These arguments are also valid when con-
sidering the stripping into resonance states. A proper
choice of the optical potential UpF and the channel ra-
dius RnA may significantly reduce the contribution from
the internal post form DWBA amplitude. Due to the
structure of the transition operator ∆V dA, which has
been also discussed in subsection IIA, the external ma-

trix element M
DW (prior)
ext in the prior form is also small

and in some cases, with reasonable choice of the channel
radius RnA, even can be neglected. Note that, in order to

keepM
DW (post)
int small, the channel radius RnA cannot be

too large and, in order to keepM
DW (prior)
ext small, cannot

be too small. Thus with an optimal choice of the chan-
nel radius the dominant part is the surface part MDW

S ,
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which contains only one volume integral over rpF . Eq.
(96), which presents a new form of the DWBA amplitude
for stripping to resonance states, is quite important for
analysis of the stripping to resonance.
Using the R-matrix representation of the scattering

wave function Ψ
(−)∗
bB we are able to express the to-

tal DWBA amplitude in terms of the reduced width
amplitudes, level matrix, boundary condition and the
channel radius, that is parameters used in a standard
R-matrix method to analyze binary resonant reactions
n + A → b + B. Since the reaction under consideration
is the deuteron stripping, the presence of the deuteron
in the initial state and exiting proton causes the distor-
tions. That is why the reaction amplitude, in addition to

the R-matrix parameters describing the binary subpro-
cess, contains additional factors - distorted waves in the
initial and the final states. That is why we can call the
obtained expression for the DWBA amplitude a general-
ized R-matrix for deuteron stripping to resonance states.

Now we proceed to the derivation of the expressions for
each amplitude in the right-hand-side of Eq. (96) and the
total post form DWBA amplitude. Since the stripping
into resonance states can lead to rearrangement, the exit
channel b + B may differ from the entry channel n + A.

To proceed further we now use the equations for Ψ
(+)
bB

obtained in Appendix A. Taking into account Eqs. (95)
and (A1) we get

M
DW (post)
int (P, kdA) =

2 π

kbB

√
kbB
µbB

∑

JF MF , l ml Mn

< sms l ml|JF MF >< JnMn JpMp|JdMd >

e−i δhs
bB l il Y ∗

l ml
(−k̂bB)

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ < χ
(−)
pF ΞJF MF

τ nA |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

. (100)

In this equation we assume that the channel spin s and
its projection ms in the exit channel c = b+B are fixed
[41]. JF is the resonance spin (MF its projection) in the
subsystem F = n+A = b+B and l is the b+B orbital an-
gular momentum in the resonance state. The sum over
JF and l assumes that a few resonances with different
spins may contribute to the reaction. The subscript c
used in Appendix A for the channel b + B is replaced
here by bB. Also ΞJF MF

τ nA =< ϕA|XJF MF
τ > is projec-

tion of XJF MF
τ introduced in Appendix A on the bound

state ϕA. The bound-state like wave function XJF MF
τ

describes the system F = n+ A = b +B in the internal
region. A priori, it can be calculated using, for example,
the shell model approach [37]. In Appendix A XJF MF

τ is
written as a nonorthogonal sum of coupled channels, see
Eq. (A4). If we neglect the contribution from the chan-

nel c, then ΞJFMF

τ nA can be approximated by the internal
part of the overlap function, see Eq. (18). Taking into
account this equation (rewritten in LS-coupling scheme)
we get

M
DW (post)
int (P, kdA) =

2 π

kbB

√
kbB
µbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > e−i δhs
bB l Y ∗

l ml
(−k̂bB)

×
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ < χ
(−)
pF Y ∗

l′ ml′
(r̂nA) I

F
A s′ l′ JF

(rnA) |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

. (101)

Here we added the sum over the channel spin s′ (its pro-
jection ms′) in the entry channel c′ = n+A of the reso-
nant subreaction n+A→ F → b+B and over the n+A
orbital angular momentum l′. The sum over Mn and
s′ (ms′) appears because the transferred neutron is in-
termediate (virtual). It is important that with a proper

choice of the optical potential UpF the matrix element

M
DW (post)
int can be minimized so that its model depen-

dence wouldn’t have impact on the total matrix element
MDW (post).

To obtain the expression for M
DW (prior)
ext we use for
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the external part Ψ
(ext)(−)
bB , which can be obtained from

Eq. (A31), assuming that the resonance contribution to
this wave function is dominant. In the sum over JF in
Eq. (A31) we keep only those total angular momenta at
which resonances contributing to the reaction occur. Let
us consider two possible cases.

(i) The exit channel c = b+B in the resonant sub-process
n+A→ b+B is different from channel c′ = n+A. In this
case the external resonant wave function is given by Eq.
(A36) and its projection on the bound state ξc′ = ϕA is

determined by Eq. (A37). Then M
DW (prior)
ext reduces to

M
DW (prior)
ext (P, kdA) = − i

2 π

kbB

√
vbB
vnA

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗
l ml

(−k̂bB)S
JF

bB s l;nAs′ l′

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA
Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (102)

Here, V dA is given by Eq. (35). In the external region
V nA = 0 and V dA = UpA − UdA. Also has been added
the sum over the orbital angular momentum l and its
projection ml (l′ and ml′) in the exit (entry) channel
c = b + B (c′ = n + A) of the resonant subreaction n +
A → b + B, the sum over the channel spin s′ and its
projection ms′ in the entry channel c′ = n + A of the
resonance subprocess n + A → b + B and the sum over

Mn because the neutron is the transferred particle. The
projections of the spins of the incident deuteron Md, the
exiting proton Mp, the channel spin s and its projection
ms of the exiting particles b and B are fixed. We also use
the symmetry of the S matrix: SJF

c′ s′ l′; c s l = SJF

c s l; c′ s′ l′ .

The matrix element SJF

bB s l;nAs′ l′ is given by Eq. (A45).

Substituting it into Eq. (102) gives

M
DW (prior)
ext (P, kdA) =

2 π

kbB

√
vbB
vnA

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗
l ml

(−k̂bB)

× e− i δhs
bB l e− i δhs

nA l′

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ [Γτ nAs′ l′ JF
(EnA)]

1/2 Ol′(knA, RnA)

RnA

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA

RnA

O∗
l′(knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (103)

Now we take into account that

Ol̃(kc̃, Rc̃) =
√
F 2
l̃
(kc̃, Rc̃) +G2

l̃
(kc̃, Rc̃)

× e− i ωc̃ l̃ e
i arctan

F
l̃
(kc̃, Rc̃)

G
l̃
(kc̃, Rc̃)

=
√
F 2
l̃
(kc̃, Rc̃) +G2

l̃
(kc̃, Rc̃) e

i δhs

c̃ l̃ , (104)

which for the channel c̃ = c′ = n+A and l̃ = l′ takes the
form

Ol′(knA, RnA) =
√
F 2
l′ (knA, RnA) +G2

l′(knA, RnA)

× e
i arctan

F
l′

(knA,RnA)

G
l′

(knA,RnA)

=
√
F 2
l′ (knA, RnA) +G2

l′(knA, RnA) e
i δhs

nA l′ , (105)

where in the absence of the Coulomb interac-
tion Fl(ρ) = (π ρ/2)1/2 Jl+1/2(ρ) and Gl(ρ) =

(−1)l (π ρ/2)1/2 J−(l+1/2)(ρ), J±(l+1/2)(ρ) are Bessel
functions.

Then using Eqs. (A41) and (105) we get
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M
DW (prior)
ext (P, kdA) = 2 π

√
2µnA

µbB kbB RnA

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB)

× e− i δhs
bB l

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ γτ nAs′ l′ J

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA

RnA

O∗
l′(knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (106)

(ii) If c = c′, that is b = n and B = A. Here two cases
are possible: non-diagonal transition for which s 6= s′

or/and l 6= l′ and diagonal transition with l = l′ and
s = s′. The amplitude for the nondiagonal transition can

be obtained from (102). Here we present the expression
for the diagonal transition (elastic scattering) amplitude,
which can be obtained taking into account Eq. (A33):

M
DW (prior)
ext (P, kdA) = i

2 π

knARnA

∑

JF MF l ms′ ml ml′ Mn

il < lml sms|JF MF >< lml′ sms′ |JF MF >

× < JnMn JpMp|JdMd >< JnMn JAMA|sms′ > Y ∗
l ml

(−k̂nA)
[
1− SJF

nAs l;nAs l

]
Ol(knA, RnA)

× < χ
(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (107)

Substituting the expression for the elastic scattering S- matrix element SJF

nA s l;nAs l given by Eq. (A43) we obtain

M
DW (prior)
ext (P, kdA) = i

2 π

knARnA

∑

JF MF l ms′ ml ml′ Mn

il < lml sms|JF MF >< lml′ sms′ |JF MF >

× < JnMn JpMp|JdMd >< JnMn JAMA|sms′ > Y ∗
l ml

(−k̂nA)

×
[
1− e−2 i δhs

nA l (1 + i

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ [Γτ nAs l JF
(EnA)]

1/2)
]
Ol(knA, RnA)

× < χ
(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

. (108)

One-level, one channel case is the simplest one for which

M
DW (prior)
ext (P, kdA) boils down to
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M
DW (prior)
ext (P, kdA) = i

2 π

knARnA

∑

JF MF l ms′ ml ml′ Mn

il < lml sms|JF MF >< lml′ sms′ |JF MF >

× < JnMn JpMp|JdMd >< JnMn JAMA|sms′ > Y ∗
l ml

(−k̂nA)
[
1− e−2 i δhs

nA s l JF e2 i δnAs l JF

]
Ol(knA, RnA)

× < χ
(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V dA|ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

, (109)

where

δnAs l JF
= arctan

ΓnA s l JF
(EnA)

2(EnA(0) s l JF
− EnA)

,

EnA(0) s l JF
> EnA, (110)

is the resonant phase shift, EnA(0) s l JF
is the real part of

the complex resonance energy of the resonance with the
quantum numbers s l JF in the channel n + A. Now we

derive the equation forMDW
S by transforming it into the

surface integrals over variable rnA. We can repeat the
discussion in Section II A. The integration in Eq. (99)
over rnA is taken over the external volume restricted by
two spherical surfaces: the inner surface with the radius
RnA and the external surface with the radius R

′

nA →∞.
As it has been shown in Appendix B after regularization
the integral over the infinitely large sphere vanishes (see
Eq. (B20)) and

MDW
S (P, kdA) = −MDW

SRnA
(P, kdA) = R2

nA

1

2µnA

∫
d rpF

∫
dΩrnA

[ϕd(rpn)χ
(+)
kdA

(rdA)χ
(+)
−kpF

(rpF )
∂ [Υ

(ext)(−)
nA (rnA)]

∗

∂ rnA

− χ(+)
−kpF

(rpF ) [Υ
(ext)(−)
nA (rnA)]

∗
∂ ϕd(rpn)χ

(+)
kdA

)(rdA)

∂ rnA
]
∣∣∣
rnA=RnA

. (111)

Here, −MDW
SRnA

(P, kdA) is the surface integral encircling

the inner surface of the external volume at rnA = RnA.
A negative sign appears because the normal vector to the
surface is directed to the center of the volume, i.e. op-
posite to the normal vector to the external surface (at
infinitely large radius). For simplicity, we dropped the
quantum numbers in Eq. (111) but they will be recov-

ered below. Note that Eq. (111) can be obtained from

Eq. (27) by substituting Υ
(ext)(−)
nA (rnA) for the overlap

function IFA (rnA).

For the exit channel c = b + B in the resonant sub-
process n+A→ b+B different from channel c′ = n+A
using Eq. (A37) we get

MDW
S (kpF , kdA) = −MDW

SRnA
(P, kdA) = − i

2 π

kbB

√
vbB
vnA

R2
nA

1

2µnA

∑

JF MF l l′ ml ml′ s
′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JM >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB)S

JF

nA s′ l′; bB s l

∫
d rpF χ

(+)
−kpF

(rpF )

×
∫

dΩrnA
Yl′ ml′

(r̂nA)
[
ϕd(rpn)χ

(+)
kdA

(rdA)
∂ Ol′ (knA, rnA)

rnA

∂ rnA
− χ(+)

−kpF
(rpF )

Ol′ (knA, rnA)

rnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

= − i 2 π
kbB

√
vbB
vnA

1

2µnA

∑

JF M l l′ ml ml′ s
′ Mn

il < lml sms|JFM >< l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >

× < JnMn JpMp|JdMd > Y ∗
l ml

(−k̂bB)S
JF

bB s l;nA s′ l′ Ol′ (knA, RnA)

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (112)
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Here,

BnA = RnA

∂Ol′ (knA,rnA)
∂rnA

∣∣∣
rnA=RnA

Ol′(knA, RnA)
(113)

is the boundary condition. Sum over Mn is a for-

mal because Md and Mp are fixed. The coefficient
< JnMn JpMp|JdMd > appears from the vertex d →
p + n and the product < l′ml′ s

′ms′ |JF MF ><
JnMn JAMA|s′ms′ > from the vertex n+A→ F . The

matrix element SJF

bB s l;nAs′ l′ is given by Eq. (A45). Sub-

stituting it into Eq. (112) gives

MDW
S (kpF , kdA) = −MDW

SRnA
(P, kdA) =

π

kbB

√
vbB
vnA

1

µnA

∑

JF MF l l′ s′ ml ml′ ms′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB) e

− iδhs
bB l e− i δhs

c′ l′

×
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ [Γτ nAs′ l′ JF
(EnA)]

1/2Ol′(knA, RnA)

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (114)

Taking into account Eq. (A41) and Eq. (104) we arrive at the final form for MDW
S (kpF , kdA):

MDW
S (kpF , kdA) = −MDW

SRnA
(P, kdA) = π

√
2RnA

µbB µnA kbB

∑

JF MF l l′ s′ ml ml′ ms′ Mn

il < lml sms|JF MF >

× < l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > Y ∗

l ml
(−k̂bB) e

− i δhs
bB l

×
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ γτ nAs′ l′ J

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

. (115)

Now let us consider the diagonal transition c s l→ c s l,
where c = c′ = n+A. To get MDW

S once again we start

from Eq. (111). Now in this equation Υ
(ext)(−)
nA should

be replaced by Υ
J(ext)(0)
c s lms;c s lms′′

+Υ
J(ext)(−)
c s lms;c s lms′′

given by

Eqs. (A30) and (A33). Then the equation for the surface
matrix element for the diagonal transition takes the form

MDW
S (kpF , kdA) = i

π

µnA knA

∑

JF MF l ml ml′′ ms′′ Mn

il < lml sms|JF MF >< lml′′ sms′′ |JF MF >

× < JnMn JAMA|sms′′ >< JnMn JpMp|JdMd > Y ∗
l ml

(−k̂nA)

×
[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ Γτ nA s l JF
(EnA)]

1/2
)]
Ol(knA, RnA)

×
∫

d rpF χ
(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

.

(116)
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Summing up all three amplitudes M
DW (post)
int (P, kdA),

M
DW (prior)
ext (P, kdA) and MDW

S (kpF , kdA) =
−MDW

SRnA
(kpF , kdA) we get the total post DWBA

for the (d, p) stripping.

(i) Resonant reaction n + A → b + B, that is
c = b + B 6= c′ = n + A. Then the total post
form of the DWBA deuteron stripping amplitude is

MDW (post)(P, kdA) = 2 π

√
1

µbB kbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× < JnMn JAMA|s′ms′ >< JnMn JpMp|JdMd > e−i δhs
bB l Y ∗

lml
(−k̂bB)

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ

×
{
< χ

(−)
pF IFA s′ l′ JF

(rnA) |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

+

√
2µnA

RnA
γτ nAs′ l′ JF

× < χ
(−)
pF

O∗
l′(knA, rnA)

rnA

RnA

O∗
l′(knA, RnA)

Y ∗
l′ ml′

(r̂nA)|∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

+

√
RnA

2µnA
γτ nAs′ l′ J

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

}
. (117)

Assuming in this equation b = n and B = A, that is
c = c′ but l 6= l′ and/or s 6= s′ we get the expression
for the DWBA deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A)l s → F →
(n+A)l′ s′ .
Equation (117) is very instructive for understanding

the difference between the stripping to resonance states
and on-shell binary resonant reactions. As we can see, the
transfer reaction amplitude contains the resonance fac-
tors determining the resonant subprocess n+A→ b+B,
the partial width amplitude [Γν bB s l JF

(EbB)]
1/2 of the

level ν for the decay to the exit channel b+B, the matrix
elements of the inverse R-matrix level matrix [A−1]ντ
and the reduced width amplitude γτ nA s′ l′ JF

of the level
τ for the entry channel n+A rather than the correspond-
ing partial width amplitude which would present if we
consider the corresponding on-shell binary resonant re-
action n+ A→ b + B. The difference is crucial because
the partial width amplitude [Γν bB s l JF

(EbB)]
1/2 contains

the penetrability factor, see Eq. (A41), which doesn’t
present in the reduced width amplitude γτ nA s′ l′ JF

and,
hence, in Eq. (117). The lower is the energy of the reso-
nance, the stronger is its suppression due to the barrier
penetrability in the entrance channel in the on-shell bi-

nary resonant reaction n+ A→ b+ B. Besides, if a few
resonances do contribute with the different l′, then the
higher l′, the stronger its suppression. However, it is not
the case if one tries to populate low-energy resonances
with different l′ using transfer reaction. Missing pene-
trability factor in the entry channel of the subresonance
reaction n+A→ b+B in the transfer amplitude makes
it possible to populate low-lying resonances. Moreover
for the same reason, the resonances with higher l′ are
not suppressed in the stripping. Hence, when a few res-
onances are populated in the transfer reaction, the mea-
sured experimental spectrum of the fragments b and B
can be quite different from the one measured using the
on-shell binary resonant reaction. The missing penetra-
bility factor in the entry channel n + A of the resonant
subreaction n + A → b + B in the transfer reaction ex-
plains the power of the Trojan Horse method as indirect
technique in nuclear astrophysics (see [33, 38] and refer-
ences therein).

(ii) Diagonal transition in the resonant subprocess (n+
A)l s → F → (n + A)l s, that is, c = c′, l = l′, s = s′.
The total post form of the deuteron stripping DWBA
amplitude is
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MDW (post)(P, kdA) = 2 π
∑

JF MF lms′′ ml ml′′ Mn

il < sms l ml|JF MF >< sms′′ l ml′′ |JF MF >

× < JnMn JAMA|sms′′ >< JnMn JpMp|JdMd > e−i δhs
nA l Y ∗

lml
(−k̂nA)

×
{√

1

µnA knA

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ < χ
(−)
pF IFA s l JF

(rnA) |∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA≤RnA

+ i

[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ Γτ nA s l JF
(EnA)]

1/2
)]

×
(

1

knARnA
Ol(knA, RnA) < χ

(−)
pF

O∗
l (knA, rnA)

rnA

RnA

O∗
l (knA, RnA)

Y ∗
l ml′′

(r̂nA)|∆V pF |ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

+
1

2µnA knA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

×
[
ϕd(rpn)χ

(+)
kdA

(rdA) (BnA − 1)−RnA

∂ ϕd(rpn)χ
(+)
kdA

)(rdA)

∂ rnA

]∣∣∣
rnA=RnA

)}
. (118)

B. Stripping to resonance states. Prior form of

DWBA.

Here we show that starting from the prior form we are
able to obtain the generalized DWBA R-matrix ampli-
tude for the deuteron stripping to resonance states, Eq.
(96), much easier than from the post form. The prior
of the DWBA amplitude for deuteron stripping to reso-
nance states is

MDW (prior)(P, kdA)

=< χ
(−)
pF Υ

(−)
nA | |∆V dA|ϕd ϕA χ

(+)
dA >, (119)

where ∆V dA is defined by Eq. (35) and Υ
(−)
nA =<

ϕA|Ψ(−)
bB > . As usually, we split the amplitude into

internal and external parts

MDW (prior)(P, kdA) =M
DW (prior)
int (P, kdA)

+M
DW (prior)
ext (P, kdA) (120)

with

M
DW (prior)
int (P, kdA)

=< χ
(−)
pF Υ

(int)(−)
nA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

(121)

and

M
DW (prior)
ext (kpF , kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |∆V dA|ϕd χ

(+)
dA >

∣∣∣
rnA>RnA

. (122)

The splitting of the amplitude into the internal and ex-
ternal parts in the subspace over the coordinate rnA is
necessary to rewrite the prior DWBA amplitude in the

generalized R-matrix approach for stripping to resonance
states. As we have discussed in subsections IIA and
IIIA, the external matrix element M

DW (prior)
ext in the

prior form is small and in some cases, with reasonable
choice of the channel radius RnA, even can be neglected.
It is important for analysis of the stripping to resonance
states because the external part in the post form doesn’t
converge. In this sense the usage of the prior form in
the external part has clear benefit. The main contribu-
tion to the prior form amplitude MDW (prior) comes from

the internal part M
DW (prior)
int . Since the internal part

is given by the volume integral, its calculation requires

the knowledge of Υ
(int)(−)
nA in the internal region. The

model dependence of this function in the nuclear interior
(rnA ≤ RnA), where different coupled channels do con-
tribute, brings one of the main problems and main uncer-
tainty in the calculation of the internal matrix element.
Using the surface integral we can rewrite the volume inte-
gral of the internal matrix element in terms of the volume
integral in the post form and dominant surface integral
taken over the sphere at rnA = RnA. With reasonable
choice of the channel radius RnA the contribution from
the internal volume integral in the post form can be min-
imized to make it significantly smaller than the surface
matrix element. The latter can be expressed in terms of
the R-matrix parameters - the observable reduced width
amplitude (ANC), boundary condition and channel ra-
dius. Repeating the steps outlined in subsection II B we
get

M
DW (prior)
int (P, kdA)

=M
DW (post)
int (P, kdA) +MDW

S (P, kdA). (123)
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Here, M
DW (post)
int has been previously considered and is

given by Eqs. (100) and (101) whileMDW
S takes the form

MDW
S (P, kdA)

= − < χ
(−)
pF Υ

(int)(−)
nA |←−T −−→T |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

,

(124)

where Υ(int)(−) =< Ψ
(int)(−)
bB |ϕA >. The fact that the

volume integral in this equation is the internal one makes
transformation of this volume matrix element to the sur-
face one much easier than for the post form. The tran-
sition operator T = TpF + TnA. Since rnA ≤ RnA at
rpF → ∞ the integrand in Eq. (99) vanishes exponen-
tially due to the presence of ϕd. Hence, the operator TpF
is Hermitian, that is, applying the integration by parts
over rpF twice we get

< χ
(−)
pF Υ

(int)(−)
nA |←−T pF −

−→
T pF |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

=< χ
(−)
pF Υ

(int)(−)
nA | −→T pF −

−→
T pF |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

= 0. (125)

Thus MDW
S (P, kdA) reduces to

MDW
S (P, kdA)

=< χ
(−)
pF Υ

(int)(−)
nA |←−T nA −

−→
T nA |ϕd χ

(+)
dA >

∣∣∣
rnA≤RnA

.

(126)

Using the Green’s theorem we can transform this vol-
ume integral into the surface one. Note that the volume
integral over rnA is constrained by the sphere with the
radius rnA = RnA. Hence, only one surface integral ap-
pears with rnA = RnA. Here we see an important ad-
vantage of using the prior form versus the post one. In
the post form transformation of the external volume in-
tegral to the surface one led to two surface integrals at
rnA = RnA and rnA = R

′

nA → ∞. It required an elabo-
rate proof, which included regularization, to demonstrate
that the surface integral at rnA = R

′

nA → ∞ vanishes.
After transformation to the surface integral we get

MDW
S (P, kdA) = −MDW

SRnA
(P, kdA),

(127)

Eqs (111), (112) and (115) determine this surface inte-
gral.

C. Stripping to resonance states. Post CDCC

formalism.

The CDCC approach for stripping to resonance states,
which takes into account the deuteron breakup in the
initial channel, definitely has advantage compared to a
standard DWBA. The application of the surface formu-
lation of the reaction theory for the DWBA has been

done mainly for demonstration, but our main goal is the
CDCC.
Here we present the derivation of the post form CDCC

amplitude using the surface integral formulation. This
amplitude is

MCDCC(post)(kpF , kdA)

=< χ
(−)
pF Υ

(−)
nA |∆V

Ppn

pF |Ψ
CDCC(+)
i > . (128)

This equation is an extension of the post CDCC ampli-
tude for stripping to bound states, see Eq. (54), obtained

using replacement IFA → Υ
(−)
nA . ∆V

Ppn

pF is defined by Eq.

(70). Now, as usually, we split MCDCC(post) into the
internal and external parts in the subspace rnA:

MCDCC(post)(P, kdA) =M
CDCC(post)
int (P, kdA)

+M
CDCC(post)
ext (P, kdA). (129)

The internal amplitude M
CDCC(post)
int is given by

M
CDCC(post)
int (P, kdA)

=< χ
(−)
pF Υ

(int)(−)
nA |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA≤RnA

.

(130)

Correspondingly, the external amplitude is

M
CDCC(post)
ext (P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |∆V

Ppn

pF |Ψ
CDCC(+)
i >

∣∣∣
rnA>RnA

.

(131)

Now we repeat the steps outlined in subsection II C. Tak-
ing into account Eqs (58), (59) and (60) we arrive at

M
CDCC(post)
ext (P, kdA) ≡MCDCC(post)

S (P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |←−T −−→T |ΨCDCC(+)

i >
∣∣∣
rnA>RnA

,

(132)

where T = TpF + TnA. It is shown in Appendix C that

M
CDCC(post)
S can be reduced to

M
CDCC(post)
S (P, kdA) = −MCDCC(post)

SRnA
(P, kdA)

=< χ
(−)
pF Υ

(ext)(−)
nA |←−T nA −

−→
T nA|ΨCDCC(+)

i >
∣∣∣
rnA>RnA

.

(133)

This integral can be directly transformed into the surface
integral with rnA = RnA encircling the internal volume,
while the integral over rpF is taken over all the coordi-
nate space. Thus we have shown that the post CDCC
amplitude for stripping to resonance states is given by
the difference of two terms, internal post CDCC ampli-
tude and the surface integral:

MCDCC(post)(P, kdA) =M
CDCC(post)
int (P, kdA)

−MCDCC(post)
SRnA

(kpF , kdA). (134)
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The internal amplitude M
CDCC(post)
int can be minimized

by a proper choice of UpF and the channel radius RnA,
while the surface integral is dominant. If the channel
radius is larger than the n − A nuclear interaction ra-
dius the second term is parametrized in terms of the re-
duced width amplitude and the boundary condition at
rnA = RnA. Thus we succeeded to parametrize the post
form of the CDCC amplitude in terms of the R-matrix
parameters. It is one of the main results of this paper.
Eq. (134) is the most important result of this paper.
Due to the absence of the external term, which is present

in the DWBA and which causes the convergence issue,
the convergence problem in the post CDCC approach is
resolved: the integration in the surface matrix element
is performed over the full coordinate space only over one
coordinate rpF rather than over two coordinates, rpF and
rnA.

Expression for M
CDCC(post)
int for different cases can

be obtained from Eq. (101) by replacing the

initial channel wave function ϕd(rpn)χ
(+)
kdA

)(rdA) by

Ψ
CDCC(+)
i (rpF , rnA):

M
CDCC(post)
int (P, kdA) =

2 π

kbB

√
kbB
µbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >

× < s′ms′ l
′ml′ |JF MF >< JnMn JAMA|s′ms′ > e−i δhs

bB l Y ∗
lml

(−k̂bB)
N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ

× < χ
(−)
pF Y ∗

l′ ml′
(r̂nA) I

F
A s′ l′ JF

(rnA) |∆V pF |ΨCDCC(+)
i (rpF , rnA) >

∣∣∣
rnA≤RnA

. (135)

Note that the CDCC wave function itself also depends on
quantum numbers of p− n and d−A subsystems, which
we don’t specify here. It will be done in the following
up paper where concrete calculations will be presented.

Natural Jacobian variables for Ψ
CDCC(+)
i are rdA and

rpn, but we use here another set of Jacobian variables,

rpF and rnA.

To write down explicitly M
CDCC(post)
SRnA

(kpF , kdA) in

terms of the surface integral we can use Eq. (111) re-
placing the initial channel wave function by the CDCC
one:

M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(kpF , kdA)

=
R2

nA

2µnA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

[
Ψ

CDCC(+)
i (rpF , rnA)

∂Υ
(ext)(−)∗
nA

∂rnA
− Υ

(ext)(−)∗
nA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂rnA

] ∣∣∣
rnA=RnA

.

(136)

We can extend corresponding equations from subsection
IIIA by replacing the initial channel wave function by the
CDCC one. In particular, for the nodiagonal transition

in the resonant subreaction c′ s′ l′ → c s l, where c = b+B
and c′ = n+A, we get from Eq (115)
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M
CDCC(post)
S (kpF , kdA) = −MCDCC(post)

SRnA
(P, kdA) = π

√
2RnA

µbB µnA kbB

∑

JF MF l l′ s′ ml ml′ ms′ Mn

il

× < lml sms|JF MF >< l′ml′ s
′ms′ |JF MF >< JnMn JAMA|s′ms′ >

× Y ∗
l ml

(−k̂bB) e
− i δhs

bB l

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ γτ nAs′ l′ JF

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

. (137)

Correspondingly, the surface integral for the diagonal transition c s l→ c s l can be obtained from Eq. (116):

M
CDCC(post)
S (kpF , kdA) = i

π

µnA knA

∑

JF MF lml ml′′ ms′′ Mn

il < lml sms|JF MF >< lml′′ sms′′ |JF MF >

× < JnMn JAMA|sms′′ > Y ∗
l ml

(−k̂nA)

×
[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nA s l JF
(EnA)]

1/2 [A−1]ντ Γτ nAs l JF
(EnA)]

1/2
)]
Ol(knA, RnA)

×
∫

d rpF χ
(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

.

(138)

Summing up two amplitudes M
CDCC(post)
int (P, kdA)

and MDW
S (kpF , kdA) = −MDW

SRnA
(kpF , kdA) we get the

total post CDCC amplitude for the (d, p) stripping.

(i) Resonant reaction n+A→ b+B, that is c = b+B 6=
c′ = n + A. The total post form of the CDCC deuteron
stripping amplitude can be obtained from Eq. (117):

MCDCC(post)(P, kdA)(P, kdA) = 2 π

√
1

µbB kbB

∑

JF MF s′ l l′ ms′ ml ml′ Mn

il < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× < JnMn JAMA|s′ms′ > e−i δhs
bB l Y ∗

l ml
(−k̂bB)

N∑

ν,τ=1

[Γν bB s l JF
(EbB)]

1/2 [A−1]ντ

×
{
< χ

(−)
pF IFA s′ l′ JF

(rnA) |∆V pF |ΨCDCC(+)
i (rpF , rnA) >

∣∣∣
rnA≤RnA

+

√
RnA

2µnA
γτ nAs′ l′ JF

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl′ ml′
(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

}
. (139)

Assuming in this equation b = n and B = A, that is c = c′ but l 6= l′ and/or s 6= s′ we get the expression for
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the post CDCC deuteron stripping for the non-diagonal
transition in the resonant subprocess (n + A)l s → F →
(n+A)l′ s′ .

(ii) Diagonal transition, c = c′, l = l′, s = s′. The
total post form of the CDCC amplitude is

MCDCC(post)(P, kdA) = 2 π
∑

JF MF lms′′ ml ml′′ Mn

il < sms l ml|JF MF >< sms′′ l ml′′ |JF MF >

× < JnMn JAMA|sms′′ > e−i δhs
nA l Y ∗

lml
(−k̂nA)

×
{√

1

µnA knA

N∑

ν,τ=1

[Γν nA s l JF
(EnA)]

1/2 [A−1]ντ < χ
(−)
pF IFA s l JF

(rnA) |∆V pF |ΨCDCC(+)
i (rpF , rnA) >

∣∣∣
rnA≤RnA

+ i

[
1− e−i 2 δhs

nA l

(
1 + i

N∑

ν,τ=1

[Γν nAs l JF
(EnA)]

1/2 [A−1]ντ Γτ nAs l JF
(EnA)]

1/2
)]

× 1

2µnA knA

∫
d rpF χ

(+)
−kpF

(rpF )

∫
dΩrnA

Yl ml′′
(r̂nA)

×
[
Ψ

CDCC(+)
i (rpF , rnA) (BnA − 1)−RnA

∂Ψ
CDCC(+)
i (rpF , rnA)

∂ rnA

]∣∣∣
rnA=RnA

}
. (140)

Eqs (139) and (140) are the final main results of this
paper. Both matrix elements consist of only two terms,
the internal post CDCC and the surface term. The in-
ternal term contains the integration over rnA in the in-
ternal volume rnA ≤ RnA. Hence, at rpF → ∞ vari-
ables rdA ∼ rpF → ∞ and rpn ∼ rpF → ∞. But

then Ψ
CDCC(+)
i (rpF , rnA) ∼ r−3

pF [36] and the integral
over rpF does converge. The same conclusion is true
for the surface integral in which rnA = RnA. Hence,

in this matrix element also Ψ
CDCC(+)
i (rpF , rnA) ∼ r−3

pF
and integral over rpF converges. Both amplitudes are
parametrized in terms of the parameters used in the con-
ventional R-matrix approach and allows us to analyze
the stripping into resonance states using generalized R-
matrix approach. Finally, both amplitudes, (139) and
(140), don’t have penetration factor in the entry channel
n+A of the resonance formation in the resonant subre-
actions n + A → b + B and n + A → n + A. That is
why stripping to resonant states provides a powerful tool
to measure resonances in the subsystem n+A very close
to the threshold, which can be suppressed in the on-shell
binary resonance reactions but not in the stripping to
resonance states.

IV. SUMMARY

The theory of the deuteron stripping populating bound
and resonance states based on the surface integral for-
malism is presented. To demonstrate the theory I first
develop it for the DWBA. Since the DWBA is outdated
and, definitely, deficient compared to the CDCC, the the-
ory is extended to the CDCC formalism. The theory is

applied for stripping to bound and resonance states. The
eventual goal of this paper is to deliver the theory of the
deuteron stripping to resonance states within the CDCC
formalism using the surface integral formulation of the
reaction theory [32]. Transformation of the volume ma-
trix element to the surface one (in the subspace over rnA)
and R-matrix representation of the scattering wave func-
tion of the fragments formed by the resonance decay al-
lows one to parametrize the reaction amplitude in terms
of the R-matrix parameters used in the analysis of the
binary resonant reactions. Since the reaction under con-
sideration is the deuteron stripping, the presence of the
deuteron in the initial state and exiting proton causes
the distortions. That is why the reaction amplitude,
in addition to the R-matrix parameters describing the
binary subprocess, contains additional factors - CDCC
wave function describing the d−A scattering in the ini-
tial channel (coupled to the deuteron breakup channel)
and the proton distorted wave in the final state. Hence,
the approach can be called a generalized R matrix for the
stripping to resonance states. The advantage of the ap-
proach is that the reaction amplitude for stripping to res-
onance states in the post CDCC formalism doesn’t have
convergence problem and is parametrized in terms of the
same observables as binary resonant reactions. Hence,
the formalism provides experimentalists a consistent tool
to analyze binary resonant reactions and stripping re-
actions populating resonant states extracting the same
observable parameters, namely, reduced widths (ANCs).
The power of the method has been demonstrated in the
analysis of the Trojan Horse reaction 19F(d, n α)16O [33].
The numerical application of the method will be demon-
strated in the following up papers.
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Appendix A: b+B scattering wave function Ψ
(+)
bB

In this Appendix we consider the representation of the

scattering Ψ
(+)
bB wave function used in the R-matrix ap-

proach for binary resonance processes [39, 40]

1. Internal scattering wave function Ψ
(+)
bB

A general equation for the internal wave function con-
tains the sum over total angular momentum JF and its
projection MF . Since we are interested in a wave func-

tion Ψ
(+)
bB describing a resonance in the system F = b+B,

we consider only the internal wave function at given JF ,
at which resonance occurs. In the internal region in the
state with the total momentum JF , channel spin s (its
projection ms) in the initial channel c = b+B the wave

function Ψ
(+)
bB can be written as [39]

ΨJF (int)(+)
c sms

=
2 π

kc

√
kc
µc

∑

M lml

e−i δhs
c l il < sms l ml|JF MF >

× Y ∗
l ml

(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ X
JFMF
τ .

(A1)

Here, Ec = EbB and kc = kbB are the relative energy and
momentum of particles b and B, µc = µbB , Γν c s l JF

(Ec)
is the formal (R-matrix) partial resonance width of the
level ν in the channel c s l JF , c = b + B, A is the R-
matrix level matrix, N is the number of the levels in-
cluded, δhsc l is the hard-sphere scattering phase shift in
the channel c given by

δhsc l = −ωc l + arctan
Fl(kc, Rc)

Gl(kc, Rc)
, (A2)

where Fl(kc, rc) and Gl(kc, rc) are regular and singular
Coulomb solutions of the radial Schrödinger equation,

ωl = σc l − σc 0 =

l∑

n=1

arctan
ηc
n
, (A3)

σc l is the Coulomb scattering phase shift in the channel
c and in the partial wave l, ηc is the Coulomb parameter
for the scattering of the fragments in the channel c.

We consider only two coupled channels: c = b + B
and c′ = n + A. Also XJF MF

τ is an eigenfunction of
the Hamiltonian describing the compound system F =
n + A = b + B in the internal region excited to the dis-
crete level τ with the total angular momentum JF and

its projection MF [42]. A separable form for Ψ
JF (int)(+)
c sms

reflects the fact that we consider the b + B interaction
proceeding through resonance states. The entry channel
of this scattering is the channel c = b + B. The inverse
level matrix contains contribution from all N resonance
levels. In a simple one level case it reduces to the well-
known Breit-Wigner resonance propagator. All the open
channels coupled to c contribute to XJF MF

τ and deter-
mine possible exit channel contributions into resonance
scattering. Hence, in the internal region, where different
open channels are coupled, XJF MF

τ can be written as a
nonorthogonal sum of these channels [39]:

XJF MF
τ =

∑

c̃ s̃ l̃ ms̃ j

1

rc̃
wτ c̃ j Â{ξc̃ φJF MF

c̃ s̃ l̃ ms̃
uc̃ s̃ l̃ JF j},

(A4)

where ξc̃ is the product of the internal bound state wave
functions of the fragments in the channel c̃, c̃ = c, c′,
uc̃ s̃ l̃ JF j(rc̃) is a set of the radial wave functions of the
relative motion of the fragments in the channel c̃ with
the channel spin s̃, orbital angular momentum l̃ and to-
tal angular momentum JF in some adopted potential,
φJF MF

c̃ s̃ l̃ ms̃
is the channel spin-angular wave function (in LS-

coupling) and ms̃ is the projection of s̃. Also Â is the
antisymmetrization operator between the nucleons of the
fragments in the channel c̃. We consider only two cou-
pled channels, c = b+B and c′ = n+A. Thus the initial
channel c can propagate into two final channels c and
c′ via the intermediate resonances. Although Eq. (A4)
contains the sum over all channel spins s̃ and its projec-
tions in each open channel, in what follows consider the
contribution to XJF MF

τ only from the channel with fixed
channel spin and its projection.
First, let us consider the contribution of the channel

c s′′ms′′ into X
JF MF
τ . In this channel ξc = ϕb ϕB and

φJF MF

c s′′ l′′ ms′′
=
∑

ml′′

< s′′ms′′ l
′′ml′′ | JF MF >

× Yl′′ ml′′
(r̂c)φc s′′ ms′′

, (A5)

φc s′′ ms′′
=

∑

Mb MB

< JbMb JB MB|s′′ms′′ >

× ψJb Mb
ψJB MB

. (A6)

Here, φc s′′ ms′′
is the channel spin wave function in the

channel c s′′ms′′ , ψJi Mi
is the spin wave function of

particle i, l′′ (ml′′ ) is the relative orbital angular mo-
mentum (its projection) of the fragments in the channel
c, rc = rbB is the radius-vector connecting b and the
center-of-mass of B. We adopt the channel radius Rc

http://arxiv.org/abs/de-sc/0004958
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large enough to neglect antisymmetrization between nu-
cleons of b and B at rc = Rc, that is

Â{ξcφJF MF

c s′′ l′′ ms′′
uc s′′ l′′ JF j}

∣∣∣
rc=Rc

≈ Nc ξc φ
JF MF

c s′′ l′′ uc s′′ l′′ JF j

∣∣∣
rc=Rc

, (A7)

where Nc =
(

(b+B)!
b!B!

)−1/2

.

Assuming that the overlap of the channel c at the chan-
nel radius Rc with the channel c′ is negligible we get for
the component of XJF MF

τ c s′′ ms′′
projected on ξc = ϕb ϕB at

rc = Rc [39]

ΞJF MF

τ c s′′ ms′′
(Rc r̂c) =< ξc|XJF MF

τ s′′ ms′′
>
∣∣∣
rc=Rc

=
1

Rc

∑

l′′

φJF MF

c s′′ l′′ ms′′
uτ c s′′, l′′ JF

(Rc),

(A8)

where

uτ c s′′, l′′ JF
(rc) = Nc

∑

j

wτ c j uc s′′, l′′ JF j(rc). (A9)

At rc = Rc by definition [39]

uτ c s′′ l′′ JF
(Rc) =

√
2µcRc γτ c s′′ l′′ JF

, (A10)

where γτ c s′′ l′′ JF
is the reduced width amplitude of the

level τ in the channel c s′′ l′′ JF . I remind that the system
of units ~ = c = 1 is being used throughout the paper if
not specified otherwise. Then

ΞJF MF

τ c s′′ ms′′
(Rc r̂c) =

1

Rc

∑

l′′

√
2µcRc γτ c s′′ l′′ JF

× φJF MF

c s′′ l′′ ms′′
. (A11)

Thus we can express the component ΞJF MF

τ c s′′ ms′′
(rc)

taken at the channel radius rc = RC in terms of the
sum of the reduced width amplitudes, where the sum is
taken over all allowed in the channel c partial waves l′′

at given JF and s′′. Then the component of Ψ
JF (int)(+)
c sms

in the exit channel c s′′ms′′ projected onto ξc = ϕb ϕB at
rc = Rc takes the form

Υ
JF (int)(+)
c sms; c s′′ ms′′

(Rc r̂c) =< ξc|ΨJF (int)(+)
c sms; c s′′ ms′′

>

=
2 π

kcRc

√
kc
µc

∑

MF , l ml

e−i δhs
c l il < sms l ml|JF MF > Y ∗

lml
(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ Ξ
JF MF

τ c s′′ ms′′
(Rc r̂c)

= 2 π

√
2

kcRc

∑

MF , l l′′ ml ml′′

e−i δhs
c l il < sms l ml|JF MF >< s′′ms′′ l

′′ml′′ | JF MF > Y ∗
l ml

(k̂c)

×
N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ γτ c s′′ l′′ JF
Yl′′ ml′′

(r̂c)φc s′′ ms′′
. (A12)

Here, s′′ is any channel spin value in the channel c = b+B
allowed by the spin and angular momentum conservation
law. In particular, s′′ may coincide with s, that is s′′ = s.

The diagonal component, l′′ = l and s′′ = s, which is
needed to determine the elastic scattering amplitude (see
below) is

Υ
JF (int)(+)
c s lms;c s lms′′

(Rc r̂c) = 2 π

√
2

kcRc
e−i δhs

c l il
∑

MF ml ml′′

< sms l ml|JF MF >< sms′′ l ml′′ | JF MF > Y ∗
l ml

(k̂c)

×
N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ γτ c s l JF
Yl ml′′

(r̂c)φc sms′′
. (A13)

A similar consideration can be applied when we con- sider the contribution of the channel c′ s′ms′ , where
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c′ = n + A, into XJF MF
τ . In this channel ξc′ = ϕA

and

φJF MF

c′ s′ l′ ms′
=
∑

ml′

< s′ms′ l
′ml′ | JF MF >

× Yl′ ml′
(r̂c′)φc′ s′ ms′

, (A14)

φc′ s′ ms′
=

∑

Mn MA

< JnMn JAMA|s′ms′ >

× ψJn Mn
ψJA MA

. (A15)

Here, φc′ s′ ms′
is the channel spin wave function in the

channel c′ with the channel spin s′ and its projectionms′ ,
l′ (ml′) is the relative orbital angular momentum (its
projection) of the fragments in the channel c′, rc′ = rnA
is the radius-vector connecting n and the center-of-mass
of A. We adopt the channel radius Rc′ large enough to
neglect antisymmetrization between n and nucleons of A
at rc′ = Rc′ , that is

Â{ξc′φJF MF

c′ s′ l′ ms′
uc′ s′ l′ JF j}

∣∣∣
rc′=Rc′

≈ Nc′ ξc′ φ
JF MF

c′ s′ l′ uc′ s′ l′ JF j

∣∣∣
rc′=Rc′

, (A16)

where Nc′ =
(

(A+1)!
A!

)−1/2

= (A+ 1)−1/2.

Assuming that the overlap of the channel c′ at the
channel radius Rc′ with the channel c is negligible we get
for the component of XJF MF

τ c′ s′ ms′
projected onto ξc′ = ϕA

at rc′ = Rc′

ΞJF MF

τ c′ s′ ms′
(Rc′ r̂c′) =< ϕA|XJF MF

τ c′ s′ ms′
>
∣∣∣
rc′=Rc′

=
1

Rc′

∑

l′

φJF MF

c′ s′ l′ ms′
uτ c′ s′ l′ JF

(Rc′),

(A17)

where

uτ c′ s′ l′ JF
(rc′) = Nc′

∑

j

wτ c′ j uc′ s′ l′ JF j(rc′). (A18)

At rc′ = Rc′

uτ c′ s′ l′ JF
(Rc′) =

√
2µc′ Rc′ γτ c′ s′ l′ JF

, (A19)

where µc′ = µnA, γτ c′ s′ l′ JF
is the reduced width am-

plitude of the level τ in the channel c′ s′ l′ JF . Then

ΞJF MF

τ c′ s′ ms′
(Rc′ r̂c′) =

1

Rc′

∑

l′

√
2µc′ Rc′ γτ c′ s′ l′ JF

× φJF MF

c′ s′ l′ ms′
, (A20)

that is it can be expressed in terms of the sum of the
reduced widths amplitudes in all allowed partial waves l′

in the channel c′ at given JF and s′. Then the component

Ψ
JF (int)(+)
c sms; c′ s′ ms′

projected on ξc′ = ϕA at rc′ = Rc′ takes

the form

Υ
JF (int)(+)
c sms; c′ s′ ms′

(Rc′ r̂c′)

=
2 π

kcRc′

√
kc
µc

∑

MF , l ml

e−i δhs
c l il < sms l ml|JF MF > Y ∗

l ml
(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ Ξ
JF MF

τc′ s′ ms′
(Rc′ r̂c′)

= 2 π

√
2µc′

µc kcRc′

∑

M l l′ ml ml′

e−i δhs
c l il < sms l ml|JF MF >< s′ms′ l

′ml′ | JF MF >

× Y ∗
l ml

(k̂c)

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ γτ c′ s′ l′ JF
Yl′ ml′

(r̂c′)φc′ s′ ms′
. (A21)

The component Υ
JF (int)(+)
c s lms;c′ s′ l′ ms′

(Rc′ r̂c′) is given by

Υ
JF (int)(+)
c s lms; c′ s′ l′ ms′

(Rc′ r̂c′) = 2 π

√
2µc′

µc kcRc′
e−i δhs

c l il
∑

MF ml ml′

< sms l ml|JF MF >< s′ms′ l
′ml′ | JF MF >

× Y ∗
l ml

(k̂c)
N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ γτ c′ s′ l′ JF
Yl′ ml′

(r̂c′)φc′ s′ ms′
. (A22)



30

2. External scattering wave function Ψ
(+)
bB

Now we proceed to the expression for the Ψ
(+)
c in the

external region, where rc > Rc or rc′ > Rc′ . In the

external region the wave function Ψ
(ext)(+)
c sms with fixed

channel spin and its projection in the incident channel c
can be written as

Ψ(ext)(+)
c sms

= Ψ(ext)(0)
c sms

+Ψ(ext)(+)
c sms; r , (A23)

where the first term is the incident wave and the second
term is the sum of the outgoing waves in all the open
channels. The incident term is

Ψ(ext)(0)
c sms

= 4 π ξc
∑

JF MF

∑

l ml ms′′

il < sms l ml |JF MF >

× < sms′′ l ml|JF MF > Y ∗
l ml

(k̂c) e
i ωc l

Fl(kc, rc)

kc rc
× Yl ml

(r̂c)φc sms′′
, (A24)

where the subscript c means that the incident wave is in
the channel c. The sum over ms′′ is a formal because

∑

JF MF

< sms l ml |JF MF >< sms′′ l ml|JF MF >

= δms ms′′
. (A25)

Note that here we use the incident wave with the unit
amplitude rather than with the unit flux density. The

component Ψ
JF (ext)(0)
c s lms;c s lms′′

, which corresponds to the exit

channel c s lms′′ and fixed JF , projected on ξc reduces to

Υ
JF (ext)(0)
c s lms; c s lms′′

(rc) = 4 π
∑

M ml

il

× < sms l ml |JF MF >< sms′′ l ml|JF MF > Y ∗
l ml

(k̂c)

× ei ωc l
Fl(kc, rc)

kc rc
Yl ml

(r̂c)φc sms′′
. (A26)

Now we take into account that

Fl(kc, rc) =
ei ωc l Ol(kc, rc)− e−i ωc l Il(kc, rc)

2 i
. (A27)

Here, Ol(kc, rc) and Il(kc, rc) are the Coulomb Jost sin-
gular solution of the Schrödinger equation with outgoing
and ingoing asymptotic behavior (we follow the defini-
tions used in [39]):

Ol(kc, rc)
rc→∞≈ ei [kc rc−ηc ln(2 kc rc)−l π/2+σc 0], (A28)

and

Il(kc, rc)
rc→∞≈ e−i [kc rc−ηc ln(2 kc rc),−l π/2+σc 0]. (A29)

Then we can rewrite Υ
JF (ext)(0)
c s lms;c s lms′′

in the form

Υ
JF (ext)(0)
c s lms; c s lms′′

(rc) = i
2 π

kc rc
il

×
∑

M ml

< sms l ml |JF MF >< sms′′ l ml|JF MF >

× Y ∗
l ml

(k̂c)
[
Il(kc, rc)− ei 2ωc lOl(kc, rc)

]
Yl ml

(r̂c)φc sms′′
.

(A30)

Thus the incident wave is the pure Coulomb scattering
wave function in the incident channel c. The second term
in Eq. (A23) is given by the sum of the outgoing waves
in the open channels [40]:

Ψ(ext)(+)
c sms; r = i

2 π

kc

∑

c̃

√
vc
vc̃

1

rc̃
ξc̃

∑

JF MF l l̃ ml ml̃

il

× < sms l ml|JF MF > Y ∗
l ml

(k̂c)
[
ei 2ωc l δc̃ c δs̃ s δl̃ l

− SJF

c̃ s̃ l̃; c s l

]
Ol̃(kc̃, rc̃) < s̃ms̃ l̃ ml̃|JF MF > Yl̃ ml̃

(r̂c̃)

× φc̃ s̃ms̃
. (A31)

Here, ξc̃ is the product of the bound state wave func-
tions in the channel c̃ = c, c′, SJF

c̃ s̃ l̃; c s l
is the S-matrix

element for transition c s l→ c̃ s̃ l̃. Note that we consider
the outgoing waves in the channel with given total angu-
lar momentum JF , initial channel spin s (its projection
ms) and final channel spin s̃ (its projection ms̃). Since
only two open channels, c and c′, are taken into account
here, we will write explicitly the outgoing waves in both
channels. First consider the elastic scattering, that is
the outgoing channel c̃ = c = b+B and the channel spin
and orbital angular momentum coincide with the incident
channel values, that is s̃ = s and l̃ = l. The component
of the outgoing elastic scattered wave (c s l→ c s l) is

Ψ
(ext)(+)

c s lms;c s lm”
s
= i

2 π

kc rc
ξc

∑

JF MF ml ml′′

× < sms l ml|JF MF >< sm”
s l ml′′ |JF MF >

× il Y ∗
l ml

(k̂c) [e
i 2ωc l − SJF

c s l;c s l]Ol(kc, rc)Yl ml′′
(r̂c)

× φc sm”
s
. (A32)

Hence, the projection of Ψ
(ext)(+)

c s lms; c s lm”
s
on ξc leads to

Υ
(ext)(+)

c s lms;c s lm”
s
(rc) = i

2 π

kc rc

∑

JF MF ml ml′′

× < sms l ml|JF MF >< sm”
s l ml′′ |JF MF >

× il Y ∗
l ml

(k̂c) [e
i 2ωc l − SJF

c s l;c s l]Ol(kc, rc)Yl ml′′
(r̂c)

× φc sm”
s
. (A33)

Correspondingly, for the inelastic scattering, c̃ = c but
either s̃ 6= s or l̃ 6= l or both differ from the entry values,
we get

Ψ
(ext)(+)
c s lms; c s′′ l′′ ms′′

= − i 2 π

kc rc
ξc

∑

JF MF ml ml′′

× < sms l ml|JF MF >< s′′ms′′ l
′′ml′′ |JF MF >

× il Y ∗
l ml

(k̂c)S
JF

c s′′ l′′; c s lOl′′ (kc, rc)Yl′′ ml′′
(r̂c)φc s′′ ms′′

.

(A34)
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Then the projection of Ψ
(ext)(+)
c s lms; c s′′ l′′ ms′′

on ξc is

Υ
(ext)(+)
c s lms; c s′′ l′′ ms′′

(rc) = − i
2 π

kc rc

∑

JF MF ml ml′′

× < sms l ml|JF MF >< s′′ms′′ l
′′ml′′ |JF MF >

× il Y ∗
l ml

(k̂c)S
JF

c s′′ l′′;c s lOl′′ (kc, rc)Yl′′ ml′′
(r̂c)φc s′′ ms′′

.

(A35)

Finally, for the outgoing scattered wave in the reaction
channel c̃ = c′ = n+A we have

Ψ
(ext)(+)
c s lms; c′ s′ l′ ms′

= − i 2 π

kc rc′

√
vc
vc′

ξc′ i
l

∑

JF MF ml ml′

× < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× Y ∗
l ml

(k̂c)S
JF

c′ s′ l′; c s l Ol′(kc′ , rc′)Yl′ ml′
(r̂c′)φc′ s′ ms′

.

(A36)

It leads to its projection on ξc′ :

Υ
(ext)(+)
c s lms; c′ s′ l′ ms′

(rc′) = − i
2 π

kc rc′

√
vc
vc′

il
∑

JF MF ml ml′

× < sms l ml|JF MF >< s′ms′ l
′ml′ |JF MF >

× Y ∗
l ml

(k̂c)S
JF

c′ s′ l′; c s l Ol′(kc′ , rc′)Yl′ ml′
(r̂c′)φc′ s′ ms′

.

(A37)

Now we can derive the expression for the matrix ele-

ments of the S matrix. Since the wave function Ψ
(+)
c is

continuous using Eqs. (A13), (A30) and (A33) we get
the equality

Υ
JF (int)
c s l ms; c s lms′′

(Rc r̂c) = Υ
JF (ext)(0)
c s lms; c s lms′′

(Rc r̂c)

+ Υ
(ext)(+)
c s lms;c s lms′′

(Rc r̂c), (A38)

which boils down to

e−i δhs
c l

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ
√
2 kcRc γτ c s l JF

= i
[
Il(kc, Rc)− SJF

c s l;c s lOl(kc, Rc)
]
. (A39)

Taking into account that [39]

Il(kc, Rc)

Ol(kc, Rc)
=
Gl(kc, Rc)− i Fl(kc, Rc)

Gl(kc, Rc) + i Fl(kc, Rc)
ei 2ωc l = e−2 i δhs

c l

(A40)

and

Γτ c s l JF
(Ec) = 2Pc l(Ec, Rc) γ

2
τ c s l JF

, (A41)

where

Pc l(Ec, Rc) =
kcRc

F 2
l (kc, Rc) +G2

l (kc, Rc)
(A42)

is the Coulomb-centrifugal barrier penetrability, we get
the elastic scattering S-matrix element:

SJF

c s l; c s l = e−2 i δhs
c l (1 + i

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2 [A−1]ντ

× [Γτ c s l JF
(Ec)]

1/2). (A43)

From equality of Eqs. (A22) and (A37) at given JF and
rc′ = Rc′

Υ
JF (int)
c sms;c′ s′ ms′

(Rc′ r̂c′) = Υ
JF (ext)(+)
c s lms; c′ s′ l′ ms′

(Rc′ r̂c′)

(A44)

we obtain the reaction matrix element:

SJF

c s l; c′ s′ l′ = i e− i δhs
c l e− i δhs

c′ l′

N∑

ν,τ=1

[Γν c s l JF
(Ec)]

1/2

× [A−1]ντ [Γτ c′ s′ l′ JF
(Ec′)]

1/2. (A45)

Both obtained matrix elements coincide with the corre-
sponding matrix elements from [40]. The only difference
is in the definition of the solid scattering phase shifts.
The obtained matrix elements of the S matrix confirm
that the relative normalization of the internal and exter-
nal wave parts of Ψ

(+)
bB are correct and we can use them

to calculate the reaction amplitude of the deuteron strip-
ping proceeding through resonance states.

Appendix B: Matrix element MDW
S

Let us consider the DWBA surface (in the subspace
over rnA) matrix element, which appears in the post form
(see subsection III A):

MDW
S (P, kdA) =< χ

(−)
pF Υ

(ext)(−)
nA |←−T −−→T |

× ϕd χ
(+)
dA >

∣∣∣
rnA>RnA

=MDW
S(pF )(P, kdA) +MDW

S(nA)(kpF , kdA), (B1)

where Υ
(ext)(−)
nA =< ϕA|Ψ(ext)(−)

bB >,

MDW
S(pF )(P, kdA) =

∫

rnA>RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )Υ

(ext)(−)∗
nA (rnA)

× [
←−
T pF −

−→
T pF ]ϕd(rpn)χ

(+)
dA (rdA) > (B2)

and

MDW
S(nA)(P, kdA) =

∫
drpF

∫

rnA>RnA

drnA χ
(−)∗
pF (rpF )Υ

(ext)(−)∗
nA (rnA)

× [
←−
T nA −

−→
T nA]ϕd(rpn)χ

(+)
dA (rdA) > . (B3)

MDW
S(pF ) can be written as
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MDW
S(pF )(P, kdA) =

∫
drnA

∫
drpFχ

(−)∗
pF (rpF )Υ

(−)∗
nA (rnA)[

←−
T pF −

−→
T pF ]ϕd(rpn)χ

(+)
dA (rdA)

−
∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )Υ

(int)(−)∗
nA (rnA) [

←−
T pF −

−→
T pF ]ϕd(rpn)χ

(+)
dA (rdA) >

=

∫
drnA

∫
drpFχ

(−)∗
pF (rpF )Υ

(ext)(−)∗
nA (rnA)[

←−
T pF −

−→
T pF ]ϕd(rpn)χ

(+)
dA (rdA). (B4)

We took into account that for any finite volume rnA ≤
RnA the matrix element containing

←−
T pF −

−→
T pF vanishes

as it has been discussed in Section II A for deuteron strip-
ping to bound states. To estimate MDW

S(pF ) we need equa-

tions connecting different variables:

rdA = 1/2 rpn + rnA, (B5)

rpF = A/(A+ 1) rnA + rpn. (B6)

Replacing the variable rnA by rpn and transforming the
integral over rpF is transformed to the surface integral we
get for for the matrix element

MDW
S(pF )(P, kdA) = (

A+ 1

A
)3 lim

RpF→∞
R2

pF

1

2µpF

×
[ ∫

dΩrpF

∂ χ
(−)∗
pF (rpF )

∂ rpF

∫
drpn ϕd(rpn)Υ

(ext)(−)∗
nA (

A+ 1

A
[rpF − rpn])χ

(+)
dA (

A+ 1

A
rpF −

A+ 2

2A
rpn)

−
∫

dΩrpF χ
(−)∗
pF (rpF )

∂

∂ rpF

∫
drpn ϕd(rpn)Υ

(ext)(−)∗
nA (

A+ 1

A
[rpF − rpn])χ

(+)
dA (

A+ 1

A
rpF −

A+ 2

2A
rpn)

]∣∣∣
rpF=RpF→∞

.

(B7)

Due to the presence of the deuteron bound state wave
function the integration over rpn is limited. At rpF →
∞ and rpn < ∞ we can replace the distorted waves in
the initial and final channels by their leading asymptotic
terms:

χ
(+)
dA (rdA)

rdA→∞∼ eikdA·rdA+i ηdA ln(kdA rdA−kdA·rdA).
(B8)

and

χ
(−)∗
pF

rpF→∞→ e−ikpF ·rpF+i ηpF ln(kpF rpF+kpF ·rpF ). (B9)

Here, ηij is the Coulomb parameter of particles i and j

in the continuum. Note that rdA = A+1
A rpF − A+2

2A rpn,
and at rpF →∞ and rpn <∞ rdA →∞. Then

∂ eikdA·rdA+i ηdA ln(kdA rdA−kdA·rdA)

∂ rpF
rpF→∞→ i

A+ 1

A
kdA · r̂pF eikdA·(A+1

A
·rpF−A+2

2A rpn)+i ηdA ln(kdA rdA−kdA·rdA) (B10)

and

∂ e−ikpF ·rpF+i ηpF ln(kpF rpF+kpF ·rpF )

∂ rpF
rpF→∞

≈ −ikpF · r̂pF e−ikpF ·rpF+i ηpF ln(kpF rpF+kpF ·rpF ).
(B11)

For Υ
(ext)(−)∗
nA (A+1

A [rpF−rpn]) we can take only the exter-
nal part, which contains the resonant S matrix element,
see Eq. (A37). Neglecting all the spin-dependent and
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angular parts and leaving only its radial part, which is
OnA(rnA)/rnA, we get for its leading asymptotic term:

OnA(knA, rnA)

rnA

rpF→∞→ A

A+ 1

1

rpF
ei

A+1
A

(knA rpF−knA r̂pF ·rpn)

× e−i[ ηnA ln(2 knA rnA)+lnA π/2−σnA 0]. (B12)

The leading term of its derivative at rpF →∞ is

∂OnA(knA, rnA)/rnA
∂ rpF

rpF→∞→ i knA
1

rpF

× ei A+1
A

(knA rpF−knA r̂pF ·rpn)

× e−i [ ηnA ln(2 A+1
A

knA rpF )+ lnA π/2−σnA 0]. (B13)

We also need the asymptotic behavior of the plane wave

eiq·rpF
rpF→∞→ 2 π

i q rpF
[ei q rpF δ(q̂ − r̂pF )

− e−i q rpF δ(q̂+ r̂pF )], (B14)

where q = A+1
A kdA − kpF . Then the matrix element

reduces to

MDW
S(pF )(P, kdA) ∼ lim

RpF→∞
f1(RpF ) e

i q RpF

+ f2(RpF ) e
−i q RpF ]. (B15)

Thus MDW
S(pF ) has no limit at RpF → ∞ but regular-

ization of this matrix element by integrating the matrix

element over an infinitesimal bin in the momentum plane
leads to disappearance of MDW

S(pF ):

1

2 ǫ

q+ǫ∫

q−ǫ

dqMDW
S(pF )(P, kdA)→ lim

RpF→∞

sin (ǫRpF )

ǫRpF

×
[
ei q RpF f1(RpF )− e−i q RpF f2(RpF )

]
= 0, (B16)

where ǫ << q.

Similarly we can estimate MDW
S(nA) given by Eq. (B3).

Since the integral over rnA is taken over external volume
with rnA > RnA the transformation of the volume inte-
gral into the surface one leads to two surface integrals:

MDW
S(nA)(P, kdA) = −MDW

SRnA
(P, kdA) +MDW

S∞
(P, kdA).

(B17)

The first term is the surface integral encircling the in-
ner surface of the external volume at rnA = RnA, while
the second term is the surface integral taken at rnA =
R

′

nA → ∞. A negative sign in front of the first term
appears because the normal to the surface is directed in-
ward to the center of the volume, that is opposite to the
normal to the external surface (at infinitely large radius).
The surface integral over the infinitely large sphere in the
subspace over rnA is

MDW
S∞

(P, kdA) = − lim
R

′

nA→∞

R
′

nA

2 1

2µnA

×
[ ∫

dΩrnA

∂Υ
(ext)(−)∗
nA (rnA)

∂ rnA

∫
drpn ϕd(rpn)χ

(−)∗
pF (

A

A+ 1
rnA + rpn)χ

(+)
dA (

1

2
rpn + rnA)

−
∫

dΩrnA
Υ

(ext)(−)∗
nA (rnA)

∂

∂ rnA

∫
drpn ϕd(rpn)χ

(−)∗
pF (

A

A+ 1
rnA + rpn)χ

(+)
dA (

1

2
rpn + rnA)

]∣∣∣
rnA=R

′

nA
→∞

. (B18)

Here, the Jacobian variable rpF is replaced by rpn. Due
to the presence of the deuteron bound state wave func-
tion the integration over rpn is limited. Hence, rpF →∞
and rdA → ∞ at rnA → ∞. At rnA → ∞ and rpn < ∞
we can replace the distorted waves in the initial and final
channels by their leading asymptotic terms. The dis-
appearance of the matrix element (B18) can be proved
similarly to the proof of the disappearance of MDW

S(pF ).

Replacing the distorted waves by their leading asymp-
totic terms (B8) and (B9), singling out the plane wave
containing rnA and using the asymptotic representation
of this plane wave, see Eq. (B14), integrating over ΩrnA

we eventually arrive at

MDW
S∞

(P, kdA) ∼ lim
R

′

nA
→∞

[ei q
′ R

′

nA g1(R
′

nA)

+ e−i q′ R
′

nA g2(R
′

nA)]. (B19)

Regularization of this matrix element by integrating it
over an infinitesimal bin in the momentum plane q′ leads
to disappearance of MDW

S∞
, that is

MDW
S(nA)(P, kdA) = −MDW

SRnA
(P, kdA). (B20)



34

Appendix C: Matrix element M
CDCC(post)
S (P, kdA)

Here we show how to transform M
CDCC(post)
S into the

surface integral over the coordinate rnA. M
CDCC(post)
S

can be written as

MCDCC
S (P, kdA) =

∫

rnA>RnA

drnA

∫
drpFχ

(+)
−kpF

(rpF )Υ
(ext)(−)∗
nA (rnA)[

←−
T −−→T ]Ψ

CDCC(+)
i (rpF , rnA)

=MCDCC
Stot (P, kdA)−MCDCC

Sint (P, kdA), (C1)

where

MCDCC
Stot (P, kdA) =

∫
drnA

∫
drpFχ

(+)
−kpF

(rpF )

× Υ
(−)∗
nA (rnA)[

←−
T −−→T ]Ψ

CDCC(+)
i (rpF , rnA) (C2)

and

MCDCC
Sint (P, kdA) =

∫

rnA≤RnA

drnA

∫
drpFχ

(+)
−kpF

(rpF )

×Υ
(int)(−)∗
nA (rnA) [

←−
T −−→T ] Ψ

CDCC(+)
i (rpF , rnA). (C3)

Note that in the matrix element MCDCC
Stot the integra-

tion is carried over rpF and rnA in all the coordinate

space while in MCDCC
Sint the external region in the sub-

space over rnA is excluded. Let us first considerMCDCC
Stot .

The CDCC wave function is given by Eq. (52). If
we substitute the first term,n = 0, which contains the
deuteron bound state wave function, the transformation
leads to the surface integrals with rpF = RpF → ∞ and
rnA = RnA → ∞. Both surface integrals vanish and
the proof is similar to the one presented in the previ-
ous section. For the rest of the CDCC wave function
corresponding to the sum with n > 0, which we call

Ψ
CDCC(+)
i c , transformation to the surface integrals gives

M
CDCC(c)
Stot (P, kdA) =

∫
drnA

∫
drpFχ

(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)[

←−
T pF −

−→
T pF ]Ψ

CDCC(+)
i c (rpF , rnA)

+

∫
drnA

∫
drpF χ

(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)[

←−
T nA −

−→
T nA]Ψ

CDCC(+)
i c (rpF , rnA)

= lim
RpF→∞

R2
pF

2µpF

∫
dΩrpF

∫
drnA

[
Υ

(−)∗
nA (rnA)Ψ

CDCC(+)
i c (rpF , rnA)

∂ χ
(+)
−kpF

(rpF )

∂ rpF

− χ(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)

∂Ψ
CDCC(+)
i c (rpF , rnA)

∂ rpF

]

+ lim
RnA→∞

R2
nA

2µnA

∫
dΩrnA

∫
drpF

[
χ
(+)
−kpF

(rpF )Ψ
CDCC(+)
i c (rpF , rnA)

∂Υ
(−)∗
nA (rnA)

∂ rnA

− χ(+)
−kpF

(rpF )Υ
(−)∗
nA (rnA)

∂Ψ
CDCC(+)
i c (rpF , rnA)

∂ rnA

]
. (C4)

Let us, first, consider the first term, in which RpF →∞.
Let us divide the integration region over rnA into the
region rnA/RpF → 0 and the region where rnA & RpF →
∞. In the first region we get that rdA ∼ RpF → ∞ and
rpn ∼ RpF → ∞. Taking into account the asymptotic

behavior of Ψ
CDCC(+)
i c (rpF , rnA) ∼ r−3

pF and Eq. (B14)

we get that the first term goes to zero as R−2
pF → 0. In

the remained region rnA ∼ RpF →∞ and we consider it
later. The second term of Eq. (C4), in which RnA →∞,
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we also separate into two regions: rpF /RnA → 0 and
rpF & RnA → ∞. In the first region rpn ∼ RnA → ∞
and rdA ∼ RnA → ∞ and Ψ

CDCC(+)
i c (rpF , rnA) ∼ r−3

nA.

Hence the matrix element goes to zero as R−2
nA → 0. To

consider the behavior of the first and second terms of
Eq. (C4) in the second regions, where rnA, rpF → ∞,
it is more convenient to introduce the hyper-spherical
coordinates in the six-dimensional hyper-space:

ρ =

√
µnA

m
r2nA +

µpF

m
r2pF ,

rnA = ρ

√
m

µnA
sin α, rpF = ρ

√
m

µpF
cos α,

0 ≤ α ≤ π/2. (C5)

Here, m is the scaling mass parameter, for example,
the nucleon mass. Then MCDCC

Stot in the region, where
rnA, rpF → ∞, can be written as the integral over the
hypersphere encircling the volume integral with the ra-
dius of the hyper-sphere ρ→∞ [32]:

MCDCC
Stot (P, kdA) =

1

2

m2

(µnA µpF )3/2
lim
ρ→∞

ρ5
∫

dr̂pF

∫
dr̂nA

π/2∫

0

dα sin2 α cos2 α

[
χ
(−)∗
pF (rpF )Υ

(−)∗
nA (rnA)

∂

∂ρ
Ψ

CDCC(+)
i (rpF , rnA)−Ψ

CDCC(+)
i (rpF , rnA)

∂

∂ρ
χ
(−)∗
pF (rpF )Υ

(−)∗
nA (rnA)

]
. (C6)

Here, hyper-radius ρ is the parameter going to infinity.
The integrand contains highly oscillating (actually in-
finitely oscillating) functions. The behavior of the inte-
gral at ρ→∞ depends on the asymptotic behavior of the
integrand. The integration over dr̂pF can be performed

directly using the asymptotic form of χ
(−)∗
pF (rpF ). It is

given by the Coulomb distorted plane wave, but for sim-

plicity, what does not affect the final result, we neglect,
as in the previous section, the Coulomb effects. Then
the asymptotic form of the plane wave is given by Eq.
(B14) and, hence, integration over r̂pF using δ-functions

is trivial leading to r̂pF = ±k̂pF . After performing the
integration over dr̂pF only two integrals are left. From
Eqs (B5), (B6) and (C5) we get for

rpn =

√
r2pF − 2

A

A+ 1
rpF rnA +

A2

(A+ 1)2
r2nA

= ρ

√
m

µpF
cos2 α∓ A

A+ 1

√
m

µpF

√
m

µnA
z sin 2α+

A2

(A+ 1)2
m

µnA
sin2 α (C7)

and

rdA =

√
1

4
r2pF +

A+ 2

2 (A+ 1)
rpF rnA +

(A+ 2)2

4(A+ 1)2
r2nA

= ρ

√
1

4

m

µpF
cos2 α± A+ 2

4(A+ 1)

√
m

µpF

√
m

µnA
z sin 2α+

(A+ 2)2

4(A+ 1)2
m

µnA
sin2 α . (C8)

Here, z = r̂nA·k̂pF . We recall also that in Eq. (52) at n >

0 ψ
(n)
pn (rpn) at rpn → ∞ contains the asymptotic terms

e±i kpn rpn

r2pn
, while χ

(n)(+)
i (rdA) ∼ ei kdA rdA

rdA
, where we, for
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simplicity, neglected the Coulomb distortion. Then after
integration over dr̂pF the leading asymptotic form of the
integrand with omitted Coulomb effects is a product of
highly oscillating at ρ→∞ exponents:

e± i kpF rpF

rpF

ei knA rnA

rnA

e± i kpn rpn

r2pn

ei kdA rdA

rdA

ρ→∞∼ 1

ρ5
ei ρ g(α, z). (C9)

Thus we need to estimate a highly oscillatory integral:

J1 ∼ lim
ρ→∞

1∫

−1

dz

π/2∫

0

dα sin2 α cos2 α ei ρ g(z, α). (C10)

Evidently that this integral and, hence, MCDCC
Stot (P, kdA)

vanishes at ρ → ∞, whether a stationary phase point
does exist or not, because the integration brings ρ to the
denominator.
Now we proceed to MCDCC

Sint (P, kdA). We rewrite is as

MCDCC
Sint (P, kdA) =

∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )

×Υ
(int)(−)∗
nA (rnA)

[←−
T pF −

−→
T pF

]
Ψ

CDCC(+)
i (rpF , rnA)

+

∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )

×Υ
(int)(−)∗
nA (rnA)

[←−
T nA −

−→
T nA

]
Ψ

CDCC(+)
i (rpF , rnA).

(C11)

Let us first consider the first matrix element containing
TpF . It is easy to show that this matrix element vanishes.
After transforming it into the surface integral over rpF
we get

∫

rnA≤RnA

drnA

∫
drpFχ

(−)∗
pF (rpF )Υ

(int)(−)∗
nA (rnA)

×
[←−
T pF −

−→
T pF

]
Ψ

CDCC(+)
i (rpF , rnA)

= − 1

2µpF
lim

RpF→∞
R2

pF

∫
dΩrpF

∫

rnA≤RnA

d rnA Υ
(−)∗
nA (rnA)

×
[
Ψ

CDCC(+)
i (rpF , rnA)

∂χ
(−)∗
pF (rpF )

∂rpF

− χ(−)∗
pF (rpF )

∂Ψ
CDCC(+)
i (rpF , rnA)

∂rpF

]∣∣∣
rpF=RpF

. (C12)

The matrix element containing n = 0 term of the CDCC
wave function vanishes because in the subspace rnA ≤
RnA at rpF → ∞ the deuteron bound state wave func-
tion exponentially fades away. The terms of the CDCC
wave function with n ≥ 1 also produce vanishing matrix
element because the CDCC wave function corresponding
to these terms in the subspace rnA ≤ RnA at rpF → ∞
decays as 1/r3pF , that is the matrix element (C12) van-

ishes as lim
RpF→∞

R2
pF /R

3
pF → 0. Thus we arrive at

MCDCC
S (P, kdA) = −MCDCC

Sint (P, kdA) = −
∫

rnA≤RnA

drnA

∫
drpF χ

(−)∗
pF (rpF )Υ

(int)(−)∗
nA (rnA) [

←−
T nA −

−→
T nA] Ψ

CDCC(+)
i (rpF , rnA)

=
1

2µnA
R2

nA

∫
d rpF χ

(−)∗
pF (rpF )

[
Ψ

CDCC(+)
i (rpF , rnA)

∂

∂rnA
Υ

(−)∗
nA (rnA)−Υ

(−)∗
nA (rnA)

∂

∂rnA
Ψ

CDCC(+)
i (rpF , rnA)

]∣∣∣
rnA=RnA

.
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