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ABSTRACT

Title of Thesis: Collisions and Nonlinear Effects in Plasmas

Adrian Anatol Dolinsky, Doctor of Philosophy, 1965

Thesis directed by: Professor Derek A, Tidman _

425 26S

Nonlinear and collision effects in the behavior of plasmas are

investigated for an electron gas embedded in a neutralizing uniformly

smeared out background of positive charge, Nonlinearity enters into

the description of the behavior of a plasma through the collision term

(arising from interparticle correlations) and the self-consistent electric

field term (i.,e, the ensemble average of the sum of Coulomb fields of

all of the plasma particles) in an exact kinetic equation ., It is

impossible (at the present time) to treat both nonlinear terms simultan-

eously, For this reason the investigation is divided into two separate

partss In PART ONE the effect of the collision term on the behavior of

a spatially homogeneous plasma is investigated; in PART TWO the self=

consistent electric field term is treated under conditions which enable

us to drop the collision term, EZ’

In PART ONE the problem of relaxation of the exact Balescue
Lenard kinetic equation is solved numerically as an initial value prbblem
for isotropic velocity distribution functions, Several different forms
of the initial distribution function are selected: a Gaussian; peaked
at about 0,28 of the electron thermal velocity; a resonance function; and

a Maxwellian coexisting with a sharply peaked Gaussian (the peak of the



Gaussian being located at 2,0 electron thermal velocities), The Fokker=
Planck kinetic equation is also solved numerically under the same restric-
tions and with the same initial distribution functions, A comparison of
the solutions of the two kinetic equations shows very small difference
between them, and a probable reason for this is advanced, In addition,

a relaxation time is defined, and the long time behavior of the distri-

bution functions is studied,

In PART TWO the problem of light=by=light scattering in a
plasma is investigated, Two coherent, monochromatic plane=polarized,
plane electromagnetic waves (produced by two lasers) pass through a
large volume of a quiescent electron plasma and are scattered, When
the frequencies of the impinging waves are tuned so that their
difference is approximately equal to the frequency of the natural
longitudinal plasma oscillations, these oascillations are excited, However,
they are limited by the action of several physical mechanisms: the Landau

damping, the collisional damping, and the nonlinear effects,

We are interested in the nature of the nonlinear effects. For
this reason, the plasma is assumed to be describable by means of the
collisionless plasma moment equations coupled with the Maxwell equations,
The amount of nonlinearity is assumed to be small, and the equations are
handled by the method of multiple time and spatial scales, a generalization
due to Frieman and Sandri of a perturbation scheme developed for nonlinear

mechanics by Krylov, Bogoliubov, and Mitropolsky.



The results show that there is a slow rotation and/or change
in magnitude of the amplitudes of the two impinging electromagnetic
waves (as they pass through the plasma), The rotation is both in space
and in time, At the same time; a longitudinal electric field is bduilt
up slowly inside the plasmg. and its emplitude changes slowly in space
and in time, All of the above variations in space and in time proceed
at rates which are proporticnal to the strength of the impinging radiation.
Furthermore, the strength of the longitudin#l field is at most of the
order of magnitude of the strengths of the incident electromagnetic
waves, This indicates the effectiveness of noniinearity in limiting

the longitudinal plasma oscillations.
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PREFACE

We shall be concerned with the behavior of fully ionized plasmas,
i,e, gaseous mixtures of several species of charged particles at sufficiently
high temperatures and low densities to assure complete ionization for all
times, Under such circumstences quantum effects can be neglected provided
the De Broglie wavelengths of particles are much smaller than the average
interparticle distances, At the same time, we shall assume that particle
thermal velocities and macroscopic streaming velocities are small compared
to the velocity of light, Consequently relativistic effects are also
negligible, Such plasmas can therefore be described by the laws of
classical physics for a many=body system of particles interacting through

Coulomb forces,

A complete statistical description of a plasma would be by
means of a probability distribution function in the phase space of all of
the particles, This probability distribution function must obey Liouville's
equation, However, a solution of Liouville's equation is generally imposs=
ible, Besides, a description by means of a probability distribution function
in the phase space of all particles yields more information than is necessary
for many purposes., Many physical properties of a plasma can, however, be
determined from a knowledge of a one-particle distribution function for
each species of particles, By a one=particle distribution function we mean
the average (i.e, ensemble average) particle number density of a given

species in the six-dimensional position~velocity space,

ii
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We would like to write down & differentiel equation from which a
one~particle distribution function can be determined for all times if it
is known at some initial time, say t = 0 ., Such an equation ought to contain
no more detailed information than is contained in one=particle distribution
functions; i.e., only terms containing one~particle distribution functions
should be present, Such an equation (also called a kinetic equation) can
be derived from the BBGKY (BorneBogoliubov=Green-Kirkwood=Yvon) hierarchy
of equations = which are derived from Liouville‘’s equation = if some assump=

tions are made about the correlation functions for particles,

The first assumption is that the correlation functions are in
some sense small compared to the order of magnitude of the one=particle
distribution functions., This is usually true throughout most of the phase
space of a many=body system of particles interacting through Coulomb forces,
If it is also assumed that one is dealing with phenomena that vary slowly
in space and time (compared to the plasma period w;l and Debye length),
then the appropriate kinetic equation for the one-particle distribution

function fc‘(g_,_v_,t) - for the species o becomes

of of e of
g g g L 1 g :
® *Ltsg tm BT LR oo o)

where e, and m are, respectively,the charge and mass of a particle of
species 0 ; §j§,t) is the electric field, which includes both an externally

produced field and the self-consistent field of plasma particles (i.e, the
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sum of Coulomb fields of all particles, averaged over the ensemble); Eﬁiﬁt)
is an externally produced magnetic field; and C(fo’ft) is a collision
term (of the order of magnitude of the pair correlation functions), arising

from correlations between particles,

The derivation of an appropriate expression for C(fc°f1) is
impossible without the introduction of additional assumptions., Some
problems, however, can be treated, to a good approximation, by neglecting
the collision term, The resulting kinetic equation is sometimes called
the collisionless Boltzmenn equation, or the Vliasov equation, It can be
used, for example, to describe reasonably well the behavior of a plasma
at very high temperatures and very low densities, In general, however, the
collision term is important and should be retained, Two different forms
of C(fo’fr) are widely used in plasma theory, One of them is called
the Fokker=Planck collision term, or the Rosenbluth=MacDonald=Judd collision
term; the other, a more exact collision term; is called the Balescu=Lenard

collision term,

The Fokker=Planck collision term is derived in the same way and
under the same assumptions as the collision term for a gas in which particles
interact through strong, short=-range forces, It can be obtained, for example,
by making a Taylor expansion of the Boltzmann collision integral to treat
distant collisions, Here, however, an additional assumption has to be

made that only those two~particle collisions are to be counted for which




the impact parameter for colliding particles is less than some character=-

istic length, which is chosen to be the Debye radius,

The assumptions under which the Fokker=Planck collision term
is derived have many questionable features, First, it is assumed that
& plasma particle collides with only one other plasma particle at any one
time; i.e,, only two=body collisions are assumed to exist, However, because
of the long range nature of Coulomb forces, a particle will collide with
many cther particles simultaneously, Second, the time between two collisions
is assumed to be much greater than the time duration of a collision, This
is also incorrect for the same reason, Third, the screening of the charge
of a particle by oppositely charged particles does not appear naturally, but
has to be added in as an extra assumption, We may summarize by saying that

the Fokker=Planck collision term treats collective effects improperly,

The more exact expression for the collision term; which is used
in plasma theory, is the Balescu=Lenard collision term, It can be derived
from the BBGKY hierarchy of equations by making the so=called Bogoliubov
adiebatic hypothesis. This is that the higher interparticle correlation
functions relax to their asymptotic long=time forms rapidly over the time
scale in which the one=particle distribution functions are changing. (The
Bogoliubov adiabatic hypothesis cannot be made for high frequency phenomena
like electron plasma oscillations., In such phenomena the one=particle

distribution functions change on a time scale comparable to the time scale
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of change of the interparticle correlation functions.) The resulting
Balescu=Lenard collision term treats collective effects properly, taking
into account automatically the screening of charged particles and the

meny=body collisions,

The kinetic equation is generally nonlinear, The nonlinear terms
in the equation are the self=consistent electric field term and the collision
term, Both nonlinear terms are important in the behavior of a plasma, and
we shall ce loterested in both of them in this work, We shall be interested in the
self-consistent field term because its nonlinearity has not been studied
sufficiently., However, this nonlinearity, even if small, is capable of
limiting plasma oscillations effectively, We shall also be interested in
the collision term, because it has not been investigated sufficiently: Only
the FokKer=Planck kinetic equation has been studied so far to any great
extent, whereas only the linearized version of the Balescu=Lenard kinetic

equation has been integrated,

To simplify the mathematics, we shall limit ourselves to plasmas
composed of only one species of particles, electrons, embedded in a uniformlyv
smeared out background of positive charge to ensure charge neutrality on the
average, It is not possible to treat the self-consistent field term and
the collision term simultaneously., Further the Balescu=Lenard collision term
we use is valid only for a spatially homogeneous field-free plasma; whereas

the simultaneous presence of both the self=consistent field term and the
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Fokker-Planck collision term makes the problem generally intractable (except
when the kinetic equation is linearized), For this reason we divide our
investigation into two separate parts and select two particuler problems,

In PART ONE the effect. of collision terms on the behavior of a spatially
homogeneous plasma is investigated, In PART TWO the self-consistent field
term is treated under conditions which enable us to drop the collisional

terms for the problem of light=light scattering in a plasma,

Te PART ONE, to make the problem mathematically tractable, we
limit ourselves to one=particle distribution functions which are isotropic
in velocity space, The exact Balescu-Lenard equation is solved numerically
és an initial valte-préblem for such distribution functioens, Several initial
distribution functions are chosen: a Gaussian, peaked at 0,28 of the electron
thermal velocity; a resonance function; and a very sharp Gaussian, peaked
at 2,0 electron thermal velocities, coexisting with a Maxwellian, The exact
Fokker=Planck equation is also solved numerically for the same initial distri=
bution functions, The values of the plasme parameters are chosen such that
differences between the solutions of the two kinetic egquations = if there

i way = will Be .oticeable,

Only small differences (a few percent) between the solutions of
the two kinetic equations were observéd for the initial distribution functions
selected, and a possible explanation for this is advanced, The difference

between the solutions of the two kinetic equations for the test particle
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problem is also analyzed, and a reason for this difference is given, 1In
addition, a relaxation time is defined, and the long time behavior of the
three initial distribution functions is investigated by means of a numerical

integration of the Fokker-Planck equation.

In PART TWO we treat the problem of light=by=light scattering in
a plasma: Two coherent, monochromatic, plane-=polarized, plane electroe
magnetic waves impinge on a quiescent electron plasma and are scattered,
Wi v fregila. les of the two incident waves are tuned so that their
difference is approximately equal to the frequency of the longitudinal
plasma oscillations, those oscillations are excited, However, they do
not grow linearly with time because of the limiting effect of several

physical mechanisms.

We are interested in the nature of the mechanism of nonlinearity
only, Therefore we assume the plasma to be describable by the collisionless
moment and Maxwell equations, We also assume the nonlinear terms in these
equétions to be small compared to the linear—~terms, The equations can then
be handled by the method of multiple time scales and spatial scales, &
generalization due to Frieman and Sendri of a perturbation scheme developed

by Krylov, Bogoliubov, and Mitropolsky for nonlinear mechanics,

The results show that there is a slow rotation and/or change in
the magnitudes of the amplitudes of the two impinging electromagnetic waves

as they pass through the plasma, The rate of rotation is proportional to
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the strength of the impinging radiation, At the same time, a longitudinal
electrostatic oscillation is built up slowly inside the plasma, The rate

of build=up of this oscillation is proportional to the rate of change

of the amplitudes of the transverse fields; the strength of the amplitude

of this oscillation is at most of the order of magnitude of the strengths

of the transverse fields, All of these effects are due to a proper treats
ment of the small nonlinear terms, in the equations of motion, and camnot

b woeaiued uy siwply carrying conventional perturbation theory to second

order,
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PART ONE

NUMERICAL INTEGRATION OF KINETIC EQUATIONS




I, INTRODUCTION

The problem of the relaxation to equilibrium cof a fully ionized
non-equilibrium plasma has been of interest for some time, In the absence
of analytic solutions to the appropriate kinetic equations, which are
non-linear, various authors have investigated problems that do not require
the solution of a non=linear kinetic equation., As an example of such
problems one may mention the case of the reiaxation to equilibrium of
tho dMetrivedti-oo function of a test particle injected into =
quiescent plasma, In these problems the appropriate kinetic equation
can be linearized, Up to date the only investigations of the reiaxation
of a test-particle distribution function have been carried out by means
of the Fokker=Planck kinetic equation, Thus Kranzerl studied the thermale
ization of a fast ion in a plasma by mears of a numerical solution of
the Fokker=Planck equation. Frisch2 defined certain characteristic times
which he called time lags in the thermalization of a fast ion injected
into a plasma, and proceeded to calculate them without actually solving
the Fokker~Planck equation, Ree and Kidder3 obtained an analytic solution
for the tlermelizetion of a fast test ion injected into a plasma by
approximating the friction and dispersion coefficients in the Fokker-
Planck equation, Their solution is valid only when the speed of the test
ion is less than the average speed of the plasma electrons, but large
enough so that the plasma electrons interact more strongly with the test

ion than do the plasma ions.,




Attempts at an actual solution of a non=linear kinetic equation
have up to now been confined only to the Fokker~Planck equation, Furtherw~
more, they have been numerical solutions, In fact, the only investigation
of the relaxation of a non=linear kinetic equation up to date is that of
MacDonald, Rosenbluth and Chuckh, who solved numerically as an initial
value problem, the non-linear Fokker=Planck equation for an electron=positron
plasma which is spatially homogeneous and isotropic in velocity, It would
be interesting to carry out a similar investigation for the non=linear
Bal«~ -a=lena 1 ~-nation, This would be especially interesting in view of
the fact that the Balescu<Lenard equation, by treating collective effects
properly, gives a more general description of the behavior of a spatially
homogeneous plasma than does the Fokker=Planck eguation, which does not
treat collective effects properly, The only attempt so far at a solution
of the Balescu=Lenard (B/L} equation is the solution, as an initial value problem,
of the linearized BL equation by Rosenberg and WuSO These two authors
took a multicomponent plasma and perturbed the distribution function.of each
species of particles slightly from the equilibrium Maxwellian distribution, Then
they proceeded-- to investigate the decay of this small perturbation in

the linesr -prreximation,

This paper presents a numerical integration of the exact Balescu=
Lenard (BL) kinetic equation for different initial distributions of an
electron plasma embedded in a neutralizing, uniformly smeared out, positive=-
charge background, The Fokker=Planck equation with the Rosenbluth, MacDonald,

Judd collision term (RMJ equation) is also integrated with the same initial



distributions, By comparing the solutions of the two kinetic equations one
hopes to arrive at an estimate of the importance of collective effects in

the relaxation of these distribution functions,

The simplifying assumption made,in these calculations,is that
the distribution functions are isotropic in velocity space, For a limited
class of such distribution functions = for example, for distribution functions
which are monotomically decreasing functions of [yl = our results indicate
that for most purposes there is a negligible difference {a few percent)
between the predictions of the BL and RMJ kinetic equations, This is
because these isotropic distributions are sufficiently stable that the v
and k integrals in the BL equation (({Al) and (A2)}) do not approach a zero
of the Landau denominator , " , anywhere in the range of integration, Thus
collective effects, which are treated properly in the BL equation; but not

in the RMJ equation, are of little importance for such distributions,

We also define numerically a relaxation time in section (III)aby
considering how close all portions of a given initial distribution function
will get to the final Maxwellian after a certain time, and whether or not
they will svay close to the Maxwellian for alil times after that time, Our
conclusion is that a: distribution function often oscillates about the
final Maxwellian at certain points in velocity space, These points depend
on the form of the initial distribution function, This behavior points out
that the relaxation to the final Maxwellian cannot in general be taken to
be an exponential decay (with the possible exception of the high-energy tail),
This conclusion '+ agrees with the solution of the linearized Balescu=Lenard

equation of Rosenberg and Wus9 which is a superposition of exponential decays,



II. KINETIC EQUATIONS

A, BALESCU-LENARD (BL) EQUATION

Let f(vl,t) be the one-~particle distribution function for

a spatially uniform electron plasma embedded in a uniformly smeared out

background of positive charge, f(glgt) has two normalization condi=
tions
f fly ,t) dv, =2 (1)
and
2 2
I vy £y et) dy, = v_ (2)

where Yo is the thermal speed of electrons,



For the purposes of numerical integration it is convenient to
choose a set of dimensionless variables, Therefore we shall define three

dimensionless variables V,, 1 , and g(yl@t) by

h's
- =1 .
N =5 o (3)

= t
T :m ? (h)

and

3

g(yl,‘r) = vy

f(l’lgt) » (5)

where fD(vo) is the Spitzer defiection time6 for electrons moving with

velocity Vo given by the expression

Tp(v) - n v (6)

1 342
81rn°e 2,nAL<m— ) f(b\z v) 31r vo 2;3]

where erf is the error function., From equations(l) and (2), the two

dimensionless normalization conditions for g(yl,"r) are

J g(V,r) av, =1 (7)



and

[, an=1 (8)

For isotropic velocity distributions, the BL equation can be

written in dimensionless form as

2 v
?.%-_- % 1 [L& %%%) J vi av, G(V 1) #(V,,7)

+ V=B o(v,1) o(v,1)

+ VP [e(v,1) 1 o(v,00) . (9)

where the functions G(V,t) and ¢(V,t) occurring in (9) are defined by

G(V,T) = [ veave g(vit) (10)
v

and

¢(v,t) = —3-'1-{-’-» gn H(V,1) - -% Lﬂ%%%%@ ' (11)

™




vhere the functions T(V,t) , H(V,7) , and L{V,1} are defined by

e 92 &, 2
F(VQT) = i%l P[ ) gévgﬂ av <12)
o) V" = V2
(p Iw denoting the principal value integral),
o
|7k i {" 1
i 012 i 2 2 : 2
[}k i+ P(Vgt)j + 5 Velv,rl
H(V,t) = s - {13)
2 2 - P 2 v ‘
[r(v,1)1% + [£ 2% vgiv,7)|
and
L(V,1) = tan™t 2 42 Xﬁ%zal% - tan™* 21 VglVot) (14)
T 3 r(vyr} =~ 3 kN, ’
C =2 4 T(v,1)
\.\kD/

The quantity ko is the upper limit on the kl integration mentioned in

Appendix A, Its value was taken asT
_ KT
k= X . (15)

where K 1is the Boltzmann constant, T is the temperature, and e is the

electronic charge, kD is the Debye wave number, given by
1

hn n_ e2 2

where ng is the electron particle density. a is defined by

l61r2 n eh ko ‘ (17)
a = T.(v ) in == ® 17
m2 VS D' o kD

where m 1is the electron mass.



B, THE FOKKER=PLANCK EQUATION WITH THE

ROSENBLUTH=MACDONALD=JUDD COLLISION TERM (RMJ EQUATION)

The isotropic, spatially homogeneous RMJ equation for an electron

plesma embedded in a uniform background of positive charge ishﬂ
2 ('9
ﬂf.a g,n -- N ii—f; vof(v*t) dv”
d 3 2 'v 0

, v -
. = v"h f(vit) av” |+ = 3L vf(vit) dv®
v3 3v ov °

- )
cdv v e Y2 Y
- Jo viavif(v;t) (1 = v) (1+ 2v)

+ [f(v,t)]z} ) (18)

Transforming to the same dimensionless variables defined in (3)=(5),

(18) vecomes



Q -
2
L[]
wir

Q

L 3( veog(Vir) ave + =5 ‘[ vel g(vir) ave
v \'s o

Q

o v
2 8 ~ e &£ £ e el V" 2
- I veg(vit) deJ v© dveg(VsT) 1a o
L o ) -
B
RS R RS (19)
J

where all of the symbols have the same meaning they had in the dimensionless
BL equation., The two normalizations given by (7) and (8) hold also

in the case of the RMJ equation.



C., RELATIONSHIP BETWEEN THE BL AND THE RMJ EQUATIONS

k
In the limit of §2= + » eq, (9) tends asymptotically to
D
eq. (19). This can be seen from the following considerations:

r{vyry ~ 1 (20)
and
vg(v,r) A1 . (21)
5y
For "k- << 1 ”g
(o]
Y s ao=l2 2 Veg(V.r) L
L(V,1) 2 tan™ S '%va?T 1 (22)
and
ko\h
2n H(V,t) & wn ;-7 . (23)
D
Therefore, by (20) = (23),
o(V,1) 21 (2k)

\'
The double integral I Vi dVl G(Vlar) can be reduced to
o

single integrals in the following way:

Vo, v 2 o _
[o Vi dv1 G(vl,r) = [ av, I v, av, g(vz,r)

o V1 Vp &(Vy,T)

]
S———,
<3
jol}
=
Sy,
8
[N
<3

10
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= = v J' v g(v”,T) av-
3 v

v
+ %- I vt g(Vv-,t) ave (25)
(o]

Substituting first (24) and then (25) into (9) we obtain (19),



D, DEPENDENCE OF THE KINETIC EQUATIONS ON ko

It is shown in Appendix A that ko is the upper limit imposed

on Igll in (A2) to make the k) - integral convergent, Its value is

more or less arbitrary, except that it must satisfy the condition

= <1 (26)

We have, somewhat arbitrarily, fixed its value by eq. {15)., This choice

indeed satisfies (26), because in this case

3
k
2.g 2, @
[e] (o]

12
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but the right-hand side of (27) is << 1 under the conditions under which

the BL equation is assumed to hold,

Let us test the sensitivity of the BL equation to variations

k
in ko o Since ko enters only in the form r?-) into eq. (9), let us
D k

teke (9) at T = 0 and differentiate it with respect to (E&/ o This
3

D
(&
a o
kpst

boils down to evaluating the quantity a 9(V,0) in (9), whose

value, by (11), (13), (14), and (17), is

[
3 kD) 1
= a #(V,0) = = = % 5 5 5 o (28)
a<-9-) in == _K-S’- + T(V oﬂ + [-2-'-'— vg(Vv -z)j]
kD kD kD/ » 3 ’
k
When 1-(9' + o . (28) reduces to
D
3 a ¢(V,0) = = (29)
9 k k °
(SR
kp kp
Applying --E— to (9) and substituting (29), we obtain
3 -°-)
)
32 1 3
-_— g(v,0) = - [ 3T s(V,O)]RMJ . (30)
313(‘;2) Tcg n E-?-

D D D
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where the expression [§%=g(V90)]RMJ is really the RMJ limit of (9)

at 1 = 0, except that ko has not been restricted to the value Eg”o
e

By (26), we obtain the condition

32
e g(V,0) << 1, (31)
ata<-f°=)
D
. _ KT ( 3
even if k = ==  (because of (26)!,
.
- »> T(V,t)
kD
2w2
g -=3-= Vg(VQT) ) (32)

and (28) is well approximated by (29),

From the above considerations, we conclude that the relaxation
of "a~ one-particle distribution function is not very sensitive to changes
in the value of ko , at least for v < (;%) o This is of course consistent
with the wously logaerithmic dependence of the BL equation (similar to the
RMJ equation) for large values of <;%3) o (The reasonable insensitivity

p)

to the cut-off value ko was also noted by Rosenberg and Wu” in the case

of the linearized BL equation),




ITTI, RELAXATION TIME

One may try to define a relaxation time as a function of
velocity for the one=particle distribution function. For this purpose,
let us restrict ourselves to isotropic distributions and write all of
the expressions in terms of dimensionless variables, We define a function
e(Vyr) by

V46
Vzlg(VQI) - gmax(v)l av

= dVa$
V48

e(V,t) 5 (33)

V2 g (V) v

V=4

where gmax(v) is the final Maxwellian distribution, and § is a small
number, A relaxation time TR may then be defined to be that value of =

after which e(V,1t) is less than some preassigned small positive number, A ,

It is of course possibile that e(V,t) as a function of 1
decreases for a while to less than A and then increases again before
Jinaily spproaching zero, These occurrences are easily recugnized in
the program, and the relaxation time is that value of 1t , say TR s

such that E:(V,T) <A for T > 'tR o




IV, NUMERICAL INTEGRATION

A, BL EQUATION

The principal value integral in the expression for TI(V)
was approximated by the first two non-vanishing terms of a series

expansion about the singular point, Thus we obtained

oy VR v Ly aye = v2 g(v*) av*
rv) = = R + >
o Ve . v V+h v2 VP
+(V§5=+—g)h+l(va3 +2=£§
2 i8 - 2 oy
3 2 3 3)
- - S (34)

where - h is a small number,

The numerical integration of the BL equation was carried out

by using the difference equation

P ¢ ) n + n
n+l _ n aA‘r{ 1 (514-1 - cBy * B

(av)2

16
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n

n
: 8:,1 = 8 Vs
1 i+l i=1 (i 7

sn - g v
+ (—-1-%?‘,—2‘:1-) j 12 av g(v) o(V)

0

n n
o = & g
i+l il n .n 2/ n n
*Vi< 55V > G % ¢ Vi(gi} "i} (35)

v = 2= =
for all Vi 8 , except Vi V1 0 and Vi VM » Where VM is the

maximum value of V used., At Vi = VM the difference equation was

n n n n
n+l _ n _ oAt { 1 / 2y = 58y 1 * M8y p = &y 3
vﬁ Mo |\ (av)

38 - bg? o+ P \
- ..L( O ng2> jp M V2 av a(v) o(v)
(o]

VM 2 AV

3 n - h n n v

2AV
o

+
VM

n n n
gy - Yey 1 * By n .n
5 h v M ‘M

+ vy (85 "’ﬁ} : (36)
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In the above equations superscripts refer to time points, and subscripts,
to space points, h was chosen to be equal to AV , The gquantities

G? ’ ¢? s and Pg are define by the equations

G’i‘ = 6(V,r) . (37)
<1>’i1 =ovt ) (38)
ry = MV et ) (39)

The values of integrals were approximated by finite sums, The
size of subintervals in the range of integration was chosen to be AV
in all cases, Whenever the number of subintervals was even, the integrals
were evaluated by using Simpson’s rule, Whenever the number of sub=
intervals was odd, a combination of Simpson's rule and Newton-Cotes
three-eighthsquadrature formula was used., Whenever only one subinterval

was available, the trapezoidal rule was used,

At Vi = Vl = 0 , the value of g§+l was determined by the

equation

n+l n+l
This was based on the fact thst

== ) (L1)
if the BL equation is to hold at V = O for all times.



B, RMJ EQUATION

The numerical integration was carried out by using the difference

equation

n

g, -2 +4g \\
g?.ﬂ' = gril + OaAT i+l l s izl (G: + Sg)
3(av)

n n

8541 = s
1 i+l il n 1 .n n
A < ) (& =% 5+ Q)

+<g§§ , (42)

where the quantities G? ’ S? , and Q? are defined by the equations
n VM ;
G = [Vi vV g(v) av (43)

19
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. \') .
s = 4 fi o) av (4b)
\'J o)
i
and
n 3 Vi
QG = 5 [ voev) av . (45)
i o

0O and V, = V

Eq, (42) was used for all point, except V, = V

i 1 i M°
At Vi = Vl = 0 eq, (4O) was used, as in the case of the BL
equation, At Vi = VM the difference equation was
n n n n
ntl _ n 28y = S8y * by o - By 3
gM = gM + oAt 5
3{av) .
n n n
o (R + %)+ 1 3SM - th-l * By 2
M M 3VM ay
o (Gn - -];- Sn +* n) + (n< < ()‘6)
M > Sy * O &y j




C, INITIAL DISTRIBUTION FUNCTIONS

The following different initial distribution functions and
k
different values of (__o_) were used:

kp

l, Initial Gaussian Function

2

g(V,0) = 0,2289 e=2¢03(V=0.28)" (47)
with

Vy = 5.0 (18)
and

AV = 0,05 o (L9)

g(V,1) was computed from T =0 to T = 2.4 from the BL case, and from
T=0 to v = 7,2 for the RMJ case at intervals At s Where

At = 0,004 (50)

k
for two different values of <E2> g
D

8

K
a) i—°— = 1.,4178 x 10 (51)

D

k
b) f’- = 300 (52)
D

21
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2, Initial Resonance Function

8 1
g(V,0) = = =mgmmmpe (53)
ne (VPa1)
with
Vyy = 20,0 5 (54)
AV = 0,1 ; (55)
and
k,
=50 o (56)
kD
g(V,1) was computed from t =0 to t = O.,4 for the BL case, and from

T=0 to v = 3.4 for the RMJ case at intervals At , where

At = 0,01 o (57)

3. 1Initial Maxwellian Function Coexisting with a High-Energy

Gaussian Function

e VP
a(v,0) = %338 (3)3/2 [T

2
+ 0,01192 e-loo(v-z) o (58)
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with

Vi = 4.0 . (59)

AV = 0,02 (60)

u
—
(o]
(@]
[=]

(61)

g o™

g(V,1) was computed from T = 0 to T = 0,19 for the BL case, and from

T®0 to 1 =1,3 for the RMJ case at intervals A1 , where

At = 0,0005 (62)

The calculations were performed on the IBM T090 electronic

computer,



D, RELAXATION TIME, e(V.t)

The number 6 in eq, (33) was set equal to AV , The integrals
were performed using Simpson's rule.

k

e(V,t) was evaluated for the initial Gaussian with Egb- 300
D

k
(the Gaussian with === 1,4178 x 108 was not done, because it is

k
equivalent to the Gaussian with =% = 300 but with AT increased
slightly), the initial resonance function, and the high-energy Gaussian
coexisting with a Maxwellian, The quantities e(V,1) were computed from
the solutions of the RMJ equation only, because earlier calculations
showed the BL and the RMJ solutions to be almost identical for the

above initial distribution functions.

€(V,t) was computed for the initial Gaussian for values of
in the range 0 = T 2 7,2 ; for the initial resonance function, in
the range 0 S v X 3,4 ; and for the initial high-energy Gaussian

coexisting with a Maxwellian, in the range O St 1.3 ¢

2k



V. RESULTS OF NUMERICAL CALCULATIONS

A, COLLECTIVE EFFECTS

The most important result of the numerical integrations was
that no significant difference was found between the solutions of the

BL equation and the solutions of the RMJ equation, For the initial

k
Gaussian function with Ei-- 1,4178 x 108 , the results were essentially

identical for the two kinetic equations, The difference was at most

k \&
1%, This result was expected because £n (-££> >»1 , The same kind

5D

of behavior was found in the case of the initial Gaussian function

k k
with §2>- 300 , and the initial resonance function, with ES!- 50,
D D

This 8eems to be an

25




interesting result, because in these two cases quantities of the order

k-
o

of unity cannot be neglected relative to in = o Table I shows
\N'D
the values of g(V,t) at 1 = 2.4 , calculated from both the BL and
k
the RMJ equations, for the initial Gaussian with f.?., = 300 , for several
D

values of V , Table II shows the values of g(V,T) at <t = 0.4 |
calculated from both the BL and the RMJ eguations, for the initial

resonance function,

Table I
§ =2, 4 =21
t=0 1= o g{Vvyr) glvyt)
v g(v,0) gmax(V) RMJ BL
0 0.2055 0,3299 0,3257 0,3243
0,25 0,2285 0.300L 0,2979 0,2973
0,5 0,2076 0,2268 0,2256 0.,2253
0,75 0.1kék 0,1k419 0.1419 0,1418
1,0 0,08006 0,07362 0,07L09 0,07k10
boi) 0.03327 0.03166 0,03205 0,03206
1.5 0,01118 0,01129 0,011k0 0,011kl
1.75 0,002856 0,003337 0,003274 0,003273
2,0 0,0005658 0,0008178 0,0007334 0,0007328
2,25 0,000087 0,0001661 0,0001233 0,0001232
2,5 0,000010 0,000028 0,000015 0,000015
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Table II
t=0,4 =0,k
T=0 T == g(vyr) g(v,t)
v g(v,0) By V) RMJ BL
0 0,7789 0,3299 0,5979 0,593k
0.k 0, LuTT 0.2595 0, 4067 0,4066
0.8 0.1121 0,1263 0,1241 0,123k
1.2 0,02287 0,03805 0,02320 0,02320
1,6 0,005046 0,007091 0,00L4667 0,004692
2,0 0,001.297 0,0008178 0,001192 0,001198
2,4 0,0003882 0,000058k 0,0003622 0,0003633
2,8 0,0001327 0,0000026 0,0001258 0,0001261
3.2 0,0000508 0.0 0,0000488 0,0000488
3.6 0,0000213 0,0 0,0000207 0,0000207
4,0 0,0000097 0.0 0,0000095 0,0000095

Perhaps the most interesting case was that of the initial

Maxwellian coexisting with a sharp high-energy Gaussian peaked at

V=2

This case is similar to the test particle problem,

But the

behavior of this case was very similar to the behavior of the previous

cases.

The relaxation of the Maxwellian part of the initial distribution
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proceeded withouwt really exhibiting collective effects, This is not
surprising any more in view of the behavior of all of the previous cases,
However, even the peak of the Gaussian tailed to exhibit collective
effects, The difference between the BL and the RMJ solutions for the
peak was less than 2%, A difference of about 4% was observed to the

right of the peak at velocities which were between 2.2 and 2,3 thermal spseds,

However, these differences are too small to show unmistakably the

LB rorce 7

srllactive effects,

Table 1II shows the values

£ oav,t)

at T = 0,19 in the vicinity of the Gaussian peak for the sclutious of

the BL and the RMJ equations,

Table III
120,19 t=0,19
T=0 T o= giv,1) g(v,r)
v g(v,0) gmax(v) RMJ BL
1,70 0,00066010 0,00432260 0,00163051 0,00162568
1,74 0,00049089 0,00351647 0,00205418 0,00204975
1,78 0.0004372L 0,00284698 0,00279051 0.00278595
1,62 0,0007116k 0.00229391 0,00380954 0,00380243
1,86 0,00185265 0,001835L% 0,00499052 0,00497691
1,90 0,00450775 0,00146794 0,00611075 0,00608780
1,94 0,00840283 0,00116586 0,00688563 0,00685531
1,98 0,01151361 0,00092151 0,00706345 0,00703384




TABLE III = continued
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t=0,19 1=0,19
t=0 T = g(v,t) g(v,r)
v g(v,0) gmax(v) RMJ BL

2,0 0,01197109 0,00081779 0,0068873k 0,00686224
2,02 0,01149523 0,00072438 0,00653863 0,00652063
2,06 0,0083L4550 0,00056748 0,00541764 0,00542858
£,10 U DOa U065 0,0004k213 0,00398559 0, 00400460
2,14 0,00169192 0,00034282 0,00258245 0,00261129
2,18 0,000L47530 0, 00026454 0,00146207 0,00149051
2,22 0,00009982 0,00020316 0,0007178k 0,00073915
2,26 0,00001746 0,00015528 0,00030369 0,00031639
2,30 0,0000038k4 0,00011811 0,00011028 0,00011643

Graphs 1, 2, 3, and &4 are respectively ,the plots of the solutions
of the BL equation (or the RMJ equation, since the two give almost identical

rzinitg) for the four cases mentioned above.
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B, RELAXATION TO A MAXWELLIAN

Graphs 5, 6, and T are respectively the plots of the solutions
k

of the RMJ equation for the initial Gaussian with Eg»= 300 , the initial
D

resonance function, and the initial high-energy Gaussian coexisting with

a Maxwellian, Graphs 5 and 6 agree with the earlier calculations of
Rosenbluth et, aloh9 as well as with the findings of Ree et, 31039 that

the high-energy tail of an initial distribution function relaxes much
slower than the low-energy portions, Graph 5 shows that the point V = 0 0
which at t = 0 is below the final Maxwellian, approaches the final
Maxwellian and then overshoots it. However, in the time interval

021 £7,2 the point V = 0 was not found to start descending toward
the final Maxwellian, The two normalization conditions, equations (7)

and (8), remained good throughcut the whole time interval. The error

at 1 = 7.2 in the particle-number normalization was less than 0,013%,
while the error in the energy normalization was less than 1.8%, We think
that the distribution was not followed long enough in time to permit the
point V = 0 to start descending toward the final Maxwellian, The fact
that it seems to take a very long time for this to occur is not surprising,
since the initial distribution function is very broad and its gradients

in velocity space are small,

Graph 6 shows the distribution function for 1 > O dipping

below the initial distribution and moving farther away from the final




Maxwellian in the higher energy portion of the graph., This tendency to
dip seems to increase with time and to move down the high-energy tail,
However, what happens to the dip after a very long time can only be
guessed, because the distribution function was not followed long enough
in time, One of the reasons for not following the distribution function
longer in time was the large error creeping into the energy normalization,
Particle normalization remained good {error was iess than 0,11% at <t=3.4)
but the e - wormelization error was “4,8% at ~=3,4, The value of
the energy normelization showed a tendency to decrease monoteonically with
time, The change from 1t to {r + A1) was steadily decreasing as T

got bigger and bigger, but this decrease was not fast enough, It was
present in spite of the fact that the stability criterion on the magnitudes
of AV and At was satisfied, Extension of the range of V from
0SVS20 to 0S5V SLO toinclude a greater portion of the high-
energy tail or readjustments in the vaiues of AV and At, within the
scope of the stability criterion, did not improve the situation much,

Since the cause of the trouble could not be pinpointed, the decision was
wase Lo CaRe Loe makimum value of 1 to be that t for which the error

in energy normalization was less than 5%,

Graph 7 demonstrates the fact that the rate of relaxation of
a portion of an initial distribution depends strongly on the gradients
of that portion in velocity space. Thus a high=energy porticn with large

gradients may relax faster than a low=energy portion with small gradients.,



C, RELAXATION TIME

Graphs 8, 9, and 10 are the plots on semi=log paper of the
quantity e(V,t) as a function of 1 , with the values of V serving

as the curve parameters, Graph 8 is for the initial Gaussian with
ko
i 300 , Graph 9 is for the initial resonance function, and Graph 10
D
is for the high=energy Gaussian coexisting with a Maxwellian, (The case
k

of the initial Gaussian with Kg = 1,4178 x 108 was not treated separately,
D ko
romse pr 77 was stated already ,increasing the value of = in the
K D
RMJ equation is equivalent to keeping ES: constant and increasing A«
D

slightly in the finite difference analogue of the differential equation),
Graphs 8, 9, and 10 show the impossibility of defining a relaxation time,
Tz o For one thing, e(V,t) in Graph 8 is an increasing function of t
for 6 <t < 7,2 , for all V’s but V=2,25, 1In Graph 9, e(V,7)

keeps increasing for 2,5 < 1 < 3,4 for V = 2, It ie not known to

what value. €(V,7) will increase before decreasing again, Besides,
e(V,7) may keep on oscillating as 7t increases,until € >0 as T + » ;
but we do not know the size of the amplitudes of these oscillations as

4 funceion of time, The curve with V = 2,25 in Graph 8; all of the curves
in Graph 9, with the exception of the one with V = 2,0; and all of the
curves in Graph 10 for Tt > 0,7 are monotonically decreasing with time,

In fact, for large values of 1 they approximate straight lines on the

semi-log paper., But we should not conclude from this fact that for these

32



curves the decay becomes exponential after a certain time, A look at
Graphs 6 and 7 discloses that these curves may cease decreasing and
start increasing after a while, The curves in Graphs § and 10 were

not followed long enough in time to exhibit this behavior,

We conclude from the above discussion that it is impossible

to define a relaxation time; 7_ , as explained in (III}, within the time

R
limits used in the calculations., = We also suspect  that;in general,
an initial distribution function does not decay to a final Maxwellian
exponentially, even if the exponential decay is assumed to set in after
some time, and not immediately, This - suspicion . applies to
finite V . As for the high-energy tail of a distribution, it is still
possible to visualize an exponential decay there, For example, in the
case of the initial Gaussian, e{(V,1=0}) > 1 as V =+ « , If we make
use of the fact that the high-energy tail of a distribution function
relaxes very slowly toward the final Maxwellian, e(Vyt) > 1 as

V > » ;even for large 1's , This would give us almost a straight line
when plotted on the semi-log paper. Therefore it is possible for the
relaxation to assume the form of an exponential decay in the high=-
energy tail, This argument would also be valid for other initial
distribution functions which approach zero faster than the final
Maxwellian as V + » (like the Gaussian above), In Appendix C we
present a mathematical proof of the impossibility of an exponential

decay of an initial distribution function to a final Maxwellian.
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VI, DISCUSSION

The lack of any significant difference between the solutions
of the BL and the RMJ equations for the cases treated in this paper

has to be taken as a matter of fact, It is somewhat surprising in
k

cases in which #n E2= is of the order of unity, The greatest puzzle
D

is presented by the case of a Maxwellian coexisting with a sharp, high-

energy Ge -"ie~ hererze of its similarity with the test particle problem,

The solution of the BL equation for the test particle problem

indicates that collective effects may become important when the test-
k
particle velocities are high and gn Egs ~ 0(1l) , By means of arguments
D

analogous to those based on the solution of the RMJ equation, we obtain

some characteristic times for the test particles,such as the "slowing down

time", T, 5 given by

Mtu3
8 ) . (63)
6k k k. u
ezf;z 1+_.2. in —= +2,n—=12-
tp M, oo %p )
tp P

t
T = @ )
D k2 u2 k k. u (64)
2 =2 D 0 D
2et ow - n = - n -5
p w D W




and the "energy exchange time" T, » given by

Mtu3
w = > ol K ku ° (65)
2et W n = + n ——
P D w

Here e, and Mt are the test-particle charge and mass respectively;

u 1is the test particle velocity; 6 , defined by 8 = KT , is the field
perticle leuperalure, :; is the plasma frequency of the field particles;
and kD is the Debye wave number of the fielﬁ particles, In equations
(64), (65), and (66) the term containing(i;n §§Dj> is the same as

the one obtained from the solution of the RMJ equation for the test particle

kou Y\
problem, The term containing (/lneééw derives from the collective effects,
\ w
~
p

On the other hand, if we assume an isotropic velocity distribution
for test particles and, by analogy with the treatment of MacDonald, Rosenbluth,

and Chuckh, write the test-particle distribution function in the form

2
Mtv

ft(v,t) = g(v,t) e 28 N (66)

we can define a characteristic time it takes the inflection point of

g(v,t) to diffuse into the high.energy tail of the distribution by

3
M v
t inf
T = - ) (67)
o) k k v,
2 =2 0 D inf
et w n r + n gy
P D w
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where Ving is the velocity at the inflection point of g(v,t) . (The

derivations of characteristic times are given in Appendix B,)

The reason for the disparity between the test particle problem
and the numerical solutions of problems discussed in this paper has to

be sought in the behavior of the Landau denominator, D+(;glgi§ 0

oy Y
1%
defined in (A6) of Appendix A, which appears on the right-hand side of
the BL equrtion (eq. (A2)), In the RMJ equation D' = 1 , because the

collective effects are neglected, In the BL equation, the value of the

Landau denominator varies and may even assume the value zero, When this

happens, the integrand of the integral;on the right-hand side of eq. (A2),

may contain a singularity if the zero of D+ is ﬁot canceled by a zero
of the numerator of the integrand, We shall see that in the problems
which were solved numerically in this paper the integrand has no
singularities, while in the test particle problem the integrand does

have singularities,

Let us confine ourselves to isotropic distributions. By (A9),

k,
(A13), and (AlT) we see that In(D%) = 0 only when u = E; °v, =0
k 1
or u, = EISQ v, When u = 0 , we see by {(A16), (A13), and (A9)
that Re(D') # 0 , Therefore D' # 0 . When wuw, » =, Im(D') >0,
2
w
since f(|ul|) + 0 , and Re(D') + 1 = -§R~5 . It is possible to find
k

1%
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a v. and a k., in the range O < igli 3 ko such that

1

2
W
—— = ] (68)

5
Koy

This choice will yield D' = 0 .

Suppose we look at the problems which were solved numerically,
When ]gll + @, by (All} and (A12), t(v;) + O faster than Flu } .
Therefore the numerator in the integrand of the integral on the right
side of eq. (A2),is of the order of [f(vl)je , and the Landau denominator
is, by (Al7), also of the order [f(vl)]2 . Hence, for [Yl] + o  the

zero of D' is canceled by the zero of the numerator of the integrand,

and the integrand does not get too close to any of its singularities,

Let us now look at the test particle probiem., Here, on
account of the tenuity of the test particle distribution, only the field
particle distribution enters into the evaluation of the Landau denominator,

For Igll *> o ,D+ is of the order of the square of the field particle

etrivutics function, In the numerator of the integrand of eq. (A2),
F(u,) and 3E_  refer to the field particles; while f(v.) and LR
1 aul 1 aul

refer to the test particles, There exists a high velocity range in which
the test particle distribution is still finite while the field particle

distribution is already approaching zero, Therefore the Landau denominator
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will vanish faster than the numerator of the integrand, and the integrand

will get very close to a singularity,

The preceding arguments confirm the fact that collective effects
become significant in the solution of the BL equation only when the
integrand in eq. (A2) gets very close to a singularity, at which
D+ = 0 , in the range of integration, Such a situation may be realized,

for example, in the anisotropic case of two contrastreaming electron

slremae s gooulen s certainly worth a more thorough investigation,



APPENDIX A

DERIVATION OF THE ISOTROPIC BL EQUATION

The general anisotropic BL equation for a spatially uniform

electron plasma embedded in a uniformly smeared out background of positive

7

charge has the form

of )
i A T (a1

where f(gl,t) is the one=particle distribution function with the two
normalization conditions given by equations (1) and (2), 'I(!Pt) is
aelined by the expression

) 3F of
2n &' ¢ k. dx [f(*l’l) sa- - Flwy) ST']
£ ¢ 1
n
1

Iy b) = =2 | = — 2 o (A2)
m k ID (“Eloigl ° Yll
F(u) is defined by
f /151 A\
F(u) = J f(ve,t, ) 1-{-1- 0 112 = u) dgg 0 (A3)
u, and e are defined by
1 aul
k
= :]ﬁ 0
MEE Y (ah)
1
and
k
1 1 ~1
D+(-§l,i§l ° Xl) » the Landau denominator, is given by the expression
w2 o
+ Q i a—F —m“
DH{=ky)piky o vy} =1 =5 J 7w wow FIe ¢ (A6
kl =00 1
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with wp » the plasma frequency, given by

L
bnn e 2
O
W = —RT——
P m ’

and € being a small positive number,

Let us also define the quantity Y by the expression

T B S
- L ou u= u) + ie ¢

Thus (A6) can be rewritten as

Let us now specialize all of the above formulas to the case
of isotropic velocity distributions., We can write

(v

@l,t) = f‘(vl,t) o

1 |

in such - .ses (A3) shows that both F(u) and do not depend on

Lo

(AT)

(A8)

(A9)

(A10)
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To simplify integrations, choose the z=axis in the direction

of v, . Let (k1999¢) be the polar-spherical coordinates of the

1

vector k We can now perform two integrations in {A3) as follows :

l o

We can now perform two integrations in (A3) as follows

o > " an
F(u) = J v dv f(v) ( sin 6d6 &(v, cos 6 = u) J' d¢
o ‘o N o
o 5 1
= EWJ v© dv f(v) j du §(v p = u)
o] al
= 2% I v £(v) dv . (A11)
[ul
From (All) we get
&= lomu flju]) (A12)

Let us now simplify the expression for Y . If wr and *1

are Aefliad to Te, respectively. the real and the imaginary parts of Y ; i.e,

VY = wr + iwi 0 (A13)

we obtain the following expressions for wr and wi 8



- aF du
bp = =P J LU W =V, cos § (A1k)
and
_ _ 3F
by =T o= (vl cos 0) (A15)
With the aid of (Al2), equations {AlL) and (Al5) can be written in the
form
fco
bp=2n P sillal) g
=00 = 1
[ 2 3
=i 7 ;z_,_z,ﬂ;%gg (A16)
o ut = u)
and
v, = =2r w (| |) (ALT)
i ol 1 ]

where we have made use of eq. (Al), We can see from (Alk) and (Al5) that

-+
¥ does not depend on k, or ¢ . Consequently D does not depend

1

on $ o

Let us now try to simplify the expression for g(glgt) o« Eq.

(A2) can be rewritten in the form
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L F_
2n_e k. dk Ju
*) ~1 "1 1
Iy st) = =3 {f("l) [ N 3.2
m - k iD i
1
ar [ Bk d Fly) 8
- 15= ) o (A18)
=1 k] D7
In eq, (A18) the ‘integrationms over ¢ can be performed

immediatelr, If we also change the variable of integration over 6

from 6 to U such that

dul = =v, sin 6 dé » (A19)

and then interchange the order of integrations over kl and ul 5 We

obtain

bmn e’ v v k  dk
0 =1 1 oF o 1 1
Het) = === =5 {f("l) ! e iy f X, T2
m v vy 1 ‘o 1 |D7|

—
%

v k dk
f 1 2 o 1 1.
Y jf o ey pu) [© "T‘?} (a20)

We have chosen an upper cut-off ko on the integral over Ikll in eq,
(A20), TIts meaning will become clearer when the integral over |§l| is
evaluated, The integral over ]gll is an even function of u;, o Conse-



)

quently the integrands in the two integrals over u, are even functions

1
of U .
If we make use of (A12) and substitute (A20) into (A1), we
obtain
8mn e v ek dk
af 0 1l 2 1.2 \ (e} 1 1
- e T )2 ) I vy duy fluy) [ K, T2
m vy 1 o o 1 'D I
V. k  dk
1 af [ 1.2 o 1 1
d oo m—— du F(u)j - o
v, & ), Tt TR 0° |2
Let us now perform - . - the integration over k) o
Jko &y 1 ko 9y 1
o] k1 D+|2 Jo k w2 >
1+ -llwl
k2
1l
e *
- 1 lko k. dk ¥ ¥
= ecw— —— —— 7
my | 1T | T A ey,
1 p 1 p
ki + w2 ¥
w_ Y
- P
2 Im VY

(A21)
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1 |k§ + w2 wi2
=F |loe— ,2
oy, ¥]
" w2y v v
+ 2 -£ t =1 —82!—-_—‘2 ; @ 2 -'I; 1 -1 "!." 0
i ko + w q;r ‘pi Yr

e -8 defins *the quantities H(ul) 9 L(ul) , and ‘P(ul) by

iki + wi ¢'2
H(ul) Z n 5 5 9
|wS v
P
2
w .
L(ul) = tan™t —2-2-:%—-—= ta.nml ;}- 9
kK- +w_ ¥ r
p r
and
dk
¢(u ) = 1 kO __l- 1 .
1 k k +i2
2 [e] (o} 1 |D I
e

D
As one can see, k has:to be.e finite number if (A22) - (A25) are to

remain finite, We shall define its value somewhat arbitrarily by (15),

We shall now introduce the dimensionless variables defined

by (3) = (5). By (A16) and (12), we obtain

(A22)

(A23)

(A24)

(A25)
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L6

I
b= v (426)
o

Substituting (A26) and (A17) into {A23) and (A24) and making use of

(3) = (5), we obtain
H(ul) = H(V) (A27)

and

L{u ) = L{V) ] (A28)

wvhere H(V) and L(V) are given, respectively,by (13) and (14}, A4 look

at (A25) shows that

@(ul> = o{V) (A29)

where &(V) is given by (11}, Further, substituting {3) = (5) into

(Al1), we obtain

Pu) = & o(v) (430)

(e]

where G(V) is given by (10),

Substituti‘ng (3) = (5), (A25), (A29), and (A30) into (A21) we

obtain eq. (9).



APPENDIX B

THE TEST PARTICLE PROBLEM

The BL equation for the test particle problem can be written

in the form'
M 3 , 13
5= -35v° [(F(y) £,(0)] + 55757 (T(v) £.(v)] (B1)

vhere ft(g) is the test particle distribution function, F(v) is

given by

F(v) = F (v) + F,{v) (B2)

with gl(z) being defined by8
2 P .

e ~ ¢ k 3 !
F(v)=-==-§—= _“-;2*_6‘ kd)(zn—g\'m (B3)
1Y H, W, 'l MRS T3
. / v
8
and ge(v) being defined by
2
e k.v v
Tpl) = e gpm @[t | o (BY4)
t P w v
p a
T(v) 1is given by
T(v) = T, (v) + To(¥) ‘ (B5)

with ’I‘l(v) being defined by8
s1\Y

b7
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L 22 (w3 :
e Mi \ w /’ A} \ v
~ P P
B!
v2 1-3vyv
o | oo (B6)
. VS

and T,(v) being defined by8

eiefg/ va“\ v2;=3gg\
'52(!) Al -_;2"2-’ n -‘:’ ) w‘é / o (B?)
t \\ mp g v /

"When we substitute (B2) - (B7) into (Bl), perform all of the differentiations,
v
and drop terms of the order :?~ , where v is the thermal velocity of

field particles,we gbtain- tlie differentiad equakion

3ft~ e -
——— w a

2
ot oD
t Mt o) Mt /I\ kD V3

2 ==
9 f e w kv v of
+ & D L g L T T A | 1
2 %1 ° 3v av L Mt - v3 v
)
1 aeft
*? Loy g (88)
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The terms inside the first pair of braces on the right side of (B8)
are identical with the ones obtained from the solution of the RMJ
equation? The terms inside the second pair of braces are due to the

collective effects,

If we now confine ourselves to isotropic distributions; the

following relations hold:

2
1 ¢ -a-—f:t— = ﬁ -+ gn ff.:‘a (B9)
z ° 9v v 2 v ov
~ = v
and
e, 00n,
Y 5% v 2 ) (B10)
~ = v
Substituting (B9) and (Bl0) into (B8), and dropping terms of the form
f
-% as well as terms of order one relative to terms of order
Y va
in === | , we obtain the differential equation
w
P
LY P . I IO RS
e2 ;—2 at M v2 kD - v \v v
tp t P
aft
+ M, mmmem 0 (B11)
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Let us now define a function gt(vgt) by

Mtv2
£.(v,t) = g (vit) e 20 : (B12)

o=

gt(vgt) satisfies the diffusion equation

2
LT U PR S i g 28y
=3 3% 5 K = v 32
&, u Mv D w
tp t P
- n, (1 (B13)
.

If gt(v,t) has an inflection point at v, . , the speed with which

this point diffuses into the high-speed region is given by

e2 o2 k k. v —]
<3V> - tp 5 2+ S (B1b)
gy=const M, vi e D %5 _l

We can define a characteristic time T by

3
- Vinf = Mt Vinf (B15)
Yo 73y 2 =2 [, % KpVine |
(31’. _ e, w [;R.n — ¢t in —-:-—j]
gt-const P D m
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Let us now go to the anisotropic case, Let us assume that
£.(vet=0) = §(v = u) . (B16)

We shall take velocity moments of eq. (B8) at t = 0 , First, let us

multiply (B8) through by v , and then integrate over v . Making use

of (B16) and integrating by parts, we get

-
eE 33,, Ky | u
TTE - e = 4 AN = = (B17)

D W iou
P
We can define a "slowing down time" by
3
T = u - Mt v
8 3u> -—// 2 ¢
6k k k_ u
at 25211 + =2 in == + n =2= (B18)
tp M w2 kD w
tTp // P .

Let us now multiply (B8) through by v v , and then integrate over v ,

We obtain
2= 2 N\
2 (uu) = t oy -2 - ng-dey
ot '~ ~ k Mt u5
ekg -3uu uu

i
'
n
l

|
o
Fw
w
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eigz kDu\ 6 u2%=3gg\ 2uu
+ -—lM In = - 5 5= - g . (B19)
: t w t u u
We can definewn "deflection time"6 by
2
u2 Mt u5
TD = & ) » (B20)
9 (u2 ) 2 > kDu ko kDu
at L 2e, 6 w N g w AN -
t -2 k -
w D w
P
where ui.L is the component of velocity perpendicular to u .
We can also define an Yenergy exchange 'k;ime"'6 by
3
. = u2 ~ Mt u 7
wo T 2y K K ul ’ (B21)
T (u™) 2e§ 'uTe £n igo + n -___D
P D wp



APPENDIX C

THE EXPONENTIAL DECAY

Here we shall present a proof of the impossibility of an exponential
decay of a distribution function, It is based on an adaptation and generala=

5

ization of the method used by Rosenberg and Wu” to solve the linearized

Balescu-=Lenard equation,

Let us write the kinetic equation for a spatially homogeneous

mlasma ir ‘hme symboiic form

af )
=c(f,f) (c1)

where C(f,f) is a collision operator which has not yet been specified,

Thus we have not yet limited ourselved to any particular kinetic equation,
Let us restrict ourselves to collision operators which are bilinear functions
of f(v,t) . The collision operator of the Fokker-Planck equation satisfies
this requirement, but the collision operator of the Balescu=Lenard equation
does not, If fo(v) is the Maxwellian distribution to which f(v,t) will

relax, we define a function fl(g,t) by the expression

£1(vst) = £ly,t) - £ (v) ' (c2)

Substituting (C2) into (Cl), (ClL) can be rewritten in the form

Q

£
1
5o = O£ ,f)) + C(£,£) + C(£,,£)) 6 (c3)
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The tern C(fo°fo) = 0 and therefore was not written explicitly in (C3),
If fo(v) is incorporated into the definitions of the operators C(fo,fl)
end C(f,,f ) , the right side of (C3) can be said to consist of two
linear functions of fl and one bilinear function of fl . When fl is
small compared to f_ = and eq, (C3) is linearized, the term C(fl,fl) is
simply droppped from the equation, If the Balescu=Lenard equation is

linearized, it also satisfies the linearized eq., (C3),

Let us further restrict ourselves to fle which are isotropic

in velocity space. ©Suppose & complete orthonormal set of real functions

of Igl » {¢n(v)} » has been selected, and f, 1is expanded in terms of

1
the members of this set, so that
£(v,t) = ) e (t) ¢ (v) . (ck)
n=0
Then eq. (C3) can be written in the form
9
3t z Men 8t z Bemn %m % 0 (c5)
n m,n
where Akn and Bkmn are defined by
A = (0, C(E ,00) + (8, Clo_, £)) (c6)

and

By = (80 C800.)) (c7)
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The symbol (¢k, C(fo,¢n)) denotes the scalar product of ¢k(v) and
C(f°,¢n) s €tcoo If we select a different orthonormel set of real functions

of |[v| , say {zg(v)} , and define the matrix element K;n by

K= (5, o, 7)) + (5, c(T,e ] (c8)

then the matrix A can be obtained from the matrix A by an orthonormal
transformation, Let us restrict ourselves now to the Fokker=Planck

e vmtion. 1zt us also assume that the set {3;} is the same complete
set used by Rosenberg and Wuso Rosenberg and Wu5 showed that A has real,
non=positive eigenvalues in the case of the linearized Balescu=Lenard
equation, This must also be true in the case of the linearized Fokker=-
Planck equation; and since the matrix A , or A o 1s not changed

wvhen the Fokker-Planck equation is linearized, A must have real, non=
positive eigenvalues in the case of the non=linear Fokker=Planck equation,
Hence also the matrix A must have real, non=positive eigenvalues, Let
us denote a particular eigenvalue by (-Y(v)) and the corresponding

(v)

eigenvector by X » 80 that the equation AX(v) = -y(v) X(v) is

gatisfie’

We shall now expand the function an(t) in terms of the eigen-

vectors of A , Thus we obtain

y(e) = L) XV (c9)
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Substituting into (C5), we obtain

b - (A) . (x) (w) ()
_— = -y b4 ] Dy P B ) (c10)
HyV
where D is defined by
Auv
- () L (u) L(v)
Dkuv B K ! Bam % % %o (c11)
sl
Since DAuv ¥ 0 , (C10) does not have any solutions of the form
£4) ) . -

SNV sy omloomstlE e an initisl distribution function

cannot relax to a final Maxwellian via the Fokker=Planck equation by

means of a simple exponential decay,

In the linear approximation eq, (C1l0) reduces to the equation

(v)
agt - _Y(v) 5 V) . (c12)

Eq. (C12) has the solution

(v) -Y(v)t

V) v g , (c13)

b
(v)

where C is some constant, determined by initial conditionms,
Substituting (C13) into (C9), and subsequently into (Ck), we obtain

(in the linear approximation)

(v)
£1(v,t) = g g o(V) =y 7t xé“) 6 (v) . (c1k)
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Since fo(v) satisfies the normalization conditions (1) and (2), we

must have
[ v fl(v,t) dv = f v fl(v,t) dv =0 , (c1s5)
o o
Let us define the numbers a(v) and B(v> by the following equations:
oV = ) c(v) xﬁ“> I V2 ¢ (v) av (c16)
n o
and
(v) _ (v) (v) [ b
gV = g ¢V x. jo vioe (v) av (c17)

Then, eq. (Cl5) yields the following two equations:

and (c18)
({ =
z BBv) e Y t = 0
v
Egs. (Cl8) must hold for all times, including t = 0 , When t = 0 ,

(C18) vecome
oW 780 a0, (c19)
v v

If we had only one exponential decay in fl(v,t) , by (Cik), C(v) ¥ 0
when v = y, and C(v) = 0 when v # u, Consequently a(v) ¥ 0 and
B(v) ¥ O when v = y, while u(v) = B(v) = 0 when v ¥ u, It would
then follow from eq, (C19) that o™’ = ") @ 0, Therefore £, (v,t)
has to contain more than one exponential decay even in the linear

approximation,
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PART TWO

NONLINEAR EFFECTS IN THE LIGHT=BY=LIGHT

SCATTERING IN A PLASMA



I, INTRCDUCTION

Recently there has been considerable interest in the scattering
of light by light inside & plasma, Platzman, Buchsbaum, and Tzoarl
calculated, using quantum mechanics, the incoherent cross section for the
scattering of light by light in the presence of a plasma to lowest order
in the plasma parameter, i.e., to lowest order in the reciprocal of the
number of particles in the Debye sphere, Kroll, Ron, and Rostoker2
calculated, by solving the Vliasov equation, the scattering cross section
for two plane electromsgnetic waves each one of which is mongchromatic
and coherent, With the present=day state of laser technology such a light=

by=light scattering experiment is feasible,

This scattering process is of practical interest, because it can
be ugsed, among other things, as a density probe for plasmas, It has
advantages over the process of incoherent scattering of a single light
beam incident on a plasma, because the scattered energy flux per unit
incident energy flux is much larger for the light-light scattering process
than it is for the scattering of a single incident light beam (as was

pointed out by Platzman et alol and by Kroll et, alog)0

The reason for this fact is that a single light beam passing
through a quiescent plasma is only scattered by the thermal density
fluctuations, which are small, On the other hand, the presence of two
incident l1light beams enables us to tune their frequencies so that their

difference is equal to the natural frequency of longitudinal oscillations,

69



70

The two light beams are then able to excite coherent plasma density
oscillations, and are in turn scattered by these oscillations, These
density oscillations are much larger than the thermal density fluctuations,

and therefore enhance the scattering process,

We shall make the following model for the scatiering process,
Two infinite plane waves, with wave vectors El and 52 , and freqguencies
Wy and w, respectively, impinge on a quiescent plasma, confined in a

large volume V , A detector is placed very far from the plasme and messures

the scattered =nergy flux over a long period of time T .

~1 ‘ ad“
e
et
quiescent 696“

electron

1
= Jﬂé) plasma

2.:

1a8e’

Figure XI
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For the sake of simplicity we shall assume the volume V to be a rectangular

box and the plasma to consizt ¢ one species of particles, electrons, with
average particle density Nﬁ . To ensure charge neutrality, the electron
plasma is embedded in a uniforuly smeared out background of pesitive charge

of charge density Noe 0

The differentiel c¢ross section per unit frequency intsyval for
. . . 253
the scattering of light by « plasma js™°®
re
do O -~ :’.smr“ N X 3 - 1 .2 \ !
= =5 8k ==, w=w) (1 = 5 sin 8 (1)
ez
where I, === o the classivsl electron radiusy 0 1is the angis of
me

scattering, i.e, the angis between the incident energy flux and the
scattered energy flux; k is the wave vector of incident light; w dis
the frequency of incident lighty w' 15 the fregusncy ¢f scatrtered tight;

fi is a unit vector pointing in the direztion of the scattersed fluxy and

S{kyw) 4is the spectral density, defined by

2]n(§9w)|2
N _VI 0
(o}

S{k,w} = lim

5 .

1:[1_“’m

where n(k,w) is the Fourier transform of n(x,t) which is defined to

be the fluctuation of the electron density about the equilibrium density

N .
o}
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The calculation of n(§mt) is difficult, because the equations
describing the behavior of ¢ ¢ plasma are non-!inear, To make the problem
tractable, one usually restricis oneself to incident light beams whose
amplitudes are small in the scnse that the changes they produce in the
plasma variables are small compared with the values of these variables
for the quiescent plasma (i.&, ﬂn(§at)i/No << 1 }o 'This enakles us to
introduce formally a small parameter e , which is a measure of the
strength of the amplitudes of the incident light waves, and to use some

kind of perturbation theory,

If one chooses to describe the bebavior of the plasma by means
of the collisionless moment sguations and the Maxwell equations, and
applies the conventicnal linesarization process to these equations, cne

obtains an n(§9t) which grog§5linearly with time, 1This will be pointed

out more explicitly in Sec, IV(,) Since the density must remain finite,
there have to exist physical mechanisms which limit the density oscill-
ations but were left out of the above mathematical scheme, The neglected
mechanisms are the Landau damping, the collisionali damping, and the non=

linear effects,

All of these mechanisms operate simultaneously, But for a
particular choice of numerical values of plasma parameters and incident
electric fields, one mechanism usually dominates, Which one is dominant

in a particular situation is determined by the numerical values selected,
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The dominant mechanism yields smaller density oscillations than all other

mechanisms, because it limi-s these oscillations more effectively,

Since it is very dirficult to calculate the action of all of
the limiting mechanisms simultaneously, the effect of each mechanism is
calculated separately, with tie exclusion of all other mechanisms, Kroll,
Ron, and Rostoker2 were interssted in the Landau damping mechanism, There=
for they linearized the Viasov and the Maxwell equations, and calculated
the Landau damping effect frow these linearized equaticns, The dansity
oscillations, as calculated ty Kroli et, alcgD turned out to be inversely

proportional to the Landau damping decrement,

Since in the linsarized theory the collisiocnal damping, as
calculated from the Feokker-Planck equation; introduces an additional
damping decrement, which plays a role analcgous to the Landau damping
decrement, Kroll et, alge managed to incorporate the collisicnai damping
mechanism into their results by adding the collisional damping decrement
to the Landau damping decrement, We can see from their results the reascn
why the linearized, collisicnless moment equations yield density oscille
ations which increase linearly with time, Linearized, collisionless
moment egquations neglect both the collisions and Landau damping. Theres
fore from the viewpoint of those equations the collisional and the Landau
damping decrements are both zero, Hence the density oscillations will

grow with time,
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We have neglected the effects of collisions and Landau damping,
and have calculated the contributions of non=linear effects, For this
purpose we have limited ourselves to collisionless moment equations and
Maxwell equations, To make the problem mathematically tractable, we
have assumed the nonlinearity in the equations to be small, This
enabled us to treat the nonlinearity by the generalization due %o
Frieman and Sandrih of an expansion technique for nonlinear mechanics due

to Bogoliubov, Krylov, and Mitropolsky50

The generalization due to Frieman and Sandri is known as the
multiple time=-scale method. It introduces into the problem many time
scales, each scale being of a different order in € . The purpose of
these "slow" length and time scale variabtles is to introduce enough
freedom in the equations to cancel secular {i.e, t or =x proportional)
terms in the perturbation expansion, We have adapted the Frieman=Sandri
method to our problem by also introducing many spatial scales, defined

in an analogous way,

We have derived an expression for the differential cross section
for the scattering of light by light. We have also derived an expression
by which one can determine gquantitatively which mechanism limits plasma
oscillations more effectively for a particular set of numerical values
of plasma parameters and impinging wave parameters, Our results indicate
that nonlinear effects are sometimes much more important than damping
effects, This is particularly true when the impinging waves are fairly
strong, On the other hand, when the impinging waves are very weak, the

damping effects dominate,



II, ELECTRON-PLASMA EQUATIONS

A, MOMENT AND MAXWELL EQUATIONS

Let Po be the pressure of the quiescent plasma; p(gat) 0
3

the fluctuation of the pressure tensor about PQ 1 (1 1is the unit dyadic);

X(§nt) » the velocity; E ; the electric field; and B , the magnetic

field,

We assume (as was pointed out in (I} the plasma to be described

by the following low temperature, ccllisionless moment equationss

and

an 2
T*‘No-ig Yﬁmsng ny N (3)
- v 7
~ 9 i1 9
Mo +m) | 57 +rogp v m-F 5700
-& (N +n) (E+&v . B ()
m o e I ‘
BE .
P ? , .9 \
st e et (Blel Gpe v

=-= [p,1+p xB+ (B 1ep) Bl (5)

where the notation A means the transpose of the dyadic Ao

2

In (5) the heat conduction term has been left out because we

T NSN—

are dealing with a low temperature plasma, The term (Po 1 xB+ Po 1 x g)

in (5) vanishes, This can be seen by writing it in component form:
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P —
P
(Po 1B+ P 1By =P 08,000 S5ke b5x) By
= Po(sijz + ‘sgiz) B, =0
where ij is the Kronecker delta, and Gikz is the Levi=Civita density,

the antisymmetric unit tensor of the third rank {with the value zero
whenever any two indices are equal, with the value (+1) whenever {ik%)
form an even permutation of (123), and with the value (=l) whenever (ikR)

form an odd permutation of (123)), Summation over repeated indices is

agsumed,
To the three moment equations we add the four Maxwell equationss
3 4 6
rcg-x nen ? ()
) ;
a“‘°§-o ? (T)
aB
) 1 s
% ET-T oW o (8)
and
3E LaN e
3 1 = 0 Lne
T A 9

Equations (3) = (9) are assumed to constitute the complete set of equations

describing the behavior of the plasma,



B, WAVE EQUATIONS

For many purposes it is more convenient to work with nonlinear -
wave equations, By a non=linear wave equation we mean a nonlinear partial
differential equation having a linear and a nonlinear term, The non=
linear term may contain several plasma field variables, The linear term,
however, contains only one plasma variable, and has the form of the linear
wave equation for that variable: That is, the non=linear wave equation

is essentially the linear wave equation with a nonlinear driving term,

We shall be concerned with the E field only, but shall want
to examine the longitudinal and transverse compcnents of E separately,
(By the longitudinal component of a vector we mean that component which
has no curl,) For this reason we write down the wave eguation for
E ; and then by taking the divergence and then the curl of that equation,
we obtain wave equations for n(§,t) and for §(§Qt) p respectively, The

wvave equation for E(x,t) is

1 3t “’23 1"5\ 2 3°
["5‘7*'%—“(1*3*2'/"—5
c ot c ot c ot

2
12223/a>] hre [(a
w = Y Vv wmn | o 0 E-w ‘aem—— N V ©° wam
3 o Ix  \ 9x ~ 2 a2 ) X =~
2 oV
e 3 hpe 3 N
P van) - o] M 2 afo
c at
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namx@
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(10)

)

. hnN e2

/
» the thermal velocity, and wp -K

)

T
x§+pr

212
v

5>1/2 ; the

0
. om
{Eqo (10) is derived in the Appendix,)

Nm,

. 31:‘0 \) 1/2

electron plasma frequency,

v
o]

where

o) of eq, (10) and substituting eq. (6),

~

o

we obtain

b1 mt
[5°] (4]
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Taking <}c Ery Q> of eq, (10) and substituting eq, (8}, we obtain
2 2
- N w 2 v 2
T2 H-(033)" 5
¢ 9t c ot ~ c ot
B
+ }n v V2 V2‘] el mlme _‘32 -§nx {-N (v o -3-. v
3 | 3% ¢ G2 & [o0 8% !
+* -?-vx \) —aa (nv) + m -.ii-ézx (2(!
me %)~ 3% W™ ¢ 52 % |M\F
t
9 e 1 l
+ v -;:v + = (§+E° yxg)JJ
v2
Lrec 0 2 9 3 Yre 3 3
e - Rl A - F
3 a A ."/.a o ;\‘ // 3 \‘\
RN ICOESETIC REORNCERE IF

d e —
+<§os§ X+;C-(§x§+§x§)} o (12)
We can see immediately that the linear part of eq, (11) will
satisfy the dispersion relation
2 2 2 2
W= vk (13)
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when the non=linear terms are set equal to zero, Eq, (13) is the disper=
sion relation for longitudinal plasma oscillations, Similarly, the linear
part of (12) will satisfy the dispersion relation

L 2.2 1 §k2)w2 + i,cz 2. b

2
W - (wp + c°k° + zv 3 vok = 0 (14)

when the non=linear terms are set equal to zero, Eq, (14) is the disper=
sion relation for transverse plasme oscillations, The nonlinear terms

in (11) and (12) describe the coupling of these two modes,



III, PERTURBATION EXPANSICN

A, THE NATURE OF THE PERTURBATION SCHEME

According to the discussion in (I), the amplitudes of the
impinging electromagnetic waves are 0(e) quantities, These waves
produce small disturbances in the quiescent plasma which are of O0(e)
also, As a result of this n(x,t}) , v(x,t) o plx,t)  B(x,t) , and
B(x,t) are all O{(e) quantitites, On the ot;er hand, the nonlinear
terms in equations (3) = {12), being quadratic in the above O0{e)

quantities, are of 0(e?) .

Neglecting for the moment the nonlinear terms in equations
(3} = (12), we obtain a set of linear esquations, with all of the terms
in them of 0(e) , The transverse components of the solutions of these

linearized equations have temporal variastions on the scale of iga
L

VAN
and spatial variations on the scale of O( ﬁL’>u On the other hand, the
N A

longitudinel components have temporal variations on the scale of 0(/5%;>0
\ ¥
We consider these temporal and spatial scales to be of 0(1l) , The

amplitudes of the solutions, however, are of 0(e) ,

However, the presence of nonlinear terms in egs., (3) = (12),
which are of a higher order in €, introduces not only small changes
on the fast scales in the amplitudes of the scolutions, but also small

changes in the frequencies and wavelengths of those solutions, These
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small shifts in frequencies and wavelengths imply the presence of additional

time and spatial scales which are of O0(e) ,

We shall take these additional slow spatial and time scales into

account by explicitly introducing meny time variables, denoted by to 0

et. , e2t20000, and many spatial scales, denoted by X, 0 8% €2§2gooog

1 2
3t d(et.) 3(e"t.) 3x
2 2 i )
at L E QDODQ an N

3% % b

= 1, === 3 & lgoos o We may write the actual spatial

and time dependence of any function as the dependence on meny time
variables and many spatial variables, i.e, fi{x,t}) = f(ggoaagglgeeicegoooo

2
tO N Etl s E tzgoou ) °

We shall approximate the corrections to the amplitudes of the
plasma varisbles due to non=linear terms by writing the solutions to

eqs. (3) = (12) in the form of power series in & , We write, accordingly,

(k)
n(§°9e§l°togetl)\ n (X, 08Xy ot sEY, )
(k)
Y(?Sonel‘lotoeetl) N Y (i‘oagl‘letooetl)
k (k)
g(foae§l,t°getl) = kgl € g (§o,e§1,t°,etl) (15)

g(cho“:l‘l'to"d'l)

- 1°
B(x_,ex.,t ,et.) \B(k)(x €X. 3t _,et.)
='co? 1% 1 = So? =101



B, THE 0(e) AND 0(e°) PLASMA EQUATIONS

To O0(e) , equations (3) = (12) are, respectively,

(1)
an 9 (1)
Sttt N3 VO,
Q Q0
oy (1) (1)
Y 1 3 1 e (1
3t " Nm 3 P z ¢ »
o ~o 2
(1) .
ag + P 1 sedems @ v(l) + P =
3t o: 3 v ol 3
[e] ~Q =0
/\/
+ —--aa (l)) =0 ,
wo =
I
“o
3?:- ° Q(l) =0 ,
“o
(1)
3B
33 = c 3t °
~Q [e]
(1)
M
o L. L 2 M )
9 - c ot c ~
“Q [o]

83

(16)

(17)

(18)
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(21)

(22)
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vhere Vi is the Laplacian with respect to the X variable, As
we can see, plane wave solutions of eq, (23) = (25) satisfy the dispersion

relations (13) = (14), as could have been expected,

To O(ez) , the wave equations (10) = (12) are, respectively,
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IV, THE O0{e) SOLUTIONS AND SECULAR TERMS IN 0(e%l

A, INITIAL AND BOUNDARY CONDITIONS

We shall assume that the electric and magnetic fields of the
two plane waves impinging on the plasma contain terms only of O0(e) ,
there being no terms of higher order in e , Consequently we require

(1) (1) (1)
T

that B and the transverse component of E , denoted by E

?
be the electric and magnetic fields of the impinging waves, We define
the scattered electromagnetic fields to be the transverse electric and

magnetic fields which are of higher order in ¢ than O0fg) ,

From the physical standpoint, we are primarily interested in
the scattering problem which was posed in the Introduction {I): Two
lasers, located in vacuum, are turned cn at time t = 0 ; the two
electromagnetic waves emitted ﬁy the lasers enter the plasma, are
scattered, leave the plasma,'and are intercepted by detectors, We take
the plasma to be in a quiescent state at t = O , Therefore there will
be no longitudinal electric field at t = 0 , We shall consequently

(1) | genotea by &)

require that the longitudinal component of E L

be zero everywhere inside the plasma at t = 0 ,

Let us take the volume of the plasma large enough so that
quantities which are periodic functions of €x, can go through the

variation of at least one wavelength inside the plasma, On the other
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hand, the volume is assumed to be small enough so that the characteristic
time for the transverse electromagnetic waves to pass through the volume
be small compared to the characteristic time for the build-up of.plasma
oscillations, This implies that when the two lasers are turned on, the
waves which they emit will penetrate the plasma completely before the
longitudinal plasma oscillations become large enough to produce signifi-

cant scattering of the waves,

§él) (1)

We can therefore assume that, at t = 0 | end B

are given everywhere inside the plasma, including the boundary, by

(1) i -
§T = él sin wl + 52 sin we
(28)
c k., x A c k, x A
B(l) = Lol stn v o+ —2l sin Yo s r
B 1 w2
with J
.1510‘51'520‘52-0 ® (29)
and ¢1 and wz defined by
Yy EE Xt vy
(30)
? 0
Vo = Ry o X -t + 4,
-’

w, and k, , and w, and k, satisfy the dispersion relation (14),
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respectively, él 0 52 o &) o and ¢2 are independent of position inside

the plasma at t = 0 , They are determined by the output of the lasers,

We shall further assume that gél) and gil) are given by
(28) on the interface between the plasma and vacuum, facing the two
lasers, for all times, with él 0 é? 0 ¢l , and ¢2 being ccnstant on

the interface and equal to their values at t = 0 , We shall also assume

that gél) = 0 , on the same interface, for all times,

The scattering problem; which we have just described, with the
initial and boundary conditions, is only one of the many problems we can
pose, Another problem, that we can state, is the pure initial=value
problem, In this problem, we assume the boundaries of the plasma to
have been removed to infinity, so that the plasma covers all space, We
then have to state only initial cenditions for the problem, One may
suppose, for example, that it is somehow possible to set up initial condi=
tions which are identical with the initial conditions set up above for

the actual scattering problem,

Again, another problem, that one can pose, is the pure boundary=-
value problem, In this problem, we are interested only in the steady
state solutions of the equations describing the behavior of the plasma,
We may simplify this problem by neglecting the initial conditions, and
take into account only the boundary conditions, We may, for instance, take
the same boundary conditions as were set up for the actual scattering
problem above, There are other problems we can pose, We shall, however,
discuss only the pure initial=value and the pure boundary=value problems

in addition to the actual scattering problem,



B, TRANSVERSE COMPCNENTS OF 0Ofe) SOLUTIONS

An inspection of egs, (16) to (22) discloses immediately that

their solutions have the following transverse componentss

(l) = Al(exl”€t ) sin wl + A (exloet ) sin w2 ® (31)

where wl and w2 are given by

Y =k oo X - owt o4 ¢l(e§laetl)

1
y (32)

by = ky 0 X =gt v dy(expety) o

,

42 N ¢l » and ¢2 are gsome functions of ex. and et., whick have

A X1 1

not yet been determined,

c(k ) e{k, x A )
B(l) = Al sin ¢ + m;-.ghungm gin ¥ (33)
< 1 w 2
1 2
(l) - cos Y, = = A_ cOS ¥ (34)
vT le él 1 mﬂz ~2 2
7 Vi ki N
where Q. and @, are defined by O, = w, { 1 = and
1 2 17 %10 2
\ 3w
1
2 .2
o 2

(1), ¢
Pp = = (k; A + A k) cos ¥

= mﬂlml +1 <1 <1
(35)
e Po
“@, (Kot * R kp) cos by
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C., SECULAR BEHAVIOR IN 0(22) EQUATICNS

Looking at the nuilinear terms on the right=hand side of eq, (27),
we notice that the transver:: components of the O(e)} solutions (expressions
(31) to (35)) contribute te:ms proportional to sin 2y, » 8in 2y, ,

sin(wl + ¥,) , and sin(wl = @2) o If w pw, ok ,and k, are

. 2, 2 .2 2
chosen so that (wl =) ®al o+ vo<51 - 52) s 1o€0p (wl = w2) and

Y
(k, = k satisfy the dispersion relation (13} for longitudinal plasma

o)
. oo . ,fthoe“\l/Q
oscillations, and ng =k, 5k, (vhere kj =)

Debye wave num.ber)9 the noeniinear term containing the factor sin(wl = we)

is the

will be in resonance with the homcgeneous solution of the left=-hand side

(2)

of eg, (27), This will produce en n which is growing linearly with

time,

The physical reascn for this behavior is the fact that the
nonlinear term containing sin(wl = w2) is the divergence of a longitudinal
driving force of frequency (wlmwz) which will keep on feeding energy into

the plasma oscillations and thus cause them to increase with time,

However, we know that plasma oscillations must remain finite,
Therefore the phase difference between the driving force and the lohgia
tudinal plaesma oscillations must change slowly with space and/or time
so that the driving force and the plasma oscillations will gradually get
out of phase and the growth of the oscillations will be checked, But

this requires that naturally oscillating longitudinal plasma field

92




93

variables be non-vanishing, Otherwise it would be meaningless to talk
about a slow phase drift of & plasme variable which is zero at all spatial
points for all times, This cen be seen from eq, (27), which requires
the existence of g(l) (changing on the slow spatial and/or time scale)

to eliminate the secular terms in the nonlinear driving force,

IR 1(l> % !
By equ (23) or (“6)9 ‘I:JL = a(si(legtl)(égl o= 52':1’ cos“"l - wz)

+ b(sglgetl)(gl - 52) sin(wl @.wg) » However, we can show that

b(e§1eetl) = 0 identically, The argument goes as follows, If géi)- b sin(wl-wz),

T
then, by eq. (19), n(l)m cos(¢lm b,}o The presence of n<i’ introduces an 0(52)
‘ \ (1) _{1)
transverse current of the form n Vo into eq, {26}, Taking into

{ & {19
account the form of gilz as given by eq, (34), we see that ni’) y%ly

contains terms proportional to (ég cos wl) and (él cos wz) . The

first of these is polarized parallel to A, but oscillates with phase wl 0

the second one is polarized parallel to A

Al s but osciilates with phase

¥, o Both terms will conseguently be in phase with the natural transe-
2 qa

verse plasma oscillations, and will drive these oscillations,

A slow spatial and/or temporal drift of the phase angles ¢l

and ¢2 may not be fast enough to get the natural transverse oscillations

(1>)

end the transverse current (n(l) YT

sufficiently quickly out of
phase with each other to limit the oscillations, We therefore require,

in general, an additional relative rotation of the directions of polar=

(n(l) Yr(bl))

ization of the current and the transverse plasma oscillations,
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A glance at eqs, (26) and (31) shows that the nonlinear terms

oscilating with ¢. or ¢, are proportional to sin ¢ or sin ¥y, .
1 2 1 2

On the other hand, the slow variation of E(l)

20

in eq, (26), contain-

o 90
ing sin wl or sin wa » Will be proportional to STE%-T and/or
1

9, 3¢2 y 3¢,

s OF and/or » not to the derivatives of A
atevli azetls 3(2515 Al
or A, with respect to et, and/or ex, o Therefore there is no
proviesion for the rotation of the directions of polarization to remove

(1)
L

secular terms from eq, (26), The presence of E = b(§l - §2) Bin(wl=¢2) .

as we can see, creates secular terms in eq., {26) which cannot be removed,

We shall therefore set b(e§1getl) =0 ,

The presence of E(l) - a(§1 - ga) cos(wlnwa) , on the other

. )] )
hand, creates no such problems. By eq., (19), n(l/% sin(wl-we)o Hence

the current

[
(n(l) g%l)) will contain terms proportional to

(A2 sin wl) and (Al sin wz)o The nonlinear terms in eq, (26)
oscillating with phases wl or wz will be proportional to cos wl
or cos y, . But the slow variation of gél) in eq, (26), containing

cos wl or cos wz, will be proportional to the derivatives of él or

52 y with respect to e§1 and/or et Therefore slow rotation of

l o]
the amplitudes will be possible,



D, LONGITUDINAL COMPONENTS OF 0Ofe) SOLUTIONS

Let us define the quantities 53 o gh o W3 o Wy o ¢3 o ¢h o w3

and wh by the following expressions:

S
Eh = 51 = 52
w3 g wy + W,
Uh = ml = w2
b3 2 8 + 0, > (36)
9, 9 =9,
V3 = ¥ Y
by =¥y =¥ o
We shall take §£l) to be of the form
@él) = a(eglostl) k, cos ¥ (37)

where a(e§l,etl) is an unknown function to be determined by the solution
of 0(e?) equations, The initial condition that gﬁl) be zero at t = 0
everywhere, yields the initial condition on a(5§lbetl)g a(e§l,etl) =0

at t = 0, for all x , inside the plasma and on the boundary, The
condition that §£l) be zero on the boundary for all times, yields the
boundary condition on a(sgl,stl)z a(agl,etl);= 0 on the boundary for

all t ,
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An inspection of eq, (16) to (22) discloses immediately that

their solutions have the following longitudinal components:

k2
(1) 2% oy (38)
2 Tre Yy o
(1) ea
v IEI: 5)4 sin Wh 8 (39)
Vi k2 N
vhere Qh is defined by Qh F.w) <l = === ) , and
Wy
P a
(1) € 2
:PL = m (kl& g. + 2 5’4 15)4) sin w’-& 0 (hO)




V. REMOVAL OF SECULAR BEHAVIOR FROM 0(52} EQUATIONS

We shall now proceed to evaluate the nonlinear terms in O(ea)
equations and to determine the conditions which will remove secular

behavior,

First, let us simplify the O(ee) wave equations somewhat,
We shall assume that the temperature {and hence the pressure PO) of the
quiescent plasma is low, Having made this assumption, we shall expand
all quantities which are functions of Po in power series in Po o
The first term in the expansion of any quantity will be the value of
that quantity at zero temperature, We shall be primarily interested
in zero temperature values of quantities, Consequently, eq, (27) can

be written in the form

2 (2) -
RO ERAE R ] o A A
3t P ° % 0 o o ‘ ’ o
>, 1 3 1
e 2 (1) 5(1) ) o (n'%/ v(i)) + (non=linear
me - < J 3t° =
2 Tan (1)
2 9 3 3 an
terms of O(P )) + 2 [v ° - J-—-—-— o (U1)
° Lo a(egl) CEN a(etl)ato ato
The g(l) quantity, appearing in eq, (41), will be approximated by
using only the first term of the expansion in P oo Thus, by eq. (34),
v(l) 8 o mem A COS Y, = === A COS V¥ (42)
~T mw, -1 1 mw, -2 2!
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and, by eq. (39),

v(l) & —eg'a

~L ), k, sin ¥, o (43}

We have written the linear terms of O(Po) out explicitly
in eq, (41), By droppping these terms we would leave ourselves no
linear terms containing spatial derivatives, We would then be unable to
do any boundary value problems or mixed inital~value=boundary=value
problems, This can be seen from the fact that spatial variations can
limit the longitudinal mode only if the longitudinal dispersion relation
depends on them, The longitudinal dispersion relation is given by eq. (13),
When P° = 0 ., eq, (13) reduces to w2 = wi o» Hence there is no dependence
on k at Po = 0 , Therefore we need a non=zero P° . Consequently we

shall carry the O(Po) linear terms along in eq, {41),

EQ, (26) can be simplified in the following way, Making use

of eq. (6), we obtain

) ) on
SCEDENS X

Or using multiple spatial and time scales and expansion (15), we obtain
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2)
2 3 3_ (2f> 2 an'
€3 <’3x E - re ox
~o - / ~o
an1) 2 3 3 (1)
=€ lhre dlex d(ex, ) \ 9x " E
=1 =1 ~o :
2 3 ( d (1) )
o € 0 E [ (hh)
al‘o " 3(61{1) © /s
EqQ. (26) can now be written in the form
2
2 w (2)
V2 - —];- -3_ - -Ru E(e) = <Lre E-I_m
o 2 2 2 ) = 3x
c ato c =

. N
(n(l) v(l) ) + (linear and non-

|
i
am

3 -a a a
linear terms of O(Po)) = 2 [‘ﬁ(exl) 3§°

2 ”
) (1)
3(ct, et J E = Lne : (45)

i
c2 1



N <v(l)
o\ =

A, EVALUATION OF NON=LINEAR TERMS

Substituting the

L2 S, e )
9 © me ~
<o
N (v(l) o -=--a
o) ~ 9
\ <o
2 2
w
.. gl
™ [ w2
1
(4 ° A) /
+
¥ 92 \
wa (x

+ Bnm

ofe)

solutions into the nonlinear expression

X g(l)\), we obtain
7/

1), & (1) S
‘ me - = /
A
El sin 2wl + ;5’ 52 sin 2w2
2

§3 sin w3 * Eh sin ¢h ).}

k, sin 2y, . (46)
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Similarly, we obtain for S (n(l) g(l)) the expression

3t
(o]
2
B (1) (1) a k, 91
ato (n M ) = Brm w, éZ cos wl
w (2w, « w,)
P 2 1
"oy Bycos ¥y - ==t 4y cos(2y, - )
(2w, = w,)
1 2 ;
* A, cos(2y, = ¢,) 1
w) 1 1 2’ |
a2 ki
- == k, sin 2y, (47)

Since (46) and (47) appear as driving terms in eq, (45), we

have a scattered transverse wave at frequency (2w2 - wl) and a scattered

wave at frequency (Zwl - w2) o



B, ELIMINATION OF SECULAR TERMS FROM LONGITUDINAL FIELDS

Substituting expressions (46) and (47) into eq. (41), we can

write eq., (41) in the form

2 w (A, ° A)
p 2 2 2> (2) 21 22l 2
— & w - V V n [ - M ——————— k cos w
<3t2 o o Brm W, w, L L
wa (k o A,) o wea (k) A)
+ Ban e ~ kl sin wl + Bg-m e k2 sin wa
2 1
ak2 w ak2 w
+ 4 -—l-(k"A)Sian-v b'-£=(k°A)sinw
Brm w, ~1 e 1 Brm ml ~2 =1 2
+ (other terms) - =& sin ¥,

2me aietl)

2 N ‘
+ wh L 38 cos Y, + _S_T__LL ://k o da A cos ¢
2re 3let,) b T TEme \ (W Flexy ) %% Wy

)

v2 a kﬁ 3¢h \
o . ' .
- -—2:—“?—: l-jh W) - wh ° (148)

The term (other terms) in eq. (48) includes all finite temperature none-
linear terms and all of the zero temperature nonlinear terms which do not

oscillate with phases wl 0 wz s O wh 0
The nonlinear secular term in eq, (48) is the term

w Al A2 >
- -B-P- s K\~ COB Y > o The secular behavior will be
™ W W, Y b
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eliminated from eq. (48) if the following relations are satisfied

99), 2 99),
+ v ky © s Q
Wy a(etls o U azewlf

and

2 2 .2 ,
k), w ok, (A A

[ 38, 2 . 08 >_ D 5)
ne \\wh atetlS o -k sticls Ot W, w,

+(0(Po) terms)

The left=hand sides of eqs, (49) and (50) have the form of
convective derivative, Eq, (49) states that ¢), remains comstant to

an observer traveling in the direction of Els with the velocity

103

(49)

(50)

v
(-T_‘”h ;h ) o Since o) is the same for all spatial points at time t = 0 |

and retains its initial value on the boundary for all times, we take ¢h

to be a constant (i,e, to be independent of ex, and et, Jo Eq. (50)

states that the change in & , which an observer traveling in the

v
: . o
direction gh with the velocity <‘°h kh> ~ sees, is proportional to

the scalar product of the amplitudes Al and A, . When (él ° A )= 0,

the observer notices no change in & .



C, ELIMINATION OF SECULAR TERMS FROM TRANSVERSE FIELDS

(2) (2)

Since n enters into eq, (45), those terms in n which

oscillate with phases wl and we will produce secular behavior in
eq. (45). Let us evaluate these terms, For the sake of simplicity,

we shall evaluate these terms in a zero-temperature plasma, Let us

(2)

make the ansatz that n = Cl sin v, *+ 02 sin b, + other terms , where

C, and C, are unspecified constants. Substituting into eq, (L8),

we obtain
2 2

2 2
8wmm2 (wp - wl)

2 2
a(wp k2 - W, kh)
2)

+
—é
8nmml (wp -,

(ky o A) sin y,

+ (other terms not oscillating with phases ¥y and wz)

+ O(Po) terms (51)

Substituting (51), (46), and (47) into eq. (45), we can write

eq. (45) in the form

10k
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2 2
2 L 2 up N (2) eaky wy rlk 0 Ay)
c ot c 2m ¢ 2 k
o 1
- ea kﬁ Wy (k, ° 4)) 1
e ézJ cos wl - “-—2 e [mezn-u %{ é co8 wz
: 2m ¢ Wy k2 J
[ 3 3 1 P 3 1.(1)
+ (other terms) = El 1CEm) ¢ g =% 3 e = !g
. 9N X, o2 olety) 3t |
(1)
on
= bme ST \ (52)

The nonlinear secular terms in eq, (52) are the iwo terms

containing cos *1 and cos ¢2 , respectively, They can be canceled

only by slow spatial and/or time variations in Eél) n(l)

(1)
and EL

o 8ince
do not contain any terms oscillating with phases wl and wz 0
Therefore the secular behavior will be eliminated if the following

relations are satisfied

99 2 . 39,
w, STEEIT + c 51 ° STEEIT,- 0 . (53)
9%, 2 995 0 "
v Tt Wy (54)
:’.:.L. 34, +< ) eakh oy [(15 °§2) o
c2 8zgtls <1 zex ) m c wy kf 1

- Ag} + O(Po) terms (55)



106

and
W 3A ~ ea k°  w (k. ° A.)
o2 <2 +( K o epd ) . L %2 [ 21l
c2 9 etl . =2 3(5515 J =2 km c2 wy kg =2
- A <}+ O(Po) terms |, (56)

Eq. (53) states that ¢1 remains constant for an observer

- 2
H (o] "
traveling in the direction of 5 with the velocity&\mz7rzjjo Eq, (54)

states that ¢2 remains constant for an observer traveling in the direction

s 2 .
c .
52 with the velocity K;;;HE; ) o Since both ¢l and ¢2 are constant

at t = 0 and retain their initial values on the boundary for all times,

we can teke and ¢2 to be independent of ex. and et. .

¢l ~1 1

Eq., (55) states that an observer traveling in the direction of

2
C
gl with the velocity <:;I7E;;> sees B change in él which is proportional

to & and to the component of 52 perpendicular to k When the

l [}
component of 52 perpendicular to El is parallel or antiparallel to

él 3 only the magnitude of A, will change, However, when A, has a

1 2

component perpendicular to both 51 and él ’ él will rotate (and

change its magnitude simultaneously), An analogous argument holds for

the rate of change of A, .



VI, PROPERTIES OF THE RELATIONS WHICH

REMOVE SECULAR BEHAVIOR

We obtained in (V) the conditions which a , A, , and ée must

1
satisfy to remove secular behavior from the 0(52) wave equations, Here

we shall study some of the consequences of those conditions,

A, THE PURE INITIAL VALUE PROBLEM

We shall neglect for the time being the presence of boundaries;
i,e,, we shall assume that the plasma covers all space and that the
same initial conditions have been set up for this problemas for the
actusl physical problem with boundaries, Then we caan study the case of

no spatial dependence of a, A , and A, , Eqs, (50), (55), and (56) will

1
then reduce to

ew
98 he) o
Tt s (4, ° A)) + O(P,) terms , (57)
1 172
2
3.51 ea k) (5 ° 52)
IG - . [ kjé_ k, - A, }» O(Po) terms , (58)
1
and
2
24, ea k) r (k, ° A))
2

Since no physics is lost by taking the temperature of the plasma to be
zero, we shall do so, and shall therefore drop the O(Po) terms from

eqQs. (57)’ (58). and (59)0
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The following conservation laws can be obtained immediately

from eqs, (57) = (59) s

-
2 2.2 2
A 8" k| Al(etl-0)
—— -+ m
wl U.)p wl
?

(60)
2 2.2 2
2 " kj, ] Az(etlno)
U.)2 wp w2

v
Eqs. (60) show that & is bounded, This means that the longitudinal

(1) (1)
L

field E and hence the density n are bounded,

To study eqs. (57) = (59) in more detail, we shall write them
in component form, Let us choose & coordinate system such that
k, = _(kl,ODO) and k, = (k2 cos a;k, sin @,0) o In this coordinate

system eqs., (57) to (59) become

N
3A e k2
1 - L a A
alet. ) “Tmw 2y
1 2
oA e k2
lz N a A
a'('stlS = In mz’ 2z (61)
3A e k2 ,
2 - 4 cosza a A
BZths Lm, oy ly ?




A2z

Ay

are

On the other hand, if él and ée‘are perpendicular to the plene: of k

at

2
BAzz e ku .
a(etl) Lm wy
Ay=0
x
A2x = - tan a A2y
sa e wp
9let.) "Too.w
1 172

(A, Apy + Ay, Ayp) o 3
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The following conservation laws can be obtained from eqs, (61):

-,

2 2 2 2 A
Alz + Azz Alz<stlso) + A22(6t1n9>
wl w2 mi wz
>
2 2 2 2
A A AT (et.=0) A (et.=0)
cos a iy + ix- = 0082 a Ly wl + &y wl o
1 2 1 2 J
Eqs, (62) show that if at t =0 A, = Ay, =0, then A
0 for vt >0, Similarly, ifat t =0 Aly = A2y = 0 , then

= A

at t=0 in the plane of k

1

t = 0 , they will remain so for t > 0 ,

2

1
These two results are not

surprising, begause in both cases the component of §2 which is

perpendicular to kl is either parallel or antiparallel to Al s and

(62)

oy = 0 for t > O (and consequently A <" 0) o Therefore, if A, and 52

1

and 529 they will remain in that plane for t > O,

: and k

=2
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likewise, the component of él which i1s perpendicular to k, is

parallel or antiparallel to A

5 ° Therefore only magnitudes of 51

and A2 can change,

We shall now show that solutions to eqs, (57) = (59) can
be obtained for some specialized cases of physical interest and that
those solutions are periodic, For this purpose let us introduce new

variables, defined by:

<
[
L]
Ak
| ol

<
N
"
L:b
n

’ (63)
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Then eqs. (61), when expressed in terms of the new variables,

become

4y

A, TV

dy2

dr

v . (64)

(o7}
-4
k

T = Ytz

The initial conditions can also be written in terms of the new varialbes,

-

They are

yl(r=0)
Yoo = Yplt=0)

z = zl(tIO) (65)

z = zz(rBO)

v = 0 when Tt =0
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Let us confine ourselves to the special case when él and A2

both lie in the plane of k) and k, . Egs, (64) then reduce to the
three equations:

dyl

ar, " Va2V o

dy, (

T o (68)
and

&

dv  =yy, ¥, o

Eqs, (66) have the properties of the derivatives of elliptic

¢ "

functions, defined as follows: If u = is an

© %iakz sin2 ¢!
elliptic integral of the first kind, then sn(u;k) = sin ¢ , cn(u,k) =

cos ¢ , and dn{uyk) = Jlnkzsine ¢ o From these definitions we

obtain é%» sn(u,k) = cn(u,k) dn(u,k) , é% cen(uyk) = = Bn(uak)’dn(u,k) 0

and é% dn(u,k) = k2 sn(u,k) cn(u,k)

Therefore we make the ansatz that ¥ en(At,k) |

" Y10
Y = ¥y dn(Atyk) , and v = c sn(At,k) , where A, k, and c¢ are
unkown constants to be determined, Substituting the ansatz into eqs. (66),

we obtain
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y
1, i/ 2 }
Y20

Y10

Y10
/';‘ y20 TD ijg gg }o

ylo sn

—

J
The elliptic functions sn(u,k) , cn(u,k) , and dn(uyk) are periodic in

1/2n a6
u with a period equal to 4 I o Therefore the

° 1'% l-kasin2 ¢

solutions (67) are periodic functions of 7t o

The other special case, when él and §2 are both perpendicular

to the plane of 51

this case eqs., (64) reduce to

and k, , can be solved in an identical way, In

dz

T "V

dz2

F- - zlv ? (68)

dv
T " YA % o

—

The solutions of egs. (68) are identical with the solutions (67) of egs. (66)
when 8 = 1 , and Z) 5 Zp 9 2900 and Z50 replace Yy 2 ¥p 8 Vg @ and

Yoo ¢ respectively,
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We will now cite an example where the solutions of egqs, (64)

are periodic elliptic functions although the component of 62 which

is perpendicular to k, is not parallel or antiparallel to A, , Let

1
us, first of all, derive some conservation laws applying to the components

of A and é

A » o Multiplying the first of egs. (64) vy ¥y » the

second by y, , then adding the two equations and ihtegrating; we obtain

2 2
2 Y2 2 Y20 .
yl + 8 - ylo * 8 o (69)

Performing identical manipulations with the third and fourth equations

of the set (6L4), we obtain

2
2, + 2, = 2,4 *2Zy5 o (70)

Let us now divide the first equation of the set (64) by the

third, We obtain

dy, ¥,
az. z. °
1 2

Meking use of eqs, (69) and (70), we can write

2
2 Y0 2.1/2
My, g2 Dot V)

dz -
2 2 2.,1/2
1 ( 22)t/

> (1)

Z10 ¥ % 1



115

by means of the

Let us define two new variables, el and 85
expressions
2 2 1/2
¢ (12)
2 2 .1/2
z, = (zlo + z20) sin 0,
J
From eqs. (72) and (71) we obtain
del
a7z "%
or r (73)
6, = ¢
1 = B
B172 2
with ¢ defined by -
y - z
c = sinwl 10 _ B1/2 sin 1 , 10 .
(22 + z2 )1/2
10 20

2
< o . 3-;-2-9->l/2
V10 ¥ 78

dy
Then on substituting for E;}- in the first of egs. (64),

we obtain

Y. a8,

8, = ¢ 1/2
2 2 2 2 2 2 2/°1
[ylo + 2.5 <ylo + T) sin el = (z-.LO + zgo) sin <—=8—175 ]

(7h)

If we now select the special case in which k., and k

1 2 ,
6‘1/2 = 1, and eq, (T4) is the differential of an elliptic integral of the

are parallel,

first kind., Hence 9l is an elliptic function of *t ,



B, THE PURE BOUNDARY VALUE PROBLEM

We shall now neglect the initial conditions but retain the
boundary conditions., Thus we can study the case of no time dependence

of a , A ,and A, . Egs, (50), (55), and (56) now reduce to

ew?
2 . o8 P . ;
vo ok 3(5{17' - 5oy (él 52) + O(Po) terms |, (15)
|
N e ki w, (k °4,)
(v, - G s | o) e,
~ m ¢ 2 kl
(76)
and >

5 k, = §1]+ O(Po) terms ,

k A
(77)

o
€

As can be seen from eq. (75), a pure boundary value problem is
an impossibility when P° = 0 , Therefore we must assume a finite tempera-

ture for the quiescent plasma,

Let us take, for the sake of simplicity, the y = z plane to
be the boundary between the plasma and the vacuum,with the plasma on the
positive side of the y = z plane, Let us also assume 51 and 52 to
be parallel to one another,for the time being, and to point in the direction

of the positive x-axis, We can obtain some conservation laws from eqs, (75)

(77). For example, multiplying eq. (75) by & and dotting eq. (76) with
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él , then adding and integrating, we obtain
Ai v2 w, k K e Aa(ex =0)
= . _% 174 L S i | (78)
Wy c wp kl wp wy

The conservation equation (78) shows that a(ex.) is bounded, This means
that the longitudinal field gél) and hence the density n(l) are

bounded in space,

We would like to make a comparison between the values of §£l)(etl)
(1)
and E; (€§l) o Since A1’2(551) 2 Al,2(etl) , We obtain from eq, (78)

and the first one of egs, (62) that

2

a (exl) 2wk
-——’:— Ny sy i— °
ae(etl) vi Wik,

But w, ve kl p and W) B oo

c kh o Therefore

fe) g
2
a (eql) vy
or
Jalex,)|

c
szggzyr v ;: o (79)

(1) (1) ,
since ¢ > Yo alweys, <EL (etl)> avergge <EL (€§13,> average always,

We may note here that because of the close similarity between
eqs. (57) = (59) on the one hand and egs, (75) to (77) on the other, the
behavior of the quantities Al A, o, and g in space is very similar

to the behavior of these quantities in time,



Co MIXED, INITIAL-VALUE-BOUNDARY=VALUE PROBLEM

For the discussion of this problem we have to retain egs., (50),
(55), and (56) in their original form. If we took the temperature of

98
the plasma to be identically zero, the term containing in
a(gx15

eq. (50) would drop out, Since A) and A, must remain conmstent on

the boundary for all times, a would grow linearly with time on the

boundary., To prevent this occurrence, we must require that the tempera=

ture of the plasma be non=zero,

Let us now look at the physical content of egs. (50), (55),

and (56), At t =0, a=0,and A, and 4

1 o do not change in space

or in time, If él and §2

vective derivative of a 1is zero, Because of the initial and boundary

are perpendicular at t = 0 ; the con=-

conditions on & , a = 0 , identically, for all points in space, for
all times, Then, by eqs. (55) and (56), and by the initial and boundary

conditions on A and A A and é will retain their initial

1 <2 ¢ -] 2
values at all spatial points for all times,

On the other hand, when A, ° A, $#0 at t =0, a begins

1
to grow. The existence of a non-=vanishing &8 then induces rotations in
él end A, . We may say that the changes in a , A, , and A, eare pro-
pagated like convective currents with current velocities (vi/(wh/kb)) .

(02/(wl/kl)), and (c2/(w2/k2)) , respectively,
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Let us restrict ourselves now, for the sake of simplicity, to
§1 and 52 which are parallel to each cther and normally incident on
the boundary between the plasma and vacuum, and the boundary coinciding
with the y = 2z plane, Initially a , él , and 52 have the same values

everywhere, including the boundary, At a time equal to t | él will
differ from its initial value, But for x > (ce/(wl/kl)ﬁt the instant-
aneous value of A, will be independent of x . For x < (‘.ce/(wljkl))t0
on the other hand, gl will generally differ from one spatial point to

another, Thus an observer located at a point x , with x > (cg/(wl/kl))t 0
with x > (ca/(wz/kg))t , Or with x > (vi/(wh/kh))t » depending on which-
ever ‘convective velocity is the fastest, will not have yet experienced

the effects of the boundary for the first t seconds. As far as he

is concerned, he sees only an initial=value problem, On the other hand,

an observer located at a point with the coordinate x 1less than the

product of the fastest convective velocity and the time, will have already
experienced the influence of the boundary, The reason for this behavior

is the finite velocities of propagation of the changes in a | él , and

éz » respectively,



VII, THE SCATTERING CROSS SECTION

We shall now estimate the scattering cross section for the lighte
by=light scattering process, The differential cross section per unit
frequency interval is given by eq, (1), We have to calculate the spectral

density S(k,w) , which is defined by eq, (2), To lowest order in £

ElEn(l)(ggw)la

, , 2,

3(59“) & lim T A~ 0(e”) ° (80)
Voo o)
T o0

where n(l)(k,w) is defined by

=

kyw

-

Since we are considering the resonance process, n(l)(get) -

Tre sin wh o Therefore

T/2 .
\ =T/2
2
k T/2
L [ j =i(kox+wt)
= dx dt e ' = a(ex,et) sin
Tre v =T /2 = 4
2 T/2
K, [ 1% ix  e~i(k=ky)°x [ Cat emluruy)t a(exyet)
- Brer | ¢ x ¢ o N
v =T/2
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¢T/2 '
=1 (ki) )ox '[ at e~ilw=wy)t a(e:_;,et)}

~

=7/2

2
k),

iq’h , wiq)
" Brel [: e = ali=kyutu) - e

a(§+§h,wnwh)] o

The spectral density S(g,w) can now be written in the form

2101 (x,0) 12
N VT
[o]

S(kow) = ¢? 1im

Ve

A [
s g e R B lakl}mg ° W W )l
3272 N €2 Vo VT Th b

Treo

> 21¢h
+ Ia(§+§h,wzmh)| - e a¥(k+k) ju=u) ) a(§m§h9w4mh)

m21¢h N
- e a*(gegh,w+wh) a(§+§u9wwwh) ] 0 (82)

Let us take a closer look at a(k,w) . Since a(ex,et) is
& very slowly varying function of x and t , its Fourier transform
a(k,w) is sharply peaked at k = 0 and w = O and has a small spread
in k and w about this peak, Consequently the cross terms in eq. (82)
are very small compared to the other terms, and we shall neglect them,
Let us also neglect the spread in k and w , Thus a(§=§h,w+wh) will

be approximated by the quantity (VT & & _ K S ) , where & 4is the
o) Rt

value of a(x,t) at the peak, The value of S(k,w) will then be

approximately
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- L
(o) 7 €2 e [8(kek) ) 6(ww )
S(k,w ' -
- 321r2 N e2 == 4
o

vhere &(k) and 6(w) are the Dirac delta functions, We shall not
vrite ¢ in the expression for S(k,w) from now on, because the
presence of 32 » which is of 0(e?) » 18 sufficient to indicate that

S(k,w) 48 of o(e?) .

We may note that if we were not dealing with a resonance
process, ncl)(get) = 0 ; and the first non=vanishing term in the

(2?(§9t) (vhich is of 0(e%)),

expansion of n(x,t) would be =n
Consequently S(k,w) would be of O(sh) o Therefore the resonance

process enhances the scattering cross section significantly,

We would like to compare our cross section with that obtained
by Kroll, Rom, and Rostoker2o The cross sections will differ only because

of the differences in the spectral densities, The spectral density SKRR

of Kroll, Ron, and Rostoker2 is, wvhen expressed in our notation,

L T ey sty
S oo(k,w) = e §(k=k; ) 8(wtw
KRR~ l28w2 Nom2 wi mg le(gpw)le 4 4

+ 6(§+§h) é(w-wh)] 0 (84)
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where e(k,w) , the longitudinal dielectric function, is approximated by

g 2 2
le(lﬁ»‘”)lg & [ 1 =<-§> J + T?> %

Here T 1is the Landau damping decrement or the collisional damping

decrement, whichever is largsr,

Let us define R to be the ratio of SKRR(§9w) to our

S(k,w) . Then

we K2 (A o a)2
R = 2 h 2L -2 (85)
16mN m 2 2 =P 2 2 °
o wl W, (a kh) r

When R <1, skRR(ggw) < S(kyw) , and the demnsity n(x,t) of Kroll
et algz is smaller than our density, This means that Landeu damping
and/or collisional damping is more effective in limiting the density
oscillations than are the nonlinear effects, On the other hand, when
R > 1 , the nonlinear effects are more effective than the damping
mechanisms, Thus, given the numerical values of the plasma parameters
and the electric fields produced by the two lasers, we can determine

by means of the expression (85) which physical mechanism is the

dominant one in limiting the longitudinal plasma oscillations,

Let us estimate the ratio R by using a set of typical
numerical values of the plasma and the incident electric field parameters,

We shall use the set selected by Kroll, Ron, and Rostoker2 in their



calculations of the damping effects, Therefore we choose No = lolh cm°3

KT = 10 eV , wp = 5,64 x 10t gec™t » A (of incident electric field) ~

N

L]

cm, E (amplitude of the incident electric field) ~ 108 V/em ,

and Fc (collisional damping decrement) & 1,1 x 10'°3 o With this

0,7 x 107

choice of parameters, according to Kroll et 8.102D the collisional damping
dominates over the Landau demping, Since Iéll . léal , and la§h| are
of 0(e) , |A,| and ek | are both of O(A) , which in turn is of
O(B incident)., Substituting the above numerical values of the plasma

and the incident electric field parameters into eq, (85), we obtain

108 < R < 1077 o (This estimate was made under the assumption that

k and §

Ky are parallel,) Therefore for this choice of parameters

2
the damping effects limit the longitudinal plasma oscillations more

effectively than do the nonlinear effects,



VIII. DISCUSSION

We have shown that the presence of even a small amount of non=
linearity, in the equations used to describe the behavicr of a plasma,
can effectively limit the amplitude of plasma oscillations driven by
two light beams, In fact;, under some circumstances, the nonlinear
effects limit these oscillations more strongly than the Landau damping

and the collisional damping mechanisms,

The nonlinear effects are always accompanied by a non-vanishing

(1)

longitudinal electric field of O(e), E

; Whenever they limit plasma:oscille-

ations, This i8 a very interesting fact, begause- gil)

(1)
T

, 88 well ag the
transverse field E s satisfy the O(e) plasms equations, which are.

linear, and therefore kesp the O(e) transverse and the Ofe) longitudinal
components of fields completely separated from one another,

The transverse fields are determined by the output of the two
lasers, But there is no experimental device which sets up a longitudinal
field, gél) o All that is done is to make sure the plasma is in a
quiescent state at the beginning of the experiment, The experimental
set-upes for the case when the difference in frequencies of the two laser
beams approximately equalsto the natural frequency of longitudinal plasma

oscillations, and for the case when it is not, are identical,

When the difference in frequencies of the impinging beams is

not equal to the frequency of plasma oscillations, no secular terms arise

(1)

in the equations of motion, and E remains identically zero = there

is only & second-order field E£2) . However, when the frequency of one
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of the impinging waves is varied until it differs from the frequency
of the other impinging wave by the frequency of plasma oscillations, a

resonance process results: Longitudinal plasma oscillations are excited,

(1)
L

are simultaneously limited by nonlinear effects, and E appears

spontaneously, This longitudinal oscillation in turn scatters the light

beams,

It is also interesting to note what happens when the amplitudes
of the two impinging waves are varied while keeping everything else

constant, Let us assume for the moment that the electric fields E(l)

>r
(1)
E

»
and and the damping decrement T have been made dimensionless,

The density fiuctuation n(§et) which is limited by nonlinear effects

is O(Eél)) » Since E£l) is of O(Eél)) ; n{x;t) is also of O(Eél)) .

As Eél) increases or decreases, n(xet) will elso increase or decrease,

respectively, On the other hand, the demsity fluctuatioms, n{x,t) ,

which are limited by Landau and/or collisional damping are of

E(1)2

T (

0 -79-{>0 They will also increase or decrease as ETl)

increases or

decreases, respectively, The damping decrement T , however, does not

(1) (1)

depend on Ep " » and will not change when Eq is varied,

*r is made dimensionless by dividing it by the plasma frequency

w_ o Eél) and E(l) may be made dimensionless by dividing them by

P L
(172 No m vi)l/2 o the square root of the thermal energy density,
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(1)2
(1) o1 (1)
When E;~’ << T , == << E;°° , and the demsity n{x,t}

which is limited by a damping ﬁechanism is smaller than the density

n(x,t) which is limited by nonlinear effects, On the other hand, when
(1)2
E

(1) T (1)
By " 2> Ty s T

° T >> E , and the situation is reversed, We conclude

from this that damping effects dominate when Eél) is very weak, and

(1)
T

the nonlinear effects dominate when E is strong., . The coaclusion

is borne out by the numerical calculations in Section VII,

(1)
T

This is not unreasonable, because E is a measure of

nonlinearity in the equations of motion, but Eél) does net affect T

(1)
T

the demping decrement, Keeping E very small results in very

small nonlinear terms, without affecting the damping, An increase in
Eél) s on the other hand, increases the magnitude of nonlinear terms,

while still keeping the damping decrement unchanged. Therefore an

(1)
T

increase in E results in the increasing importance of nonlinearity

as compared with the damping effects,



APPENDIX

DERIVATION OF WAVE EQUATIONS

We shall derive the wave equation for E (eq. (10) in the

text),
Taking the curl of eq, (8) and substituting into eq. (9), we
obtain
5 2 ~w 1 32§ hnNoe Y hre 3
a—"‘~<5‘ *E) +=% === Wtz 5 v . (a)
- < ¢ at c c
v
If we now substitute for ==  from eq, (4) into eq. (Al), there results
2
RN 2 w
2, () + i 2 2|
["a "(a X))+ = + 5| E
s = c 3t ¢
LN e
kre 3 o d e
+ 2-3—0 ga ,-:—ném (Xoa—- lf"';? ng)
me = s c -
v
bre 3 Lne ~ . 2
*2‘5"5‘(“)""5“(5?*333)
c c =
- n(E+d yxB) (42)
mc
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From eq. (3) we have
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3 1 1 )
wOYTCE % T W 5 (43)
~ o o) ~
Substituting eq. (A3) into eq. (5), we obtain
o~
ig- f-gl-a—n=+P/-§-v+-§-v\‘
3t T N_ 5 ot o\a~ x =~ )
o U2 =~ :
P
[o) 9 ] )
e - a(ky) (k)
T~
(v 3 ™ ) e =
-(peosx)r=(P sy )r=ac (PxB+pxB). (AL)
\= X/ NS X > vz
3 /3 O
Applying the operator w== \ Yy 0) to eq, (A4) and then substituting
(A3) into it, we obtain
2 0x ETTF, 52 % T o 3t
Y WS TG MR S S W VI 3
N, 3t 0x \ 3 ~> 3t X %) F
TN~
3 . .2
HCRRR R RRNEEE JE
e /‘\_/\
+;rc- px§+px§) o (A5)
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oV
We can obtain the term P v2 -a-% from eq, (4), which yields
v P Pe
2 - o 2 9 o 2
POV Evt-‘-Sm-a—-NomV 3:! gn-—-m V~E
P vV
2 o O e o .2 ~
mpo‘7 (\X IX X+mc Yx§>“Nov[.n<3t
N\ Pe T
3 ) o 2 1
+ v TX)J‘FO-EV I:n('§+? Xxg)Jo (A6)
Also, from eq., (6), we obtain
1 ]
nD=e-pee == E (AT)
Substituting (A6) and (A7) into (AS5), we obtain
2oL 2 2.p . i...[_a_ 2 L(% o)
at23°)3¥: mo | g2 e X% 7
P
-V2Ej| =P V2 <vq-2-v+-e- va)
~ o - Ix ~  mc - -

P v P e
o) 2 - i 9 . 0 2
b [“(3?*3 TXH* z 7 [n‘é’
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-?- —an ° v ¢ -L\ + /-—a- o
BETINT % )P g(a ¥
/N
3 9
(e &) ()
> .
tae (BXErrrd (48)
- 3P
where we have defined the thermal velocity v = ﬁ 0
o
32 1 2.2
If we now apply the operator | === - = v_ V to eq. (A2)
3t 3 °
and then substitute (A8) into it, we obtain eq. (10) in the text,
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