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ABSTRACT

Title of Thesis_ Collisions and Nonlinear Effects in Plasmas

Adrian Anatol Dolinsky, Doctor of Philosophy, 1965

Thesis directed byoo Professor Derek Ao Tidman

Nonlinear and collision effects in the behavior of plasmas are

investigated for an electron gas embedded in a neutralizing0uniformly

smeared out background of positive charge° Nonlinearity enters into

the description of the behavior of a plasma through the collision term

(arising from interparticle correlations) and the self=consistent electric

field term (ioeo the ensemble average of the sum of C_ulomb fields of

all of the plasma particles) in an exact kinetic equation o It is

impossible (at the present time) to treat both nonlinear terms simultan=

eouslyo For this reason the investigation is divided into two separate

parts o In PART ONE the effect of the collision term on the behavior of

a spatially homogeneous plasma is investigated; in PART TWO the self=

consistent electric field term is treated under conditions which enable

us to drop the collision termo ....._tj____]

In PART ONE the problem of relaxation of the exact Balescu-

Lenard kinetic equation is solved numerically as an initial value problem

for isotropic velocity distribution functions° Several different forms

of the initial distribution fUnction are selected_ a Gaussian, peaked

at about 0028 of the electron thermal velocity; a resonance function; and

a Maxwellian coexisting with a sharply peaked Gaussian (the peak of the



Gaussian being located at 2o0 electron thermal velocities)° The Fokker_

Planck kinetic equation is also solved numerically under the same restric_

tions and with the same initial distribution functions° A comparison of

the solutions of the two kinetic equations shows very small difference

between them, and a probable reason for this is advanced° In addition_

a relaxation time is defined, and the long time behavior of the distri©

bution functions is studiedo

In PART TWO the problem of light©by-light scattering in a

plasma is investigated° Two coherent_ monochromatic_plane®polarized_

plane electromagnetic waves (produced by two lasers) pass through a

large volume of a quiescent electron plasma and are scatteredo When

the frequencies of the impinging waves are tuned so that their

difference is approximately equal to the frequency of the natural

longitudinal plasma oscillations, these oscillations are excitedo

they are limited by the action of several physical mechanisms_

damping 0 the collisional damping, and the nonlinear effectso

However o

the Landau

We are interested in the nature of the nonlinear effects° For

this reason, the plasma is assumed to be describable by means of the

collisionless plasma moment equations coupled with the Maxwell equations°

The amount of nonlinearity is assumed to be small, and the equations are

handled by the method of multiple time and spatial scales, a generalization

due to Frieman and Sandri of a perturbation scheme developed for nonlinear

mechanics by Krylov, Bogoliubov, and Mitropolskyo



The results show that there is a slow rotation and/or change

in magnitude of the amplitudes of the two impinging electromagnetic

waves (as they pass through the plasma)° The rotation is both in space

and in timeo At the same time, a longitudinal electric field is built

up slowly inside the plasma, and its amplitude changes slowly in space

and in timeo All of the above variations in space and in time proceed

at rates which are proportional to the strength of the impinging radiation°

Furthermore, the strength of the longitudinal field is at most of the

order of magnitude of the strength s of the incident electromagnetic

waveso This indicates the effectiveness of nonlinearity in limiting

the longitudinal plsmma oscillations o



COLLISIONSANDNONLINEAR

EFFECTSIN PLASMAS

by

Adrian Anatol Dolinsky

Dissertation submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

1965



PREFACE

Weshall be concerned with the behavior of fully ionized plasmas,

ioeo gaseous mixtures of several species of charged particles at sufficiently

high temperatures and low densities to assure complete ionization for all

times° Under such circumstances quantum effects can be neglected provided

the De Broglie wavelengths of particles are much smaller than the average

interparticle distanceso At the same time, we shall assume that particle

thermal velocities and macroscopic streaming velocities are small compared

to the velocity of lighto Consequently relativistic effects are also

negligible° Such plasmas- can therefore be described by the laws of

classicsl physics for a many=body system of particles interacting through

Coulomb forces°

A complete statistical description of a plasma would be by

means of a probability distribution function in the phase sp_ce of all of

the particles° This probability distribution function must obey Liouville's

equation° However, a solution of Liouville°s equation is generally imposs-

ibleo Besides, a description by means of a probability distribution function

in the phase space of all particles yields more information than is necessary

for many _urposeso Many physical properties of a plasma can, however, be

determined from a knowledge of a one-particle distribution function for

each species of particles° By a one-particle distribution function we mean

the average (ioeo ensemble average) particle number density of a given

species in the six-dimensional positlon-velocity space°

ii
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Wewould like to write downa differential equation from which a

one-particle distribution function can be determined for all times if it

is known at some initial time, say t = 0 o Such an equation ought to contain

no more detailed information than is contained in one-particle distribution

functions; i oeo, only terms containing one-particle distribution functions

should be presento Such an equation (also called a kinetic equation) can

be derived from the BBGKY (Born-Bogoliubov_Green-Kirkwood_Yvon) hierarchy

of equations - which are derived from Liouville_ equation - if some assump-

tions are made about the correlation functions for particles°

The first assumption is that the correlation functions are in

some sense small compared to the order of magnitude of the one-particle

distribution functions° This is usually true throughout most of the phase

space of a many-body system of particles interacting through Coulomb forces°

If it is also assumed that one is dealing with phenomena that vary slowly

in space and time (compared to the plasma period _ and Debye length),
P

then the appropriate kinetic equation for the one-particle distribution

function f (_,_,t) for the species o becomes

_f _f e _f

---- +v o --- + ÷ - v ×B)o ---- - c( )
_t -- _x m c -- -- 3v

where ea and ma are, respectively,the charge and mass of a particle of

species o ; _(_,t) is the electric field, which includes both an externally

produced field and the self-consistent field of plasma particles (ioeo the
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sum of Coulomb fields of all particles, averaged over the ensemble); B(x,t)

is an externally produced magnetic field; and C(fa_f T) is a collision

term (of the order of magnitude of the pair correlation functions)_ arising

from correlations between particles°

The derivation of an appropriate expression for C(f ,fT) is

impossible without the introduction of additional assumptions° Some

problems, however, can be treated, to a good approximationr by neglecting

the c:_llision termo The resulting kinetic equation is somet_..mes called

the collisionless Boltzmann equation, or the Vlasov equation° It can be

used, for example, to describe reasonably well the behavior of a plasma

at very high temperatures and very low densities° In general_ however_ the

collision term is important and should be retained° Two different forms

of C(fa,f v) are widely used in plasma theory° One of them is called

the Fokker=Planck collision term, or the Rosenbluth_MacDonald=Judd collision

term; the other_ a more exact collision term, is called the Balescu_Lenard

collision term°

The Fokker-Planck collision term is derived in the same way and

under the same assumptions as the collision term for a gas in which particles

interact through strong, short-range forces° It can be obtained, for example,

by making a Taylor expansion of the Boltzmann collision integral to treat

distant collisions° Here, however, an additional assumption has to be

made that only those two-particle collisions are to be counted for which
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the impact parameter for colliding particles is less than some character-

istic length, which is chosen to be the Debye radius°

The assumptions under which the Fokker=Planck collision term

is derived have many questionable features° First, it is assumed that

a plasma particle collides with only one other plasma particle at any one

time_ ioeo, only two-body collisions are assumed to existo However_ because

of the long range nature of Coulomb forces_ a particle will collide with

many other part_cles simultaneously° Second_ the time between two collisions

is assumed to be much greater than the time duration of a collisiono This

is also incorrect for the same reasono Third_ the screening of the charge

of a particle by oppositely charged particles does not appear naturally, but

has to be added in as an extra assumptiono We may summarize by saying that

the Fokker_Flanck collision term treats collective effects improperly°

The more exact expression for the collision term, which is used

in plasma theory, is the Balescu_Lenard collision termo It can be derived

from the BBGKY hierarchy of equations by making the so-called Bogoliubov

adiabatic hypothesis° This is that the higher interparticle correlation

functions relax to their asymptotic long=time forms rapidly over the time

scale in which the one-particle distribution functions are changing° (The

Bogoliubov adiabatic hypothesis cannot be made for high frequency phenomena

llke electron plasma oscillationso In such phenomena the one-particle

distribution functions change on a time scale comparable to the time scale
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of change of the interparticle correlation functionso) The resulting

Balescu_Lenard collision term treats collective effects properly, taking

into account automatically the screening of charged particles and the

many-bodycollisions°

The kinetic equation is generally nonlinearo The nonlinear terms

in the equation are the self®consistent electric field term and the collision

termo Both nonlinear terms are important in the behavior of a plasma_ and

w_ _,all _ l_e_ted in both of them in this work° We shall be interested in the

self-consistent field term,because its nonlinearity has not been studied

sufficiently° However, this nonlinearity_ even if small, is capable of

limiting plasma oscillations effectively° We shall also be interested in

the collision term, because it has not been investigated sufficiently_ Only

the Fokker-Planck kinetic equation has been studied so far to any great

extent, whereas only the llnearlzed version of _he Balescu_Lenard kinetic

equation has been integratedo

To simplify the mathematics, we shall limit ourselves to plasmas

composed of only one species of particles, electrons, embedded in a uniformly

smeared out background of positive charge to ensure charge neutrality on the

average° It is not possible to treat the self-consistent field term and

the collision term simultaneously° Further_the Balescu_Lenard collision term

we use is valid only for a spatially homogeneous ,field-free plasma; where_s

the simultaneous presence of both the self-consistent field term and the
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Fokker=Planck collision term makesthe problem generally intractable (except

whenthe kinetic equation is linearized)o For this reason we divide our

investigation into two separate parts and select two particular problems°

In PARTONEthe effect, of collision terms on the behavior of a spatially

homogeneous plasma is investigated° In PART TWO the self-consistent field

term is treated under conditions which enable us to drop the collisional

terms for the problem of light-light scattering in a plasma°

In PART ONE_ to make the problem mathematically _ractable_ we

limit ourselves to one®particle distribution funo_ions which are isotropic

in velocity space° The exact Balescu=Lenard equation is solved numerically

as an ihi_ial valUe_pr6blem for suohdistribution func$iOnSo Several initial

distribution functions are chosen_ a Gaussian, peaked at 0028 of the electron

thermal velocity; a resonance function; and a very sharp Gau_slan_ peaked

at 200 electron thermal velocities_ coexisting with a Maxwellfamo The exact

Fokker=Planck equation is also solved numerically for _he same initial distri-

bution 'functions° The values of the plasma parameters are chosen such that

differences between the solutions of the two kinetic e_uations - if there

b_ _j _ _iii b_ _oticeableo

Only small differences (a few percent) between the solutions of

the two kinetic equations were obeerv@d for the initial distribution functions

selected, and a possible explanation for this is advanced° The difference

between the solutions of the two kinetic equations for the test particle
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problem is also analyzed_ and a reason for this difference is giveno In

addition, a relaxation time is defined, and the long time behavior of the

three initial distribution functions is investigated by means of a numerical

integration of the Fokker_P_anck equation°

In PART TWO we treat the problem of light-by=light scattering in

a plasma: Two coherent, monochromatic_ plane_polarized_ plane electro-

magnetic waves impinge on a quiescent electron plasma and are scattered°

_.._ _:._ fr_._i_s of the two incident wav_ are tuned so tha_ their

difference is approximately equal to the frequency of the longitudinal

plasma oscillations_ those oscillations are excited° However_ they do

not grow linearly with time because of the iimi_ing effect of _eve_al

physical mechanisms°

We are interested in the nature of the mechanism of nonlinearity

onlyo Therefore we assume the plasma to be describable by the collisionless

moment and Maxwell equations° We also assume the nonlinear terms in these

equations to be small compared to the linear'_termso The equations can then

be handled by the method of multiple time scales and spatial scales, a

generalization due to Frieman and S_ndri of a perturbation scheme developed

by Krylov, Bogoliubov, and Mitropolsky for nonlinear mechanics°

The results show that there is a slow rotation and/or change in

the magnitudes of the amplitudes of the two impinging electromagnetic waves

as they pass through the plasma° The rate of rotation is proportional to
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the strength of the impinging radiation° At the same time_ a longitudinal

electrostatic oscillation is built up slowly inside the plasma° The rate

of bu±id_up of this oscillation is proportional to the rate of change

of the amplitudes of the transverse fields; the strength of the amplitude

of this oscillation is at most of the order of magnitude of the strengths

of the transverse fields° All of these effects are due to a proper treat_

merit of the small nonlinear terms_ in the equations of motion_ and cannot

b_ _i_d _ _pl_ carrying conventional p_rturbatlon throaty _o second

order°
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PARTONE

NUMERICALINTEGRATIONOFKINETICEQUATIONS



Io INTRODUCTION

The problem of the relaxation to equilibrium of a fully ionized

non-equilibrium plasma has been of interest for some time° In the absence

of analytic solutions to the appropriate kinetic equations_ which are

non-linear 9 various authors have investigated problems that do not require

the solution of a non-linear kinetic equation° As an example of such

problems_one may mention the case of the relaxation to equilibrium of

t_ ,_ri_ ......_tion of a test particle in_ec_ed into

quiescent plasma_ In these problems the appropriate kinetic equation

can be linearizedo Up to date the only investigations of the relaxation

of a test=particle distribution function have been _arried out by means

of the Fokker=Planck kinetic equation° Thus Kran_er I stuSied the _hermal=

ization of a fast ion in a plasma by means of a n_merical _olution of

the Fokker_Planck equation° Frisch 2 defined certain charaateristic times

which he called time lags in the thermalization of a fa_t ion injected

into a plasma, and proceeded to calculate them without actually solving

the Fokker®Planck equationo Ree and Kidder 3 obtained an analytic solution

f_r the !i_ma!iz_tio._ of a fast test ion injected into a plasma by

approximating the friction and dispersion coefficients in the Fokker-

Planck equation° Their solution is valid only when the speed of the test

ion is less than the average speed of the plasma electrons_ but large

enough so that the plasma electrons interact more strongly with the test

ion than do the plasma ions°



Attempts at an actual solution of a non=linear kinetic equation

have up to now been confined only to the Fokker_Planck equation° Further-

more, they have been numerical solutions° In fact, the only investigation

of the relaxation of a non-linear kinetic equation up to date is that of

MacDonald, Rosenbluth and Chuck _, who solved numerlcally_as an initial

value problem, the non®linear Fokker-Planck equation for an electron-posltron

plasma which is spatially homogeneous and is,tropic in velocity° It would

be interesting to carry out a similar investigation for the non=linear

B_:-,_l,ez_,_ _tion_ This would be espec_.ally interestiz_ in view of

the fact that the Balescu-Lenard equation® by treating collective effects

properly, gives a more general description of the behavior of a spatially

homogeneous plasma than does the Fokker-Planck equation, which does not

treat collective effects properly° The only attempt so far at a solution

of the Balescu_Lenard (B/L} equation is the _oz_tiono a_ an initlal value problem,

of the linearlzed BL equation by Rosenberg and WuJo These two authors

took a multicomponent plasma and perturbed _he distribution _nct±on_of each

species of particles slightly from the equilibrium Maxwellian distribution° Then

they proceeded _ to investigate the decay of this small perturbation in

th_ lin_r _rcxizationo

This paper presents a numerical integration of the exact Balescu-

Lenard (BL) kinetic equation for different initial distributions of an

electron plasma embedded in a neutralizing, uniformly smeared out, positive-

charge background° The Fokker_Planck equation with the Rosenbluth, MacDonald,

Judd collision term (RMJ equation) is also integrated with the same initial



distributionso By comparing the solutions of the two kinetic equations one

hopes to arrive at an estimate of the importance of collective effects in

the relaxation of these distribntionfun_tionBo

The simplifying assumption made,ln these calculations_i8 that

the distribution functions are isotropic in velocity space° For a limited

class of such distribution functions _ for example_ for distribution functions

which are monotomically decreasing functions of Iv ! _ our results indicate

that for most purposes there is a negligible difference _a few percent)

between the predictions of the BL and RMJkinetic equationso This is

because these isotropic distributions are sufficiently stable that the v

and k integrals in the BL equation ((AI) and (A2)) do not approach a zero

D+of the Landau denominator _ _ anywhere in the range of integration° Thus

collective effecSs_ which are treated properly in the BL mquation_ but not

in the RMJ equation, are of little importance for such distributions°

We also define numerically a relaxation time in section (III)_by

considering how close all portions of a given initial distribution function

will get to the final Maxwellian after a certain time, and whether or not

they will stay close to the Maxwellian for all times after that time° Our

conclusion is that a, distribution f_mction often oscillates about the

final Maxwellian at certain points in velocity spaceo These points depend

on the form of the initial distribution function° This behavior points out

that the relaxation to the final Maxwellian cannot in general be taken to

be an exponential decay (with the possible exception of the high=energy tail)o

This conclusion _ agrees with the solution of the linearized Balescu_Lenard

equation of Rosenberg and wuS_ which is a superposition of exponential decays°



Iio KINETIC E_UATIONS

Ao BALESCU-LENARD (BL) E_UATION

Let f(vl,t) be the one-particle distribution function for

a spatially uniform electron plasma embedded in a _uiformly smeared out

background of positive charge° f(vl_t) has two normalization condi-

tions

f(vl,t) dv I = (i)

and

I 2 2vI f(v l,t) dvI • v° (2)

where v is the thermal speed of electronso o



For the purposes of numerical integration i% is convenient to

choose a set of dimensionless variableso Therefore we shall define three

dimensionless variables YI' _ _ and g(Vl,_) by

Y1

0

_ t
' (_)

and

0 '_

(5)

where _ (v) is the Spitzer deflection time 6 for electrons moving with
D o

velocity v° , given by the expression

where

2 3
m v

2 1 v

8, n o e _n̂ L- ° _ v2 er_\_j - v e

erf is the error functiono From equations(l) and (2), the two

dimensionless normalization conditions for g(yi,T) are

]g(vl,T) dVl = i

(6)

(7)
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sad

I _I g(Vl' ) dVl = i (8)

For isotropic velocity distributions, the BL equation can be

written in dimensionless form as

v
_T -- _ _'i © i V_I dV1 G(VI_ ) #_Vi_T )

v,_. ,v ,.aV_ V _V o

+_ Iv_ dVlg(vl,.)_(vl,.)
8V o

+ v _ o(v,T)¢(v_z)

+ v2 [g(v_)]2 _(v,_)} (9)

where the functions G(V,_) and ¢(V_T) occurring in (9) are defined by

and

@o
G(V,T) - V_dV _ g(ViT)

V

k
4tn-_ °

k D

_n H(V_T) - 32

(lo)

, (11)
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where the functions r(v,T) , H(V_v) _ and L(Vov) are defined by

_ i® v2 gCv_) dV_r(v,_):7 P o - w-°2-_v_ -
(12)

denoting the principal value integral)_

{13)

and

2 2
L(V,_) m tan=l _

=_ 2_2 .......v__!._,_,_._).....
_= ta.u /k \^

, ---, + r(v_)
\,.kD_'

The quantity k is the upper limit on the
o

Appendix Ao Its value was taken as 7

kI integration mentioned in

KT
k = a
o 2 '

e

where K is the Boltzmann constant, T is the temperature, and e

electronic chargeo k D is the Debye wave number_ given by
1

k D =

where n o is the electron particle densityo
a is defined by

4
16_2- n e k

o (vo)
2 3 _D kDm v

o

where m is the electron masso

is the

(16)

(_7)



The isotropic_ spatially homogeneous RMJ equation for an electron

plasma embedded in a uniform background of positive charge is _'7

3_= 16_ 2 n o e ¢._ k° I S2f
v_f(v_t) J'tj-- dv *

t m2 _v 2 v

s Is2 _f
+ 1 v V "_ f(v_t) dv + 3v _

v3 o o
v_f(v_t) dv _

v v _)2 (1 + v-L)]- v_dv_f(v;'t) (i = v 2v
O

+ [f(vit) ]2 _ _ (18)

Transforming to the same dimensionless variables defined in (3)-(5),

eqo (18) becomes



9

R awm I" l "V;g(V_) dV,O * _l V V i$ g(V_T) dV;

V V 3 o

If" iv G+ .&2 _g V'g(v;_)dV': V" dV'g(V_T) ® V.
3V _V ;o o

v-I-_ + [g(V,'t ) ]2
o (1 + 2V)j

, (_9)

where all of the symbols have the same meaning they had in the dimensionless

BL equationo The two normalizations given by (7) and (8) hold also

in the case of the RMJ equation°



Co RELATIO_N_SH_I__P_B_E_N_THE BL AND THE RMJ_E_UATI_O_NS

eqo (19)o

k
In the limit of ._o ÷ ®

kD eqo (9) tends asymptotically to

This can be seen from the following considerations_

F(V_) _ i

and

Vg(V_) _- 1 _,

For
D

i- << i

0

L(V _) _ tan=l 2 2T _

and

£n H(V_I:) -_ £n/!^(lff'\4

V-D)

Therefore t by (20) _ (23),

(20)

(21)

(22)

(23)

IvThe double Integral _l dVl G(VI_T)
o

single integrals in the following wayo°

can be reduced to

(2h)

f fvV VI2 dVI G(VI,T) = _i dVl V2 dV2 g (V2'T)

o o V I

i0



ll

IV I 2 V2 g(V2,T)+ dV2 V2 dV1 V1
0 0

. _v_f_v._v_,__v_

÷
1 Iv V_h-- g(V_,T) dV _
3 o

(25)

Substituting first (24) and then (25) into (9) we obtain (19)0



Do DEPENDENCE OF THE KINETIC EQUATIONS ON k
o

It is shown in Appendix A that k is the upper limit imposed
o

on Ikll in (A2) to make the _l ® integral convergent° Its value is

more or less arbitrary, except that it must satisfy the condition

kD
--_" << 1
k
o

(26)

We have, somewhat arbitrarily, fixed its value by eq0 (15)o This choice

indeed satisfies (26), because in this case

kD l
m mm _ uk n
o o

(27)

12
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but the right-hand side of (27) is << i under the conditions under which

the BL equation is assumed to holdo

Let us test the sensitivity of the BL equation to variations

in k° Since k° enters only in the form [k°_ into eqo (9), let us
° \kD]

take (9) at T = 0 and differentiate it with respect to _D/ o This

boils down to evaluating the quantity 8 _ ¢(V_0) in (9)_ whose

value, by (ll), (13), (lh)_ and (17)_ is

a ,_(v,o) = k.%_n kD EIkD / + F(V®0 + Vg(V,_

When

k

._o ÷ . (28) reduces to
kD

o (28)

_D_ _D e k'_ ¢(V,0) = ko _n _D°

(29)

Applying to (9) and substituting (29), we obtain

82 i

......k g(v,o) - k k

_D -K° _n-Z°_( ) kD kD

[ _ g(V,0)]R_ (30)



g(V_0)SRM J is really the RMJ limit of (9)where the expression [_

KT
at T = 0r except that k° has not been restricted to the value -_ o

gm

e

By (26), we obtain the condition

_2
g(V,0) <<

KT
even if k =

e

_!because of (26)!o

(31)

%

r(v_)

_"_ Vg(V_T )
3

(32)

and (28) is well approximated by (29)°

From the above considerations_ we conclude that the relaxation

of _a_ one-particle distribution function is not very sensitive to changes

in the value of k , at least for v < _k_ o This is of course consistent

o \kD/
_h t%c ._:=_iy iog_rlthmic dependence of the BL equation (similar to the

equation>forlargevaluesof (Thereasonableinsensitivity
kkD/ o

to the cut-off value k was also noted by Rosenberg and Wu 5 in the case
0

of the linearized BL equation)o



IIio RELAXATION TIME

One may try to define a relaxation time as a function of

velocity for the one-particle distribution function° For this purposeo

let us restrict ourselves to isotropic distributions and write all of

the expressions in terms of dimensionless variable_o We define a function

¢(V_) by

ITM v21g vo l= ¾ax(Vll

E(V_)

iV+_ v2 gmax (v) dV
JV-6

where gmax(V) is the final Max-_elli_n distribution_ and 6 is a small

number° A relaxation time _R may then be defined to be that value of

after which c(V,_) is l_ss than some preassigned small positive number,

It is of course possible that _(V_T) as a function of

decreases for a while to less thsm. a and then increases again before

f:na/].2 appro_chlng zeroo These occurrences are easily recugnized in

the program, and the relaxation time is that value of x , say TR

such that c(V,_) < A for x > _R o

(33)

A o

i5



IVo NUMERICAL INTEGRATION

Ao

The principal value integral in the expression for P(V)

was approximated by the first two non=vanishing terms of a series

expansion about the singular pointo Thus we obtained

O

÷

V+h V _2 = V2

+(V_v+++)h+_(v_+__v_

+_ 32V _V - _ gj h3
(34)

where h is a small numbero

_e numerical integration of the BL equation was carried out

by using the difference equation

n on+l n mAT I 1 .....gi+l _ 2gi + gi-l_,
gi = gi + _i Vi (AV)2

16
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ivi v2 dV G(V)_(V)
0

+ ova<v>
0

/ n _ n

(gi+l _ gi_l _ Gncn
+vi k. 2AV J •

(35)

for all Vies , except Vo: = V I = 0 and Vo! = VM _ where VM is the

maximum value of V usedo At Vo = VM the difference equation was1

n+l

gM I( n n n nn _A_ I 1 2gM _ 5gM=l + 4gM=2 = gM=3_

n n n _Ii 3gM- 4gM=l+ gM-2

-_ _v ........J_l iVM v2 dV G(V)_(V)
O

^n ,.n n ,,_- '+%-1+ gM-2._IvM v2+ 2 _ V "_ o _v g(V)i(v)

n n n 2)

3gM _ 4gM_l + gM_ n n

+ VM k- ..... £-A _ - GM CM

(36)
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In the above equations superscripts refer to time points_ and subscripts_

to space points o h was chosen to be equal to AV o The quantities

n n' @i ' and Fi are define by the equations

Gn - ) (37)l G(Vi _n

n _ ¢(vi_n) _ (38)¢i

_ r(vi_ n) o (39)

The values of integrals were approximated by finite sums° The

size of subintervals in the range of integration was chosen to be AV

in all caseso Whenever the number of subintervals was even_ the integrals

were evaluated by using Simpson_s ruleo Whenever the number of sub=

intervals was odd_ a combination of SimpsonVs rule and Newton-Cotes

three-eighthsquadrature formula was used° Whenever only one subinterval

was available, the trapezoidal rule was usedo

n+l
At V i = VI = 0 _ the value of gl was determined by the

equation

n+l n+l
gl = g2 ° (40)

This was based on the fact that

if the BL equation is to hold at V = 0 for all times_



Bo RMJ E_UATION

The numerical integration was carried out by using the difference

e _uat ion

 n+n \

I i+l " gi-i (G i n n
+ 3_i _v = _ si + Qi)

(_2)

n n
where the quantities Gi , Si , and Qi are defined by the e_uations

VMf
n _= | v g(v) dV ,

Gi ; V i
(_3)

19
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and

_in _ 2__13 fVlo _ g(V) dV

(44)

(45)

Eqo (42) was used for all point_ except V i = VI = 0 and Vi - V M o

At V i = V1 = 0 eqo (40) was used_ as in the case of the BL

equationo At V i = VM the difference equation was

n+l

n I_2_4 = 5gM®l + 44=2 " gM-3 _= _ + _ \ 3_v>_ - -

o (G_÷

in(o_- _-sM ÷ _) + (46)



Co INITIAL DISTRIBUTION FUNCTIONS

The following different initial distribution functions and
lip _

different values of (=o_ used_

\kD/ were

io Initial Gaussian Function

g(V,0) = 0o2289 e=2°03(v=0°28)2 (_7)

with

and

VM = 5o0

AV = 0005 o

(h8)

(49)

g(V,_) was computed from T = 0 to _ = 2oh

T - 0 to _ = 702 for the RMJ case at intervals

AT = 00004 ,

for two different values of (k°_
kD /

Srom the BL case_ and from

AT _ where

(50)

a)
k
o

--- = io4178 x 108

kD
(51)

and

b)
k
o

m

k D
300 (52)

21
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20 Initial Reson an_£e___Fun_c_tio_n-

with

g(V,O) = -_8 1 (53)

VM = 20o0 (5h)

AV = 0oi , (55)

and

k
0

---= 50
k D

(56)

g(VzT) was computed from T = 0 to _ = 0o4 for the BL case_ and from

T = 0 to T = 3o4 for tne RMJ case at intervals AT _ where

AT = 0o01 o (57)

3o I_!ti_Maxwelli_an_ F,unction_Coexistln _ with a High-Energy

Ga.uaaJan Function

3
= O o8936 2_ eg(V,O) _ ( )3/2

=lO0(V=2) 2
+ 0o01192 e (58)
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with

VM=4oO ® (59)

AV m 0002 , (60)

and

k
o

--- = i00 (6z)

g(V,_) was computed from T = 0 to T = 0o19 for the_ BL case, and from

T = 0 to T = lo3 for the RMJ case at intervals AT _ where

aT - ooooo5 o (62)

The calculations were performed on the IBM 7090 electronic

computer o



Do RELAXATION_TIME, E(V_T)

The number 6 in eqo (33) was set equal to AV o The integrals

were performed using Simpson_s ruleo

k

¢(V,T) was evaluated for the initial Gaussian with o 300
k D

k

(the Gaussian with ._o = 1o4178 × 108 was not doner because it is

k

equivalent to the Gaussian with 9= 300 but with AT increased

slightly), the initial resonance function_ and the high-energy Gaussian

coexisting with a Maxwellian0 The quantities e(V,_) were computed from

the solutions of the RMJ equation only_ because earlier calculations

showed the BL mud the RMJ solutions to be almost identical for the

above initial distribution functions°

¢(V,T) was computed for the initial Gaussian for values of

in the range 0 S +T S 702 ; for the initial resonance function_ in

the range 0 _ _ _ Sob ; and for the initial high-energy Gaussian

coexisting with a Maxwellian, in the range 0 -< T _< io3 o

2h



Vo RESULTS OF NUMERICAL CALCULATIONS

Ao COLLECTIVE EFFECTS

The most important result of the numerical integrations was

that no significant difference was found between the solutions of the

BL equation and the solutions of the RMJ equationo For the initial

k

Gaussian function with _= 104178 x 108 _ the results were essentially

identical for the two kinetic equationso The difference was at most

1%0 This result was expected because KuI_) 4 >>i o The same kind

of behavior was found in the case of the initial Gaussian function

k k

with __o 300 , and the initial resonance function D with -°= 500
kD kD

This seems to be an

25
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interesting result 9 because in these two cases quantities of the order

Pk°_h Table I shows

of unity cannot be neglected relative to An _\kD _ o

the values of g(V_T) at T = 204 _ calculated from both the BL and

k

the RMJ equations_ for the initial Gaussian with o=_= 300 _ for several
kD

values of V o Table II shows the values of g(V�v) at _ = 0o4

calculated from both the BL and the RMJ equationso for the initial

resonance functiono

Table I

V

0

O025

005

0075

io0

_-o_

lo5

lo75

200

2025

205

3=0

g(v,o)

0°2055

002285

0o2076

0o1464

0008006

0oC3397

0001118

00002856

0°0005658

OoOOO087

0o000010

= oo I

_v) J_nax _

0o3299

0o3004

oo2268

001419

0007362

00O3166

0001129

0oO03337

OoOOO8178

0o0001661

0o000028

_=2oh

P_4J

0°3257

0o2979

0o2256

0o1419

0°07409

0003205

0001140

00003274

0o0OO7334

000001233

00000015

_=2o4

g(V_)
BL

003243

0°2973

002253

001418

0007410

0°03206

0o01141

0o003273

000007328

0o0001232

0°000015
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Table II

V

0

0o4

008

lo2

lo6

2o0

2o4

2o8

3o2

3o6

ho0

T=0

g(V,O)

0o7789

0ohh77

0o1121

0o02287

00005046

OoOO!297

0o0003882

0o0001327

T " @0

gmax(v)

0o3299

Oo2595

0o1263

0o03805

00007091

OOOOO8!78

OoOOOO58h

OOO0O0026

_=Oo h

g(V_T)
RMJ

0o5979

004067

Oo1241

0o02320

0°004667

0o001192

0o0003622

0o0001258

OOOO0O508

0o0000213

OOOOOOO97

0o0

0o0

OoO

000000488

000000207

000000095

T=0oh

g(v_T)
BL

005934

004066

0oi,234

0002320

0°004692

00001198

0oOO03633

0o0001261

000000488

000000207

0o0000095

Perhaps the most interesting case was that of the initial

Maxwellian coexisting with a sharp high-energy Gaussian peaked at

V = 2 o This case is similar to the test particle problem° But the

behavior D_ this case was very similar to the behavior of the previous

caseso The relaxation of the Maxwellian part of the initial distribution



28

proceed@d withoutreally exhibiting collective effectSo This is not

surprising any more in view of the behavior of all of the previous cases o

However_ even the peak of the Gaussian _ailed to exhibit collective

effectso The difference between the BL and the RMJ solutions for the

peak was less than 2%0 A difference of about _% was observed to the

right of the peak at velocities which were bet-_e_n 202 and 203 thermal sp_dso

However, these differences are too small to show unmistakably the

._:.. t_-_e _:f :.::_le_tive effectso Table III _hows the va!u_-_ cf g(V_)

at T = 0ol9 in the vicinity of the Gausalan peak for the solutions of

the BL and the RMJ equationso

Table III

V

lo70

lo74

lo78

io 62

lo86

io9o

lo94

lo98

0o00066010

0o00049089

0000432260

0o003516h7

_=0o19

RMJ

0o00163051

0o00205418

OoOOOh3724

0o00071164

0000185265

000045O775

0o008_0283

0o01151361

0000284698

0o00229391

0o00183944

0000146794

0o00116586

0o00092151

0o00279051

0000380954

0000499052

0o00611075

0000688563

0o00706345

:=0o19

g(V_)
BL

0o00162568

0o00204975

0o00278595

0o003802h3

0o00497691

00006O878O

0o0o685531

0o00703384
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TABLE III= continued

V

200

2002

2006

_-oi0

2o14

2o18

2022

2026

2o 30

_=0

g(%o)

0001197109

0o01149523

oooo83h55o

OoO044c_6o

0000169192

0o000h7530

OOOOOO9982

0o000017_6

0o00000384

gmax (V )

0000081779

0o00072_88

0000056748

0o000h4213

0o0003h282

0o0002645h

0000020316

0o00015528

OoO0011811

_=0o19

g(V_T)
RMJ

0o0068873h

0000653863

0o005h1764

0o00398559

0o00258245

0000146207

0o0007178h

0000030369

0o00011028

_=0o19

g(v,T)
BL

0o0068622h

0o00652063

oooo5_1858

0000400460

0o00261129

OoOOlhg051

0o00073915

Oo0O031639

0o000116h3

Graphs i, 2, 3, and 4 are_respectively_the plots of the solutions

of the BL equation (or the RMJ equation_ since the two give almost identical

r_'_!ts) fo_ the four cases mentioned above_
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Bo RELAXATION TO A MAXWELLIAN

Graphs 5_ 6_ and 7 are_respectivelyothe plots of the solutions

k

of the RMJ equation for the initial Gaussian with _o = 300 _ the initial
kD

resonance function_ and the initial high=energy Gaussian coexisting with

a Maxwelliano Graphs 5 and 6 agree with the earlier c_Iculazions of

Rosenbluth eto alo _ as well as with the findings of Ree eto alo _ that

the high®energy tail of an initial distribution function relaxes much

slower than the low-energy portionso Graph 5 shows that the point V = 0

which at T = 0 is below the final Maxwellian_ approaches the final

Maxwellian and then overshoots ito However_ in the time interval

0 _ T • 7o2 the point V = 0 was not found to start descending toward

the final Maxwelliano The two normalization conditions_ equations (7)

and (8)9 remained good throughout the whole time interval° The error

at _ = 7o2 in the particle=number normalization was less than 0o013%,

while the error in the energy normalization was less than 1o8%0 We think

that the distribution was not followed long enough in time to permit the

point V = 0 to start descending toward the final Maxwelliano The fact

that it seems to take a very long time for this to occur is not surprising,

since the initial distribution function is very broad and its gradients

in velocity space are smallo

Graph 6 shows the distribution function for T > 0 dipping

below the initial distribution and moving farther away from the final
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Maxwellian in the higher energy portion of the graph° This tendency to

dip seemsto increase with time and to movedownthe high=energy tall o

However_what happens to the dip after a very long time can only be

guessed_because the distribution function was not followed long enough

in time° Oneof the reasons for not following the distribution function

longer in time was the large error creeping into the energy normalization°

Particle normalization remained good <error was less than Ooll_ at _=3o4)

but the e.... _T_ _._r_!_zation error was _,,8_ at _=3oho _e va.!ue of

the energy normalization showeda tendency to decrease monotonlca_iy with

time° The change from _ to (_ + At ) was BZ,eadily decreasing as T

got bigger and bigger_ but this decrease was not fas_ enough° It was

present in spite of the fact that the stability _riterion on the magnitudes

of AV and AT was satisfied° Extension of the range of V from

0 <=V <_20 to 0 <_V ! 40 to lnclude a greater portion of the high=

energy tail or readjustments in the values of AV and AT_within the

scope of the stability criterion, did not improve the situation mucho

Since the cause of the trouble could not be pinpointed, the decision was

_ to ::_J_et_e ma_mumvalue of _ to ,be that _ for which the error

in energy normalization was less than 5%0

Graph 7 demonstrates the fact that the rate of relaxation of

a portion of an initial distribution depends strongly on the gradients

of that portion in velocity spaceo Thus a high=energy portion with large

gradients mayrelax faster than a low®energyportion with small gradientso



Co RELAXATION TIME

Graphs 8, 9, and i0 are the plots on semi=log paper of the

quantity e(V,T) as a function of _ , with the values of V serving

as the curve parameterso Graph 8 is for the initial Gausslan with

k
o

---s B00 Graph 9 is for the initial resonance function, and Graph l0
k D

is for the high-energy Gaussian coexisting with a Maxwelliano (The case

k

__o = lo_178 x 108 was not treated separately,
of the initial Gaussian with kD

k

.....,de p_, _ _'_s stated already_increasing the value of _ _ the
_D

k

__o constant and increasing Ax
RMJ equation is _quivalent to keeping kD

slightly in the finite difference analogue of the differential equatlon)0

Graphs 8_ 9_ and l0 show the impossibility of defining a relaxation time_

_R o For one thlng, E(V,T) in Graph 8 is an increasing function of

for 6 < _ < 702 , for all V_s but V = 20250 In Graph 9, c_V_

keeps increasing for 205 < _ _ Bob for V = 2o It is not known to

what valua e(V,v) will increase before decreasing againo Besides,

e(V,T) may keep on oscillating as v increases ,until e ÷ 0 as T ÷ -

but we do not know the size of the amplitudes of these oscillations as

_kn_ccio_ of timeo The curve with V = 2o25 in Graph 8; all of the curves

in Graph 9_ with the exception of the one with V = 2°0; and all of the

curves in Graph l0 for T > 007 are monotonically decreasing with tlmeo

In fact_ for large values of _ they approximate straight lines on the

semi=log paper° But we should not conclude from this fact that for these

32
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curves the decay becomesexponential after a certain time° A look at

Graphs 6 and 7 discloses that these curves may cease decreasing and

start increasing after a while° The curves in Graphs 9 and l0 were

not followed long enough in time to exhibit this behavior°

Weconclude from the above discussion that it is impossible

to define a relaxation time_ VR_as explained in (III) 9 within the time

limits used in the calculations° We also suspect _hat_in general_

an initial distribution fUnction does not decay to a final Maxwelllan

exponentially_ even if the exponential decay is assumed to set in after

some time_ and not immediately° This suspicion applies to

finite V o As for the high=energy tail of a distributlon_ it is still

possible to visualize an exponential decay there° For example_ in the

case of the initial Gaussian_ 6(V_T=0) _ 1 as V _ _ o If we make

use of the fact that the hlgh_energy tail of a distribution function

relaxes very slowly toward the final Maxwellian_ ¢(V,_) ÷ 1 as

V ÷ _ _ even for large T's o This would give us almost a straight line

when plotted on the semi-log papero Therefore it is possible for the

relaxation to assume the form of an exponential decay in the high-

energy tailo This argument would also be valid for other initial

distribution functions which approach zero faster than the final

Maxwellian as V ÷ ® (like the Gaussian above)° In Appendix C we

present a mathematical proof of the impossibility of an exponential

decay of an initial distribution function to a final Maxweliian_
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VIo DISCUSSION

The lack of any significant difference between the solutions

of the BL and the RMJ equations for the cases treated in this paper

has to be taken as a matter of facto It is somewhat surprising in
k
o

cases in which £n _ is of the order of unityo The greatest puzzle

is presented by the case of a Maxwellian coexisting with a sharp_ high®

_nergy Gs__'_ _ b_r_,,_e of its sim_,larity with the test particle problem°

The solution of the BL equation for the test particle problem

indicates that collective effects may become important when the test-

k

o _ 0(i) o By means of arguments
particle velocities are high and £n kD

analogous to those based on the solution of the RMJ equation_ we obtain

some characteristic times for the test particlem_,such as the "slowing down

time", T , given by
s

Mtu3
T = ,,, (63)

2--2 k

et _p • £n __o + £n

Mt_J kD mp ]

the "deflection time", TD _ given by

_t u5

TD = =' 2 2 --_

"_ £n o - £n =-2

mp p
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and the "energy exchange time"_ XW_ given by

MtuB

n
(65)

Here et and Mt are the test_partic!e charge and mass respectively_

u is the test particle velocity; 8 , defined by e -zKT _ is the field

p_l;ic!_ _alpe_a_e, _ is the plasma freqaency of the field particles_
P

and kD is the _bye wave n_ber of the field particleso In equations

(6k), (65), _d (66) the te_ containing n _ is the s_e as .

kD

the one obtained from the solution of the _ equation for the test particle

problem° _e te_ c_t_ning _n _ derives from the collective effectso

p

On the other h_d, if we ass'_e _n isotropic velocity _stribution

for test particles and, by analogy with the treatment of MacDonald_ Rosenbluth_

and Chuck4, write the test-particle distribution function in the form

2

Mtv
2e

ft(v_t) = g(v_t) e , (66)

we can define a characteristic time it takes the inflection point of

g(v,t) to diffuse into the high=energy tail of the distribution by

Mt

et _p n kD

(6_)
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where Win f is the velocity at the inflection point of g(v_t) o (The

derivations of characteristic times are given in Appendix Bo)

The reason for the disparity between the test particle problem

and the numerical solutions of problems discussed in this paper has to

be sought in the behavior of the Landau denominator_ D+(_kloikl°_l )

defined in (A6) of Appendix A_ which appears on the right_hand side of

tbo BL eau_t_o_ (eqo (A2))o In the RMJ equation D+ = 1 _ because the

collective effects are neglectedo In the BL equation_ the value of the

Landau denominator varies and may even assume the value zero° When this

happenso the integrand of the integral_on the right=hand side of eqo (A2)$

may contain a singularity if the zero of D+ is not canc=AeC by a zero

of the numerator of the integrando We shall see that in the problems

_h_owhich were solved numerically in _ _ paper the integrand has no

singularities_ while in the test particle problem the integrand does

have singularities°

Let us confine ourselves to isotropic distributions° By (Ag),

(A13), andl(A17)= we see that Im(D +) -- 0 only when uI - kl ° v I = 0

or u I = _ ° vI ÷ _ o When uI = 0 _ we see by (A16)_ (A13)_ and (Ag)

that Re(D _) # 0 o Therefore D+ _ 0 ° _2When u I _ _ _ Im(D +) ÷ 0 ,

since f(lull) ÷ 0 _ and Re(D + ) *l _ _2 2 ° It is possible to find

kI uI
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a ,_Av-and a _kI in the range 0 < ._,,Ikll_ k• O

2

k I

This choice will yield D+ = 0 o

such that

Suppose we look at the problems which were solved numerically°

When IVll ÷ _ by (All} and (A12)_ f(vl I _ 0 faster than F(u]) o

Therefore the numerator in the integrand of the integral_on the right

side of eqo (A2), is of the order of' _2 _ and the Landau denominator

also of the order If(vl)_2 o Hence_ for IVli _ ® _ theby (A17) _

zero of D+ is canceled by the zero of the numerator of the integrand_

and the integrand does not get too close to any of its singularities°

Let us now look at the test particle problem° Here_ on

account of the tenuity of the test particle distribution_ only the field

particle distribution enters into the evaluation of the Landau denominator°

D+
For Iyll ÷ ® , is of the order of the square of the field particle

_tr_._-_i._f_ f_'_ctio:_o In the numerator of the integrand of _qo (A2),

F(u l) and _F• Bu-_ refer to the field partlcles_ while f(v l) and BulBf

refer to the test particles° There exists a high velocity range in which

the test particle distribution is still finite while the field particle

distribution is already approaching zeroo Therefore the Landau denominator



38

will vanish faster than the numerator of the integrand, and the integrand

will get very close to a singularity°

The preceding arguments confirm the fact that collective effects

become significant in the solution of the BL equation only when the

integrand in eqo (A2) gets very close to a singularity, at which

D+ • 0 , in the range of integration° Such a situation may be realized,

for example, in the anisotropic case of two contrastreaming electron

_.sm_ .... _J _:L_i.l_ iS certainly worth a more thorough investigation°



APPENDIXA

DERIVATION OF THE ISOTROPIC BL E_UATION

The general anisotropic BL equation for a spatially uniform

electron plasma embedded in a uniformly smeared out background of positive

charge has the form 7

Bf " - _ (vl_t (A1)s-_ ---o J ) ,
_vI

where f(Yl,t) is the one=particle _istribution function with the two

normalization conditions given by equations (i) and (2)0 J(Yl,t) is

u_ine_ by the expression

4
2n e

J(vl't) --_2
m

kI d_ I (Vl) S_u_ _ F(Ul) _

" 2
, (A2)

F(u)

uI and

is defined by

i

Bu I

F(U)
' /k \

are defined by

dv 2 ,

k1
I o

uI - kl Vl

and

u=gom

SUl kl SYI

D+(.kl,ikl o Vl ) , the Landau denominator, is given by the expression

2

D+('kl,ik I o vl) m i - _2

k I
i SF du

Su

(A3)

(Ah)

(A5)

(A6)
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with
Up , the plasma frequency, given by

i

and ¢ being a small positive numbero

(A7)

Let us also define the quantity T by the expression

_ SF d_Su

Thus (A6) can be rewritten as

2

D+ = i ÷-_2 _ o

kI

(A8)

(Ag)

Let us now specialize all of the above formulas to the case

of isotropic velocity distributions0 We can write

f(vl,t) = f(vl,t) o (AIO)

SF
in _cb _se_ (i3) shows that both F(u) and S-_ do not depend on kI o
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To simplify integrations_ choosethe z=axis in the direction

of YI ° Let (kl_e_¢) be the polar=spherical coordinates of the

vector kl o We ca_ now perform two integrations _n _A3_ a_ follows

We can now perform two integrations in (A3) as follows

F(u) sin ede 6(v ! cos e _ de
JO O

Il= 2w v 2 dv f(v) du 6(v U _ u)

f®
= 2w I v f(v)dv

J|ul
(All)

From (All) we get

SU

Let us now simplify the expression for W o If Or and _i

}_r_ def_.._ to b%_'espectively_he real and the imaginary parts of W _ ioeo

= _r + i_i ' (AI3)

we obtain the following expressions for @r and @i
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and

_r = _P
_ _F du CJu_)

_F
¢± = _ _(v I cos e) (A15)

With the aid of (A12)_ equations (A14) and (A15) can be written in the

form

Pj
=m U _ U 1

= _ _® u2 f(u} du
P] 2 2

o u = uI

(Al6)

and

= -2 25_ f(luiI) (AZT)

where we have made use of eqo (A4)o

does not depend on kI or ¢ o

on $ o

We can see from (Alh) and (A15) that

Consequently D+ does not depend

Let us now try to simplify the expression for J(Yl_t) o Eqo

(A2) can be rewritten in the form
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_F

I2no f(vl )
J(Vl,t) - _ _ D+I2

_ m k I t

_f o I _kl kl cl1_l _F(Ul) _
_vl k_ ID+l2

In eqo (A18) the ,integrations over ¢ can be performed

immediatel_:o If we also change the variable of integration over e

from e to u1 , such that

(_8)

du I = ®v I sin 8 de (A_9)

and then interchange the order of integrations over k I and u I _ we

obtain

4

h_noe Y1J(Yl_t) = --_ -_ f(v l)

m vI

vI k

L Io°

- _i _VlJ-Vluldul;(ull_oIk°-_ _i o(A20)

We have chosen an upper cut-off k on the integral over Ik I in eqoo 1

(A20)o Its meaning will become clearer when the integral over Ikll is

evaluated° The integral over Ikll is an even function of uI o Conse-



quently the integrands in the two integrals over uI are even functions

of uI o

obtain

If we make use of (AI2) and substitute (A20) into (AI)o we

S__f 8_ne= I f(vI12_ ) i f(ulJ
_..2_o l_ _ Vl u2 duI _

t m2 v12 Sv I o

ko dkl i

-o h ID÷I2

._i 8f f+ v I 8v_ Vlo ul% F(ull k--T ID+j---'_
(A21)

Let us now perform ....._ the integration over kI o

k

kl ID+I2 --Jo kl _ 2

i

2i Im V Ik° kl dk I ---_ m2 *
_0 k I + P

r k2 + (02 _

Im _ £n _I

2 Im_
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1
i ik2 ÷ 2,12

o_

l=p _I

2

_r --_-__= 2 h tan-I -_-

+ 2 0i tan=l k2o + _; 0r 0i Or

T:_....,_s d.ef_n_: the quantities H(u I) _ L(u I) _ and ¢(u I) by

i_2 + 2 012

H(ul) _ an °--2---2--L-
2 012

(A2B)

_2 Oo Oi
L(Ul ) --tan _l _ _ _an =I

k2 + m2 O r
o p r

(A2_)

and

_( )_ l
UI k

..Zo
an kD

(_5)

As one can see, _o has:to be:,a finite number if (A22) = (A25) are to

remain finite° We shall define its value somewhat arbitrarily by (15)o

We shall now introduce the dimensionless variables defined

by (3) - (5)0 By (A16) and (12), we obtain
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v
o

Substituting (A26) and (A17) into (A23) and (A24) and making use of

(3) = (5), we obtain

HCnI) = H(V)
(A27)

and

L(Ul) = L(V)
(A28)

where H(V) and L(V) are given_respectivelygby (13) and (14)o A look

at (A25) shows that

_(uz) = _<v>
(A29)

where #(V) is given by (ii)o Further 9 substituting (3) = (5) into

(All), we obtain

F(u) = 2_ G(V)
v
o

(A30)

where G(V) is given by (i0)o

Substituting (B) _ (5), (A25)_ (A29), and (A30) into (A21) we

obtain eqo (9)°



APPENDIXB

THE TEST PARTICLE PROBLEM

The BL equation for the test particle problem can be written

in the form 7

_2

Bft [F(v) + 2 By _v_t _v ......
(B1)

where ft(v)

given by

is the test panicle distribution function° F(v) is

with FI(V)

and F2(v)

£(y) = £1(y) + F2CZ)

being defined by 8

2 / k _'

et _p2 e 2_/ o \!

F1¢v)= - M_j ( .,.,_ kD__\._nkD/ vB

8
being defined by

2

et

(_

(B3)

(B_)

T(v) is given by

with TI(Y)

T(v) = T1(v) + T2(v)

8
being defined by

(BS)

_7
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" _2 , '_-- v3,,,.up.l ./

v2 ½ - 3v

and T2(v ) being defined by 8

TI(V) = _Sln kD_V)f v2 _I _ 3 Y v'_

(_)

(ST)

-When we substitute (B2) = (B7) into (BI)_ perform all of the differentiations_
v

and drop terms of the order ._o
v , where v is the thermal velocity ofO

field particles_we ubtain-.the diff_ren_ia_.-equa_ion

(=t " e kl\ 'i_", ko_ v- ft
Mt / n----- kD/ v__ o -V--

4_
Y _ft

L Mt v3 _Y

i S2ft )

+F T2 : __ o (s8)
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The terms inside the first pair of braces on the right side of (B8)

are identical with the ones obtained from the solution of the RMJ

equation_ The terms inside the second pair of braces are due to the

collective effects°

If we now confine ourselves to isotropic distributions, the

following relations holds

and

S2ft B2f 2 Sft

i ----
_- _v. _v_ _v v _v

S2ft 2 S2ft
V V _ -'_m- = V

_ _)v_ _)v. _)v2

(Bg)

(BZ0)

Substituting (B9) and (BIO) into (B8), and dropping terms of the form

ft

as well as terms of order one relative to terms of order

_n _pD_V_, we obtain the differential equation

et m Mtv2 kD Sv
P

(Bil)
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Let us now define a function gt(v_t) by

Mt v2

® 2-'F=
ft(v,t) - gt(v_t) e o (BI2)

gt(v_ t) satisfies the diffusion equation

Mt
?--2

_t p
_-_= M_v2 n kD

If gt(v,t) has an inflection point at Vin f _ the speed with which

this point diffuses into the high-speed region is given by

gt =cOnst MtV_nf n kD

kDVin fq
+ En m------

-jUp

4
We can define a characteristic time T by

O

(BI3)

(B14)

T
O

Vinf

@t Jgt=cons t

Mt V3nf

2 --2 ILu k kDVin f-et Up _D + _n _m

P

(BIS)



51

Let us now go to the anisotropic case° Let us assume that

ft(vgt=O) = 6(v _ u) o (Bi6)

We shall take velocity moments of eqo (B8) at t = 0 o First, let us

multiply (B8) through by y , and then integrate over y o Making use

of (BI6) and integrating by parts_ we get

_ e_ _ k

_ m _ _M t L kk, + Mt _p2J £n __OkD+ £n ---_!, _uB
up J

We can define a "slowing down time ''6 by

(BZT)

T _ - u = , _Mt u3

. °
\St/ et2 mp + Mt--_p2/! Kn _D + £n _I

Let us now multiply (B8) through by v y , and then integrate over v o

We obtain

(818)

(uu) --et-_ n e
B"T - - Mt kD,/ - _tt u 5

ek_
+ m
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We can def_e_B"deflection time ''6by

2
u

TD = .._.z.=_ _
2

--(u_)It

2 5
Mtu

2ele. i V =._-_m J

(B20)

where UiL is the component of velocity perpendicular to u o

We can also define an "energy exchange time ''6by

u2 Mt u3

, n=o"= Vl
(B21)



APPENDIX C

THE EXPONENTIAL DECAY

Here we shall present a proof of the impossibility of an exponential

decay of a distribution function° It is based on an adaptation and general-

ization of the method used by Rosenberg and Wu 5 to solve the linearized

Balescu-Lenard equation °

Let us write the kinetic equation for a spatially homogeneous

-_,_asma,_ _ '_h_ _ynb_l_ form

_-_f- c(f,f) (ci)
_t t

where C(f,f) is a collision operator which has not yet been specified°

Thus we have not yet limited ourselved to any particular kinetic equation°

Let us restrict ourselves to collision operators which are bilinear functions

of f(v,t) o The collision operator of the Fokker_Planck equation satisfies

this requlrement_ but the collision operator of the Balescu-Lenard equation

does not° If fo(V) is the Maxwellian distribution to which f([,t) will

relax, we define a function fl(v,t) by the expression

fl(Y,t) _ f(y,t) - fo(V) o (C2)

Substituting (C2) into (C1), (C1) can be rewritten in th e form

_fl

_- = C(fo,fl) + C(fl,fo) + C(fl,fl) o (c3)

53
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The term C(fo,f o) = 0 and therefore was not written explicitly in (C3)o

If fo(V) is incorporated into the definitions of the operators C(fo,fl)

and C(fl,f o) , the right side of (C3) can be said to consist of two

linear functions of fl and one bilinear function of fl ° When fl is

small compared to fo and eqo (C3) is linearized, the term C(fl,f I) is

simply droppped from the equationo If the Balescu-Lenard equation is

linearized, it also satisfies the linearized eqo (C3)o

Let us further restrict ourselves to flgs which are isotropic

in velocity space° Suppose a complete orthonormal set of real functions

of Ivl , I$n(V) } , has been selected, and fl is expanded in terms of

the members of this set, so that

fl(v,t) = _ an(t ) _bn(V)
nmO

Then eqo (C3) can be written in the form

---- = + _ Bkm n a a8t _" Akn an m n

n mln

where Akn and Bkm n are defined by

(c_)

(c5)

Akn- (¢k' C(fo'¢n)) + (¢k' C(_n' fo )) (c6)

and

Bknm _ (¢k' C(_m'¢n)) o (C7)
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The symbol

C(fo,_n) , etCoo

of Ivl,

(¢k' C(fo'$n)) denotes the scalar product of Sk(V) and

If we select a different orthonormal set of real functions

{_n(V)} , and define the matrix element

(c8)

I

then the matrix A can be obtained from the matrix A by an orthonormal

transformationo Let us restrict ourselves now to the Fokker_Planck

_:,'_ion, !_+ us also assume that the set {_n} is the same complete

set used by Rosenberg and WuSo Rosenberg and Wu 5 showed that _ has real,

non-positive eigenvalues in the case of the linearized Balescu-Lenard

e_uationo This must also be true in the case of the linearized Fokker-

Planck e_uation_ and since the matrix A , or A , is not changed

when the Fokker-Planck e_uation is linearized_ A must have real, non-

positive eigenvalues in the case of the non-linear Fokker-Planck e_uationo

Hence also the matrix A must have real, non-positive eigenvalueso Let

us denote a particular eigenvalue by (-7 (_)) and the corresponding

eigenvector by X (_) , so that the equation AX (9) = -V (_) X (_) is

_a.tisf_,_:_

We shall now expand the function

vectors of A o Thus we obtain

a (t)
n -

in terms of the eigen-

a (t) = _ b(_)(t) X (_) (C9)
n n o
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Substituting into (C5), we obtain

ab(_I .v(_lb(_)
St

where DX_ v is defined by

b(_) b (_) (cio)

Dl_v-: _ B_n _) X(_)X(_)
kzm,n m n o

Since Dk_ v # 0 , (ClO) does not have any solutions of the form

"_ .!constl t
b _ _.._i_) _ o Hence an initial distribution function

cannot relax to a final Maxw_llian via the Fokker_Planck equation by

means of a simple exponential decay°

(cn)

In the linear approximation eqo (Cl0) reduces to the equation

= -_(_) b(_) o (C12)

Eqo (C12) has the solution

where C (v)

b (_) . C (_) e-y(v)t

is some constant, determined by initial conditions°

Substituting (C13) into (C9), and subsequently into (C4), we obtain

(in the linear approximation)

(ci3)

fi(v,t)= _ _ c(_)e-V(v)tx(_)n Cn (v) °
n

(cih)
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Since fo(V) satisfies the normalization conditions (i) and (2), we

must have

f"v2 fl(v,t) dv = v4 fl(v,t) dv = 0 o
0

Let us define the n_Ambers a (u) and B (_) by the following equations_

n ¢n(V) dv
n o

and

8(_)--n _ C(v) X(V)n ]_ vh Cn (v) dv o

(c15)

(c16)

(c17)

Then, eq0 (C15) yields the following two equations_

and

=0

8 (_ e_y(_)t m 0

Eqso (C18) must hold for s_.l times 0 including t - 0 o

(C18) become

When t = 0 ,

a(_)- [s(_)=o o
V

c(_)
If we had only one exponential decay in fl(v,t) , by (C14), _ 0

when _ - W_ and C (_') - 0 when _ # _o Consequently a(_) W 0 and

B (_) # 0 when _ = _, while _(_) • B (_) m 0 when _ # _o It would

then follow from eRo (C19) that a (u) = 8 (W) - 0 o Therefore fl(v,t)

has to contain more than one exponential decay even in the linear

(cl8)

(Cl9)

approximation°
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PARTTWO

NONLINEAREFFECTSIN THELIGHT-BY-LIGHT

SCATTERINGIN A PLASMA



Io INTRODUCTION

Recently there has been considerable interest in the scattering
1

of light by light inside a plasma° Platzman_ Buchsbaum_and Tzoar

calculated_ using quantum mechanics_ the incoherent cross section for the

scattering of light by light in the presence of a plasma to lowest order

in the plasma parameter_ ioeo to lowest order in the reciprocal of the

number of particles in the Debye sphere° Kroll_ Ron_ and Rostoker _

calculated, by solving the Vlasov equatlon_ the scattering cross section

for two plane electromagnetic waves each one of which is monochromatic

and coherent° With the pre_ent-day state of laser technology such a light=

bymlight scattering experiment is feasible°

This scattering process is of practical interest_ because it can

be used® among other things, as a density probe for plasmas,° It has

advantages over the process of incoherent scattering of a single light

beam incident on a pla_ma_ because the scattered energy flux per unit

incident energy flux is much larger for the light-llght scattering process

than it is for the scattering of a single incident light beam (as was

pointed out by Platzman et alo I and by Kroll et0 alo'2)0

The reason for this fact is that a single light beam passing

through a quiescent plasma is only scattered by the thermal density

fluctuations, which are small° On the other hand, the presence of two

incident light beams enables us to tune their frequencies so that their

difference is equal to the natural frequency of longitudinal oscillatlons0

69



7O

The two light beamsare then able to excite coherent plasma density

oscillations_ and are in tu_ scattered by these oscillations° These

density oscillations are much larger than the thermal density fluc%ua%ions®

and therefore enhance the scattering process°

Weshall makethe following model for the scattering processo

Twoinfinite plane waveso with wave vectors _l and _2 _ smd frequencies

ml and _2 respectivelyo i_pinge on a quiescent plasmao confined in a

large volume V o A detector is placed very far from the plasma _ud measures

the scattered energy flux over a long period of time T o

quiescent

electron

plasma

JJ

Figure XI



71

For the sake of simplicity we sh_l assumethe volume V to be a rectangular

box and the plasma to _onsl_t ::.t' one species of particles_ electrons_ with

average particle density !:,_o To ensure charge neutrality) the electron

plasma is embedded in a _._iifc:_y smeared out background of positive charge

of charge density N e o
0

The differentia& _::1C'_ _ section per unit frequency :tn'_e_:va_i for

2_3
the scattering of light b_ _ plasma i_

2

de r ,, sin2 G

2
e

the c_'_c._.l ele_,_n radius; 0 is the a_.gge ofwhere r 0 _ )
mc

scattering_ ioeo the angJ_e betw_en the incident energy flux and the

scattered energy flui; k is the wave vector of incident light; _ is
.=

the frequency of incid_nt, ligh_; _' is the frequency cf _ca_tered _ight i

is a unit vector poir_tin_ in the direction of the " "_ ....; _" .....

S(k_) is the spectral density_ defined by

* Jim
V _

T_

0

where n(k_) is the Fourier t_an_form of n(_t) which is defined to

be the fluctuation of the electron density about the equilibrium density

N
0 °



72

The calculation of n(x,t) is difficult_ because the equations

describing the behavior of _ plasma are non_,!inearo To make _he problem

tractable_ one usually rest_icts oneself to incident light beams whose

amplitudes are small in the _onse that the changes they produce in the

plasma variables are small cc_ared with the values of these variables

for the quiescent plasma (ioeo !n'_<x_t)!/N° <_ i )o This enables us _o

introduce formally a small pa_eter _ _ which is a measure of _he

strength of the amplltude_ of _he inciden_ i_ght wavee_ and to use some

kind of perturbation theor#o

If one chooses to de_crlbe Zhe b_hav_or of the plasma by me_n_

of the colllsionless moment equations and the Maxwell equatlons_ and

_l__a. lzat_on pro_e_ _o these equatlons_ onceapplies the conventional _°_= _°

obtains_=_n(5_t ) __9___.imeo :'_Thi_will be pointed

out more explicitly in Seco IVCo) Since the da_sity must remain fini_e_

there have to exist physical mechanisms which _imit _he density oscill-

ations but were le_% out of the above mathematical scheme° The neglected

mechanisms are the Landau damping, the co!lisional damping_ and the non-

linear effectso

All of these mechanisms operate simultaneouslyo But for a

particular choice of numerical values of plasma parameters and incident

electric fields, one mechanism usually dominates° Which one is dominant

in a _artlcular situation is d_termined by the numerical values selectedo
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The dominant mechanismyield_ _maller density oBcilla_,ions _han all other

mechanisms_ because it liT_.t_ these oscillations mor_ effectively°

Since it is very di_'ficult to calculate the action of all of

the limiting mechanisms sii_,ult_neously_ the effect of each mechanism is

calculated separately_ wi_h the exclusion of all other mechanisms° Kroll_

2
Ron t and Ros_oker were inte__ted in the Landau damping mech_uismo Ther,e_

for they linearized the V_:,__, and the Maxwell equation_ arid _glculated

the Landau damping effect f_o_n these linearized equanio_o T_ d_n,slty

2
oscillations_ as calculat_d b 2 Kroli eto alo _ _urned ot_t _c be in_ersely

proportional to the Landau d_ping decremento

Since in the linearized theory the ,colli_ona! damping_ as

calculated from the Fckker=P!anck equation_ introduces an additional

damping decrement_ which pi_s a role _:alcgous to _he Landau damping

2
decrement_ Kroll eto alo m_m_aged to incorporate the collisional damping

mechanism into their results by adding the collisional damping decrement

to the Landau damping decremento We can see from their results the reason

why the llnearlzed_ collisionless moment equations yield density oscill-

atlons which increase linearly with timeo Linearized_ colllsionless

moment equations neglect both the collisions and Landau damping° There-

fore from the vlew]_oint of those equations the collislonal and the Landau

damping decrements are both zero° Hence the density oscillations will

grow with time°
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We have neglected the effects of collisions and Landau damplng_

and have calculated the contributions of non=linear effects° For this

purpose we have limited ourselves to collislonless moment equations and

Maxwell equations° To make the problem mathematically tractable_ we

have assumed the nonlinearity in the equations to be small° This

enabled us to treat the nonlinearity by the generalization due to

Frleman and Sandrl 4 of an expansion technique for nonlinear mechanics due

to Bogollubov_ Erylov, and Mitropolsky5o

The generalization due to Frieman and Sandri is known as the

multiple time-scale method° It introduces into the problem many time

scales_ each scale being of a different order in a o The purpose of

theme "slow" length and time scale variables is to introduce enough

freedom in the equations to cancel secular (ioeo t or x proportional)

terms in the perturbation expansion° We have adapted the Frleman_Sandrl

method to our problem by also introducing many spatial scales _ defined

in an analogous way°

We have derived an expression for the differential cross section

for the scattering of light by light° We have also derived an expression

by which one can determine quantitatively which mechanism limits plasma

oscillations more effectively for a particular set of numerical values

of plasma parameters and impinging wave parameters° Our results indicate

that nonlinear effects are sometimes much more important than damping

effects° This is particularly true when the impinging waves are fairly

strong° On the other hand, when the impinging waves are very weak_ the

damping effects dominate°



Iio ELECTRON=PLASMAE UATIONS

Ao MOMENTANDMAXWELLE UATIONS

Let Po be the pressure of the quiescent plasma; p(x_t)_

1 (1 is the unit dyadic)_the fluctuation of the pressure tensor about Po z

v(x,t) , the velocity; E , the electric field_ and B _ the magnetic

field° Weassume (as was pointed out in (i)) the plasma to be described

by the following low temperature_ coliisioni.e_s momentequations_

@n _
"_ _o'_ o v = _ ° ._ (3)St + Bx _ _x nv

r Sv --_

L(N + n) + (v o v ,--.... p

and

e (No + n) (E • 1 v _ B) (4)

s_
St + (v _x ) ' _--_ o p + (p i + p! _ o v)

(Pol +p) _] v+ [(Pol +p) o._] v

e
= = "" [(Po 1 + p) × B + (Po 1 + p) .xB] _ (5)mc _ _ _ _

where the notation A means the transpose of _he dyadic A 0

In (5) the heat conduction term has been left out because we

are dealing with a low temperature plasma° The term (P 1 × B + P 1 x B)
o _ _ o _

in (5) vanishes° This can be seen by writing it in component form_
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/ .........___.J

(Po _l x B_ + Po _l × B)ij = Po(6ik_ 6jk + 6jk _ 61k) B_

= Po(_lj_ + 6ji_) B_ = 0

where 6jk is the Kronecker delta D and 6ik _ is the Levi_Civita density_

the antisymmetrlc unit tensor of the third rank (with the value zero

whenever any two indices are equal_ with the value (+l) whenever (Ik_)

form an even permutation of (123), and with the value (®l) whenever (Ik_)

form an odd permutation of (123))0 Summation over repeated indices as

assumedo

To the three moment equations we add the four Maxwell equations_

-- o E- - 4_en (6)
_x _

° B- 0 (7)
_x _

_B

-- ._ E- =- -- (8)
_x _ c _t '

and

8 i 8E 4_N eO _e
.m x h = .... v = -'_ nv o (9)

Equations (3) - (9) are assumed to constitute the complete set of equations

describing the behavior of the plasmao



ho  AWE UATIONS

For many purposes it is more convenient to work with nonlinear •

wave equations° By a non-linear wave equation we mean a nonlinear partial

differential equation having a linear and a nonlinear term° The non-

linear term may contain several plasma field variableso The linear term,

however_ contains only one plasma variable_ and has the form of the linear

wave equation for that variable_ That is® the non=linear wave equation

is essentially the linear wave equation with a nonlinear driving term0

We shall be concerned with the E field only_ but shall want

to examine the longitudinal and transveree components of E separatelyo

(By the longitudinal component of a vector we mean that component which

has no curl0) For this reason we write down the wave equation for

_ and then by taking the divergence and then the curl of that equation,

we obtain wave equations for n(x,t) and for B(x_t) ® respectively° The

wave equation for E(x_t) is

2 2

C2 _ + C2 _t2 "_ +3 _ _t 2

1 2 V2 V2 _ ,/ _ _ ] 4_e _2- \Woo _x _ c _t 2
No < V ° "_ V

+ mc _ -'_ (nv -"_ "-'-- n
c St 2
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+ v o a v+Z (E÷ I _.B)_ ]

2

4xe v V2o i)

3 2 @t
c

2

._o @ a i"2 \
._ o )- _ c2 a-_ ax \_x n_

2 at ax _ @x ; p + _ o v

C3_o\ 1/2 h_Nmoe2 _ I/2where vo _ _) _ the thermal velocity_ and m . /

electron plasma frequency° (Eqo (i0) is derived in the Appendixo)

1 a o_Taking _e _ , of eqo (10) and substituting eq0 (6)_

we obtain

(lo)

the

f a2 2 2 2" _2n _2 _) i - a

\.,_)t 2 p o ,, at 2 at _ _x .. o \. ax ._

÷
mc _ _ . at

(nv) +--. 2. o
] St2 @x _ a"_'

+ v ° --- v + e- E + I v x B
@x _ m \ _ c _ _ /

+ v2 a V2 _) i a a2-. __ o (nv) mmm Immmm

o @t ax -_ m @t ax@x / ._a\

+ _ _ov + _ v + o

+ _ ×B+p×B
mc _ _ (Zl)
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Taking c _x x of eqo (i0) and substituting eqo (8) 0 we obtain

2 2

,7 _ + c2 st2 " +3 c2/ st2

+ _ Vo j _t c _t2 _x _x v

e " ]+ -- v× B l= _ 4_e
mc _ _ j, _T (nv)_ + -'-c St 2 S_

e (E + 1 v × B) _ ]÷ V o _X V ÷

2

hwec v V20 _
+ _ _ _ ×

3 2 _x _t
C

hwe _
(nv) .... ×

-_ mc _t 8x

.,m o o - o V ÷
ax _';x] P+Pt -,

/" _ \k

rx)o

+ o _X _ mc _ z ~
(12)

We can see immediately that the linear part of e_o (ii) will

saWisfy the dispersion relation

2 2 v2 k2
p o

(13)
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when the non=linear terms are set equal to zeroo Eqo (13) is the dlsper=

sion relation for longitudinal plasma oscillationso Similarly_ the linear

part of (12) will satisfy the dispersion relation

c2k 2 _v2k2) 2 + 1 2 v2k 4 0
" (_ + + 3 o Tc o = (Z4)

when the non=linear terms are set eRual to zeroo Eqo (14) is the disper_

sion relation for transverse plasma oscillationso The nonlinear terms

in (ll) and (12) describe the _of these two modeso



IIio PERTURBATIONEXPANSION

A0 THE NATURE OF THE PERTURBATION SCHEME

According to the discussion in (I)_ the amplitudes of the

impinging electromagnetic waves are 0(E) quantities° These waves

produce small disturbances in the quiescent plasma which are of 0(_)

alsoo As a result of this n(x,t) _ y(x_t) _ p_x_t) _ E(x_t_ _ and

B(x_t) are all 0_) quantititeso On the other hando the nonlinear

terms in equations (3) _ _12)_ being quadratic in the above 0_¢)

quantities, are of 0(a 2) o

Neglecting for the moment the nonlinear terms in equations

(3) _ (12) D we obtain a set of linear equations t with all of the terms

in them of 0(¢) o The transverse components of the solutions of these

linearized equations have temporal variations on the scale of _

/ _ \

and spatial variat+ions on the scale of 0 o On the other hand_ the
\kl

longitudinal components have temporal variations on the scale of 0(1_o

We consider these temporal and spatial scales to be of 0(1) 0 The

amplitudes of the solutions_ however_ are of 0(_) o

However® the presence of nonlinear terms in eqno (3) _ (12)_

which are of a higher order in e_ introduces not only small changes

on the fast scales in the amplitudes of the solutions 0 but also small

changes in the frequencies and wavelengths of those solutions° These
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small shifts in frequencies and wavelengths imply the presence of additional

time and spatial scales which are of 0(¢) o

We shall take these additional slow spatial and time scales into

account by explicitly introducing many time variableso denoted by t

ct I

with

¢2t 2_ ooo_ and many spatial scales, denoted by

Sto S(atl) S (g2t2) 2
-- m i _ m £ _ mm£
_t ' _t _ _t _ooo_

0 _

m £i ) _XSx

2
x0 9 _x,,_ _ e X2_ooo _

_x
_0

and _ ml

i_ooo o We may write the actual spatial

and time dependence of any function as the dependence on many time

2

variables aud many spatial variables_ ioeo f(x_t) = f(Xo_Xl_ X2_ooo_

t o , ct I , _2t2_ooo ) o

We shall approximate the corrections to the amplitudes of the

plasma variables due to non=linear terms by writing the solutions to

eqSo (3) = (12) in the form of power series in a o We write_ accordingly_

n (x° _¢x I _t° _etI) \_

v(x o_¢x !_t o_¢t l)

_(Xo_1'to_tl)

E(xo,_x1,to_ctl)

B( Xo_ cx I _t° __tl)//

n k) _tz) 1

(_xO _ax I _to

N ( v(k) (x° _¢_xl_t° _¢tl)
= _ Xo_X_'to (15)

x /
_,_o_¢_l_to_t I)

k B (k) (xo,¢xlmtO_tl) /

/



Bo THE O(¢!___AND 0(¢ 2) PLASMA EQUATIONS

To 0(¢) , equations (3) - (12) areo respectively,

Sn (I) 8 (i)
-- ÷ N -- o V m 0
St o Sx

0 _0

(16)

sv(1)
i _ (i)

St N m Sx P
0 0 _0

(17)

s_(I)
+ P i ----S o v (I)

_t o _ _x _.
0 _0

s 3(i))+
SX
_0

_ : s v(1)
+ _ol,_'T"_

_0

-0 , (18)

S o E(1) ,, 4_en (1)
imlmmn

SX _
_'0

(19)

s (1)
---- ° B ,,0
SX

'_ O

SB (1)
s (1) l

c St
_O O

(20)

(21)

SE (1)

× B(I) . 1
8x _ c St

_0 0

_Noe v(1)
C

(22)

83



84

2

c ;)t2
0 0

i 2 V2
_= Vo 0

2

i Vo \ V2 ;)2l, 7) o ;)t2
0

2

V2 + (I 2 Vo ;)2o = _' c"3" ;)t2
0

;)Xo ;)Xo o_ E.o - 0
(23)

2 2•,,,,,=,= +

;)t2 P
0

2 V2 _ ;)n (I)

= Vo o/
= 0 (2_)

and

i ;)47
0

2 2

;)2 /" v ° ,

. 2,/'0c ;)t2 3 c _t2
0 , 0

I 2 V2 V2 ] B(1)
U 0 (25)

+ _ Vo 0 0 ]

where V2
O

is the Laplacian with respect to the x variableo As
_0

we can see, plane wave solutions of eqo (23) = (25) satisfy the dispersion

relations (13) = (14), as could have been expectedo

To O(E 2) _ the wave equations (i0) = (12) are_ respectively,
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2 2

+ c2 _t 2 " + 3 o _t2
0 0 0

2

+ _ Vo o o - 3 _t2 _xo
0

o o _x ° _x _o 2' oo c _t 2 \:_ _o
0

÷_ v(I) _B(1)_ _
0

(n(1)v(1)) 1 h_e _2 ,Fn(1) / _v(1)
_ ""_c "--_[_t2 _ _t_'_

0

2

I+ e hwe V_o V2 / n(1)

m j 3 c2 o \_t °

2

8_e v° _ _ < _x (I) v(!) I)
"_- c2 _to _o _o _" '

+ 4_e _ _.__ o [ v(I) o u._ (i)
"-_ _-_" _x _ _x P +
mc o _o _o _ _Xo o y

_xo ,] -
+ ;(i) _(1)

_xo

+._e <;(I) × B ÷ p(!)× B(1)_/ l
mc z " : _" J

h b, 2m2 _2
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2

3 _x o _t 2
0

2

1 V2 _2 _ 2 _ 0
= 2 "= ÷ _ V 0 "=_==\ 3 o _x

_0

2

-- ._ , tl ....2 _(¢ )_t _x _x
3 C 0 _0 '_0

2

+ z = 2 Vo'h '_=_
7) St2 ,._xo °,)

0

V2
0

-_ Vo ._ _Xo _xo °)_(_ (26)

and

_t 2 ÷ p = o _t 2 =
0 0

-_. _ o _o _ _x
_t2o ~o _o

f

+ e v(1) x B(1)'_
mc _ _ / =

(n (1) v (1)) + -----

Bt 2
0

SX_o \ _to

+ e_ E(1)_ I + v2
mc _ o _t°

v2 _ o (n(z)v(Z))
0 _X

_0
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.... o o..._ p +p _._o
_x _x _ 3x _xm 3t° _o _o _o _ _ ". _o

+ vCI) + o =_.

o ° _o = _ _2
o

(27)



IVo SOL.IONS S_ECUU _!  

Ao INITIAL AND BOUNDARY CONDITIONS

We shall assume that the electric and magnetic fields of the

two plane waves impinglng on the plasma contain terms only of 0(¢)

there being no terms of higher order in e o Consequently we require

that B(1) and the transverse component of E(1) _ denoted by E_l)- ,

be the electric and magnetic fields of the impinging waves° We define

the scattered electromagnetic fields to be the transverse electric and

magnetic fields which are of higher order in _ than 0<_) o

From the physical standpoint_ we are primarily interested in

the scattering problem which was posed in the Introduction (1)_ Two

lasers, located in vacuum, are turned on at time t = 0 ; the two

electromagnetic waves emitted by the lasers enter the plasma_ are

scattered, leave the plasma® and are intercepted by detectors° We take

the plasma to be in a quiescent state at t = 0 o Therefore there will

be no longitudinal electric field at t = 0 o We shall consequently

require that the longitudinal component of E(1)_ _ denoted by E_l)-

be zero everywhere inside the plasma at t = 0 o

Let us take the volume of the plasma large enough so that

quantities which are periodic functions of cxI can go through the

variation of at least one wavelength inside the plasmao On the other
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hand, the volume is assumed to be small enough so that the characteristic

time for the transverse electromagnetic waves to pass through the volume

be small compared to the characteristic time for the build=up of. plasma

oscillationso This implies that when the two lasers are turned on, the

waves which they emit will penetrate the plasma completely before the

longitudinal plasma oscillations become large enough to produce signifi_

cant scattering of the waveso

We can therefore assume that, at t = 0 , E_l) and B(1)

are given everywhere inside the plasma, including the boundary, by

_ET(1) " _I sin _i + _2 sin _2

with

B(I) c _l " _l c _2 " _2
- _ sin ¢i + sin ¢2

_ _l _ 2

k I ° A1 " k 2 ° A 2 = 0 ,

and _i and ¢2 defined by

_i _ _1 o x _ ml t + ¢I

(28)

(29)

(30)

_i and k I , and m2 and k 2 satisfy the dispersion relation (14),
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respectively0 _i _ _2 _ _i _ and @2 are independent of position inside

the plasma at t = 0 o They are determined by the output of the lasers°

We shall further assume that %1) and BI1) are given by

(28) on the interface between the plasma and vacuumo facing the two

lasers_ for all times, with 41 _ 42 _ ¢! ' and ¢2 being constant on

the interface and equal to their value8 at t = 0 o We shall also assume

that E_l) m 0 _ on the same interface_ for all timeso

The scattering problem_ which we have just described_ with the

initial and boundary conditions, is only one of the many problems we can

pOSeo Another problem_ that we can stateo is the pure initial_value

problem° In this problemo we assume the boundaries of the plasma to

have been removed to infinity_ so that the plasma covers all space° We

then have to state only initial conditions for the problem0 One may

suppose, for example, that it is somehow possible to set up initial condi=

tions which are identical with the initial conditions set up above for

the actual scattering problemo

Again_ another problem, that one can pose_ is the pure boundary_

value problemo In this problem_ we are interested only in the steady

state solutions of the equations describing the behavior of the plasma0

We may simplify this problem by neglecting the initial conditions, and

take into account only the boundary conditions° We may, for instance, take

the same boundary conditions as were set up for the actual scattering

problem aboveo There are other problems we can pose0 We shall_ however,

discuss only the pure initial_v_lue and the pure boundary_value problems

in addition to the actual scattering problem°



Bo TRANSVERSE COMPONENTS OF 0(¢) SOLUTIONS
-- ' ......... ,., _._.l ......... : • ....... ,,'---- .

An inspection of eqso (16) to (22) discloses immediately that

their solutions have the following transverse components_

ET(1) " _(¢Xl®et I) sin _l + A2(¢Xl_¢tl} sin _2 _ (3Z)

where _l and _2 are given by

_i " _I o x . _i t + ¢l(aXlgCtl)

_2 " k2 o x - m2t + ¢2(¢Xl_¢t l)

(32)

_i _ _2 _ ¢i ' and ¢2 are some functions of ¢_i and

not yet been determined°

ctI which have

- sin _i + _ sin _2
ml _2

(33)

(i) e e A2 cos _2 (3_)

2 2

vwhere fll and f12 are defined by fll _ _i ( i _ _° kl and

\- 3_

2 2

_2 _ _2 i _ o k2

3m_ "

e P

" _ (h A_ ÷ Al kl)cos_l
= m_l_ 1

eP

(_2A2 ÷ A2 k2)cos_2
"' _2_2

(35)

91



Looking at the n_!_ear terms on the right=hand side of eqo (27),

we notice that the transver_ components of the 0(¢) solutions (expressions

(31) to (35)) contribute tez:_;,,_proportional to sin 2@ 1 , sin 2_2

sin(@l + @2) , and sin(_l = _) o If _i ' _2 _ _i ' and _2 are

2 2 +v_(kl _2)2 (_l ® _2) anachosen so that (mI ® _2) m _p _ ® _ ioeo_

(_l " _2 ) satisfy the disperBion relation (13) for longitudinal plasma

I4_N e_._1/2

o ) as theosoi lat ons and = ko iwherekD K--T--j

Debye wave number)_ the nonlinear term containing the factor sin(_ 1 = @2)

will be in resonance with the homogeneous solution of the left-hand side

of eqo (27)° This will p_o_uce an n (2) which as growing linearly with

time°

The physical reason for this behavior is the fact that the

nonl_near term containing _lU(_l _ $2) is the divergence of a longitudinal

driving force of frequency (_l=m2) which will keep on feeding energy into

the plasma oscillations and thus cause them to increase with time°

However, we know that plasma oscillations must remain finite°

Therefore the phase difference between the driving force and the longi-

tudinal plasma oscillations must change slowly with space and/or time

so that the driving force and the plasma oscillations will gradually get

out of phase and the growth of the oscillations will be checked° But

this requires that naturally oscillating longitudinal plasma field
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variables be non_vanishing_ 0therwise it would be meaningless to talk

about a slow phase drift of _._>i_iasma variable which is zero at all spatial

points for all timeso This c_ be seen from eqo (27)_ which requires

_(1)
the existence of _L (cha_.ging on the slow spatial and/or time scale)

to eliminate the secular terms in the nonlinear driving force°

" emBy eqSo (23) IJ - I - k2 'c,os{ I

+ b(_Xl,_tl)(ki _ k2) sin(_ l _ _2 ) 0 However_ we can show that

b(¢_l_et !) - 0 identically° The argument goes as follows° if E(LI)m b sin(_l-_2) ,

n(1)_ c(,_(_l- _I,2) The pre_ence of n ('I) introduces an 0(¢ 2)then, by ego (19), o

transverse current of the form n (I) v_ I) into eqo (26)0 Taking into

'Iaccount the form of vTl vT' as given by eqo (3&)_ we see that n (I) (!)

contains terms proportional to (A2 cos ¢i ) and (A1 cos _2) o The

first of these is polarized paral,lei _,o A 2 but oscilla_es w_th phase _i _

the second one is polarized parailel to A1 _ but osciiia_es with phase

@2 ° Both terms will consequently be in phase with the natural trans®

verse plasma oscillations_ and will drive these oscillations°

A slow spatial and/or _emporal drift of the phase angles ¢i

and ¢2 may not be fast enough to get the natural transverse oscillations

and the transverse current (n(1) v$1))_ sufficiently quickly out of

phase with each other to limit the oscillationso We therefore require_

in general_ an additional relative rotation of the directions of polar-

n(1)ization of the current ( v ) and the transverse plasma oscillationeo
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A glance at egso (26) and (31) shows that the nonlinear terms

oscilatlng with 91 or 92 are proportional to sin _i or sin 92 o

On the other hand_ the slow variation of E_l)- in eg0 (26), contain=

ins sin @l or sin 92 _ will be proportional to _ and/or

or _2 with respect to _t I and/or eXl o Therefore there is no

provision for the rotation of the directions of polarization to remove

secular terms from ego (26)° The presence of E_I) = b(k 1 = k2 ) sin(gl=92 ) ,

as we can see_ creates secular terms in ego _26) which cannot be removed°

We shall therefore set b(¢xi_£t I) = 0 o

The presence of E_I) = a(kl = k2 ) cos($i=_2) , on the other

n (I)_ sin(_l=92) Hencehand, creates no such problems° By ego (!9)_ o

the current (n(i) y_l)) will contain terms proportional to

(_2 sin _i ) and (_i sin _2)0 The nonlinear terms in ego (26)

oscillating with phases 91 or 92 will be proportional to cos 91

or cos _2 o But the slow variation of E_I) in ego (26), containing

cos 91 or cos @2' will be proportional to the derivatives of _ or

_2 ' with respect to cxI and/or at I o Therefore slow rotation of

the amplitudes will he possible°



Do LONGITUDINAL COMPONENTS OF 0(c ) SOLUTIONS

Let us define the quantities

and @4 by the following expressions o

_3 - _l + _2

'"4 - _i = _2

¢3 - ¢i + ¢2

¢4 _ ¢1 = ¢2

@3 =- @I + ¢2

@4 = @i = _2

where a(¢Xl,Ctl)

(36)

We shall take E_I) to be of the form

(1) = a(cxl_t_) kh cos @4 (37)

is an unknown function to be determined by the solution

of 0(¢ 2 ) equationso The initial condition that El1) be zero at t - 0

everywhere, yields the initial condition on a(¢Xl_Ctl)_ a(eXl,¢t l) • 0

at t • 0 _ for all x , inside the plasma and on the boundary° The

condition that E_I)

boundary condition on

all t o

be zero on the boundary for all times_ yields the

a(Exl,_tl)_ a(asi,Etl)_= 0 on the boundary for
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An inspection of eqo (16) to (22) discloses immediately that

their solutions have the following longitudinal components_

(i) a k_

n - _ sin _4 (38)

yL(1) . eam_4 _h sin _4

2 2

<where _h is defined by _4 -=m4 i _ _ _ and

p_l) . e Poa
m_4 _4

(k_ 1 + 2 k4 kh) sin _4

(39)

(ho)



Vo RF/_,OVAL, OF SE_CULAR__B_EHA__VI___OR,FROM O(s 2 ) , E_UATIONS

We shall now proceed to evaluate the nonlinear terms in 0(£ 2)

equations and to determine the conditions which will remove secular

behavior°

First, let us simplify the O(e 2) wave equations somewhat°

We shall assume that the temperature (and hence the pressure Po ) of the

quiescent plasma is lowo Having made this assumptiono we shall expand

all quantities which are functions of P
o

in power series in P o
o

The first term in the expansion of any quantity will be the value of

that quantity at zero temperature0 We shall be primarily interested

in zero temperature values of quantities° Consequently® eqo (27) can

be written in the form

<_ 2 2 V2_8n(2)_ __ ___ ___ o _ N
8t2 + mp Vo o 8t = _t _x _ o0 0 _0 _

0

L V "o ==._ V,_, ;_x °

+ e v(1) x B (1) _ _ (n (I) v(i)]i + (non=linear

J

terms of O(Po))
Fv 2 8 _ 82 ]Sn(l)

+2 L o _ o ;_x--'_- _ j _t °
o (a)

The v(1) quantity, appearing in eqo (hi), will be approximated by

using only the first term of the expansion in p 0
o

Thus, by eqo (3h),

(i) _ . e _i cos _l e_ _2
_T m_1 " m_2

cos _2 ' (42)

97



98

and, by eqo (39),

yL(1) _ eam_h _h sin _h ° (23)

We have written the linear terms of 0(Po) out expllcitl M

in eqo (hl)o By droppplng these terms we would leave ourselves no

linear terms containing spatial derivativeso We would then be unable to

do anM boundal V value problems or mixed inital-value_boundax_j=value

problems° This can be seen from the fact that spatial variations can

limit the longitudinal mode only if the longitudinal dispersion relation

depends on themo The longitudinal dispersion relation is given by eqo (13)0

2 2

When Po " 0 _ eqo (13) reduces to _ i _p o Hence there is no dependence

on k at Po " 0 o Therefore we need a non-zero Po ° Consequently we

shall carry the 0(Po) linear terms along in eqo (41)o

Eqo (26) can be simplified in the following Wa_o Making use

of eqo (6), we obtain

_"_ _x o i -__,_e_x

Or using multiple spatial and time scales and expansion (15), we obtain
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2 _ (" _ ° (2)) 2 _n (2)e _Zo _x° E. = = e 4Tre _x

2

J -  -rr/i-r

=, g _ o o

E_o (26) can now be written in the form

(V2 ® _ _2_t2 . c_2)E(2)2_ = =4we _n(2)_x°

o

+ 4weI/v(1)--'_No! _ _ v(1) + e v(1) × B(1)__ m_ _'
C \ _0

('nC1)v(_l "_]= _ + (linear and non-
_o \. -).J

iinear terms of O(Po)).-2[ _ ° _''2''=• _x°

1 _2 ] E(1) Bn(1) (_5)



Ao EVALUATION OF NON=LINEAR TERMS

Substituting the O(e) solutions into the nonlinear ex_resslon

Z(z) _ v(z) e v(1) B(Z)_NO _ _o _ +"_mc _ × _ / , we obtain

No _v(1) o s (i) e
_X 0 mc

Z(z) _ B(z)h
/

2 4°[ _i sin 2_ 1 +

2

k2 sin 2_2
_R

(_ A2)o

_o2

(k2 o A1) (kI o A 2)

= _i k 2 cos *2 + _2

÷ (2ki= k2) cos(2*I - _2)I

_4 sin 2, h (46)

i00
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Similarly, we obtain for (n C1) v C1) )
_t

0

the expression

a k_ I & A2 cos _i_to (n(1) v(1))_ " _ m2

_2
mm u

'"i cos *2 " e 2 A2 c°s(2'2 *l )

÷ _'l A_. cos (2_z - _2) /

2 2
a k4

_m k4 sin 2_ 4 o (47)

Since (46) and (47) appear as driving terms in eqo (45)® we

have a scattered transverse wave at frequency (2e 2 _ e l) and a scattered

wave at frequency (2_ I - _2 ) o



Bo ELIMINATION OF SECULAR TERMS FROM LONGITUDINAL FIELDS
I_ ,i II I_--.--_'_I----L I II i.

Substituting erpressions (46) and (47) into eqo (41)_ we can

write e_o (41) in the form

St 2 + _p o o
o

2

(21 _ (4 _2) k_ oos'4
n I . _m _l 002

_o a

_2

_ a

k12 _in *i + _ (_2_1AI0 k22sin '2

_2 (_i A2) sin *i = _m _l (_2 ° A1) sin '2

+ (other terms) _
2we

mhk_ _a

2_e
cos

v k { .\
+ o k_ o __4 '4

v° a k _¢h "

I 2W_ h ° _. sin '4 °
(48)

The term (other ,terms) in eqo (h8) includes all finite temperature non-

linear terms and all of the zero ,temperature nonlinear terms which do not

oscillate with phases *i ® '2 ' or '4 °

The nonlinear secular term in eqo (48) is the term

2

(o AI°A2" _ _l _2 k_ cos ,4 o
The secular behavior will be
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eliminated from eqo (48) if the following relations are satisfied

_4 _ ÷ Vo _4°_ "°

and

11 v2
2 k 2

wI w2

+ (o(Po) terms} o (5o)

The left=hand sides of eqs0 (h9) and (50) have the form of

convective derivativeo Eqo (49) states that ¢4 remains constant to

an observer traveling in the direction of _4 with the velocity
2

/_ Vh_k_, --/)o Since ¢_ is the same for all spatial points at time t-O _

and retains its initial value on the boundary for all timem, we take Ch

to be a constant (ioeo to be independent of cx I and ct I )o Eqo (50)

states that the change in _ , which an observer traveling in the

2

(v)
the scalar product of the amplitudes A1

the observer notices no change in _ o

sees, is proportional to

and A2 o When (A1 o A2) . 0 ,



Co ELIMINATION OF SECULAR TERMS FROM TRANSVERSE FIELDS

Since n,2,c_ enters into e_o (45), those terms in n_2Jt_ which

oscillate with phases _l and _2 will produce secular behavior in

e_o (45)° Let us evaluate these terms° For the sake of simplicityr

we shall evaluate these terms in a zero-temperature plasma° Let us

make the ansatz that n (2) = C1 sin _l + C2 sin _2 + other terms _ where

C1 and C2 are unspecified constantso Substituting into e_o (48)_

we obtain

2 2

2
8_m_ 2 (2 = el )

(_I o A2 ) sin el

2
+ P _ 2 2 (k2 ° A1) sin @2

8_m_1 (up -. '"2 )

+ (other terms not oscillating with phases _i and _2 )

+ 0(P o) terms o (51)

Substituting (51), (46), and (47) into eqo (45), we can write

e_o (45) in the form
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eak _l
""_ _ _ 2 _ _ m2 " 2c at2 c 2m c

o kl

- A 2 cos $i = _ _i 2
2m c k 2

+ (other terms) _ 2 _

an (1)

o _ &r_2A,.-I zlax° _ o2 at° J;(

(52)

The nonlinear secular terms in eqo (52) are the _wo terms

containing cos _i and cos _2 'respectivelyo They can be canceled

(1) since n (1)
only by slow spatial and/or time variations in _T

and E_l) do not contain any terms oscillating with phases @l and

Therefore the secular behavior will be eliminated if the following

relations are satisfied

_2 0

a¢1 c2 kl a¢i
_I _ + o _ = 0

a ¢2 2 a ¢2

_2 _ + c k 2 o _. 0

(53)

(54)

____ml -'W-l'aA1 ( o a )A 1 "--'_eak_ ml [ (_kl °A2)_2 2 kl2 + kl _ hm c
c kI

A2 I + O(P°) terms (55)
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and

ea
mm _ m

4m c2

- A1 ]+ 0(P o) terms o (56)

Eqo (53) states that ¢i remains constant for an observer

traveling in the direction of kI with the velocity_ c )o (54)

states that ¢2 remains constant for an observer traveling in the direction

/ 2

k 2 with the velocity _2_ )o Since both ¢1 and $2 are constant

at t • 0 and retain their initial values on the boundary for all times,

we can take $i and $2 to be independent of gxI and $t I o

Eq0 (55) states that an observer traveling in the direction of

C

kI with the velocity _l--_l., sees _ change in A1 which is proportional

to _ and to the component of A2 perpendicular to kI 0 When the

component of A2 perpendicular to kI is parallel or antiparallel to

A 1 , only the magnitude of A1 will change0 However, when A2 has a

component perpendicular to both kI and _l ' A1 will rotate (and

change its magnitude simultaneously)° An analogous argument holds for

the rate of change of A 2 o



VIo PROPERTIES OF THE RELATIONS WHICH

REMOVE SECULAR BEHAVIOR
, ,,,

We obtained in (V) the conditions which a , A1 , and A2 must

satisfy to remove secular behavior from the 0(¢ 2 ) wave equations° Here

we shall study some of the consequences of those conditionso

Ao THE PURE INITIAL VALUE PROBLEM

We shall neglect for the time being the presence of boundaries_

ioeo, we shall assume that the plasma covers all space and that the

same initial conditions have been set up for this problem as for the

actual physics_l _roblem with boundarieso Then we can study the case of

no spatial dependence of ao 81 ' and 82 o EqSo (50)_ (55)_ and (56) wall

then reduce to

_a e_

" (81° + °(Po)te=,, (571

and

2
_A1 ea k4

° A2) ]2 .... kI - A 2 + 0(P O) terms ,

kI

(58)

k_ [ (k2°r A I) k2 7] 0(P o) terms o (59)
_A2 ea

m . 2 " _ +

Since no physics is lost by taking the temperature of the plasma to be

zero, we shall do so, and shall therefore drop the O(P o) terms from

eqso (57), (58), _d (59)0

107



108

The following conservation laws can be obtained immediately

from e_so (57) = (59)

AI2 a2 k_ A2_(etl-0 )

A22 a2 k_ A_(etl-0)

_2 up _2

EgSo (60) show that ._ is bounded° This means that the longitudinal

field E(1)-_ and hence the density n (1) are boundedo

(60)

To study eqso (57) - (59) in more detail, we shall write them

in component form° Let us choose a coordinate system such that

_l u (kl_0_0) and _2 g (k2 cos a_k 2 sin a_0) o In this coordinate

system e_So (57) to (59) become

_A 1 e k_

3Alz e k_

= - m_m 2 a A2z

_A2 ,e k_ 2

" _l cos _ a Aly

(6_)
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2

_A2z e k4

_'_ " m_l a Alz

Alx s 0

A2x = = tan _ A2y

e

= (Aly A2y + Alz A2Z) o

The following conservation laws can be obtained from eqSo (61)_

2
C08

A2 A2 A2 (etl=0) 2 etlm0)iz 2z iz A2z(

A2 A2 2 _"'ly + _ = cos a + _ o

(62)

Eqso (62) show that if at t = 0 Alz = A2z = 0 , then Alz =

A2z - 0 for t > 0 o Similarly, if at t = 0 _ Aly = A2y - 0 _ then

Aly - A2y - 0 for t > 0 (and consequently A2x = 0) o Therefore, if _i and _2

are at t-0 in the plane of _l amd k2 _ they wall remain in that plane for t • 0o

On the other hand_ if _i and A_are perpendicular_to the plane, of_kl and _2

at t • 0 _ they will remaln, so for t > 0 o These two results are not

surprising, because in both cases the component of _2 which is

perpendicular to _i is either p_rallel or antiparallel to _i ; and
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likewise, the component of

parallel or antiparallel to

and _2 can changeo

_i which is perpendicular to _2 is

_2 o Therefore only magnitudes of

We shall now show that solutions to eqSo (57) _ (59) can

be obtained for some specialized cases of physical interest and that

those solutions are periodic° For this purpose let us introduce new

variables_ defined by_

- ctI

Yl _AIy

Alz

Zl _ _

A2z

Z2 - -----

V --''-'-'m'-- a

2
_ - cos

16m 2 _i_2

(63)
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become

Then eqSo (61), when expressed in terms of the new variables_

dY 1
m i V
d_ =Y2

dY 2
"" =By vdT i

dz I

m _Z 2 Vdr

dz 2

dT -_

d_v [] Y(Yl Y2 + Zl z2)d_ o

(6_)

The initial conditions can also be written in terms of the new varialbeso

They are

Ylo [] Yl (T•O)

Y20 = Y2 (T=O)

Zl0 " Zl(_•0)

z20 = z2(_=0)

v == 0 when T _ 0

(65)
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Let us confine ourselves to the special case when _i and _2

both lie in the plane of _i and _2 ° Eqso (6_) then reduce to the

three equations_

dY 1

dT ®Y2 '

dY 2

m By I VdT

and

dv
aEumm

dT
= 7 YlY2

Eqso (66) have the properties of the derivatives of elliptic

functions_ defined as follows_ If u • __d$ _ --' is an

elliptic integral of the first kindo then sn(u,k) _ sin $ , cn(u,k)

cos $ , and dn(u_k) _ _ o From these definitions we

(66)

d d
obtain _u sn(u.k) • cn(u,k) dn(u,k) . _u cn(u,k) = = sn(u,k) dn(u.k) ,

d
and _u dn(uok) m =k 2 sn(u_k) cn(u,k) o

Therefore we make the ansatz that Yl = YI0 cn(_T_K)

F2 • F20 dn(_T,_) , and v = c sn(_T_K) , where _, _, and c are

unkown constants to be determined° Substituting the ansatz into eqso (66) 0

we obtain



yl = Ylo cn I/_7 Y20 T i_ YlO 1Y20

y2 g Y20 dn [_7 Y20 T i/_ YI--O1
' Y20

v = /_7 YlO sn[ _7 Y20 T i_ YlO 1
' Y20 °

The elliptic functions

[i/2_u with a period equal to 4 __ o

oo Jl.k2sin 2

solutions (67) are periodic functions of _ o

i

sn(u_k) z cn(u,k) , and dn(u,k) are periodic in

Therefore the

113

(67)

The other special case, when A1 and 82 are both perpendicular

to the plane of kI and k2 , can be solved in an identical way° In

this case eqSo (64) reduce to

dz I

dT _z2

dz 2
---- - zI v (68)dr

dv = 7 zI z2 0dv

The solutions of e_so (68) are identical with the solutions (67) of eqSo (66)

when B • i , and zI , z2 , zlO , and z20 replace Yl ' Y2 ' YlO ' and

Y20 ' respectively,
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We will now cite an example where the solutions of eqSo (64)

are periodic elliptic functions although the component of A2 which

is perpendicular to kI is not parallel or antiparallel to A1 o Let

us, first of all, derive some conservation laws applying to the components

of _i and _2 o Multiplying the first of eqSo (64) by Yl ' the

second by Y2 ' then adding the two equations and iht_gratinj_ we mbtain

2 2
2 Y2 2 Y20

Yl + ----8• Ylo + B (69)

Performing identical manipulations with the third and fourth equations

of the set (6_), we obtain

2 2 2 2

zI + z2 = zlO + z20 (70)

Let us now divide the first equation of the set (64) by the

thirdo We obtain

_l Y2
m 8 a 0

dzI z2

Making use of eqso (69) and (70), we can write

2 Y20 2_i/2

_1 _l/2 (Ylo + _ " Yz j

dZl 2 2 _2_i/2
(zlO + z20 - _i j

(Tz)
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Let us define two new variables, 81 and 82 , by means of the

expressions

2 2 )1/2
Yl = (Ylo + Y20/6 sin eI

2 _2 _i/2 sin 82zI = (zlO + _20 _

(72)

From eqso (72) and (71) we obtain

or

with c defined by

de I

= de2

eI _ c

= e2

(73)

c = sin =I I io
I_YlO y2 1/2 2 ' 2-)1/22 + _ (zlO ÷ z20

Then

dY I
m

on substituting for dT in the first of eqSo (64),

we obtain

_1/2

_ del ._112
- • ---- • dt 0

E (2 2 2 2 2 ) sin2k_ /YlO ÷ zlO " YlO + sin2 el = (zlo + z20

(7_)

If we now select the special case in which _i and _2 are parallelz

B!/2 - i_ and eqo (7_) is the differential of an elliptic integral of the

first kind° Hence eI is an elliptic function of t o



Bo THE PURE BOUNDARY VALUE PROBLEM

We shall now neglect the initial conditions but retain the

boundary conditions° Thus we can study the case of no time dependence

of a , _l ' and A2 o Eqs, (50), (55), and (56) now reduce to

2

2 _4 _ _a e_Vo _ " (_ o4) ÷0(Po)_e_ , (75)

]a j k_2 kI _ A2 + O(P O) terms_
i

(T6)

and

k2 ° " A2" hm c2 ml

r(_l )
aL k_ b2®Ai_ O(P°) te_ o

(77)

As can be seen from eqo (75)_ a pure boundary value problem is

an impossibility when Po = 0 0 Therefore we must assume a finite tempera_

ture for the quiescent plasma°

Let us take, for the sake of simplicity, the y _ z plane to

be the boundary between the plasma and the vacuum,with the plasma on the

positive side of the y _ z .plane° Let us also assume _l and _2 to

be parallel to one another, for the time being, and to point in the direction

of the positive x-axiso We can obtain some conservation laws from eqSo (75)

(77)° For example, multiplying ego (75) by _ and dotting eqo (76) with

i16
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_i ' then adding and integrating_ we obtain

2 _i k4 k_ 2 24 ov a Al(eXl=0)

c p p

The conservation equation (78) shows that a(¢xl) is boundedo

that the longitudinal field E (1) and hence the density n (I)
_L

bounded in spaCeo

(78)

This means

8Lre

a comparison between the values of E_l)(etl)(_We would like to make

(1)(gx I) Since _,2(¢xi) _ Ai,2(et I) , we obtain from eqo (78)and _L o

and the first one of eqSo (62) that

a c c

2 _ik4a2(etl ) vo

But ml _ c kI ,

c k 4 o Therefore

or

and _h = ml = _2 _ _p °

2 2
(¢_I) c

a2 " _ -_,
(¢tl,) vo

Furthermore mh * C(kl ® k2) "

la(¢_z)l c

V o

<E(1)(¢tI /E(1)'_ )_ _ alW_Sosince c > Vo always, )>aver<age _ L _ _i_ average

(79)

We may note here that because Of the close similarity between

eqSo (57) _ (59) on the one hand and eqSo (75) to (77) on the other, the

behavior of the quantities _l ' _2 _ and _ in space is very similar

to the behavior of these quantities in time°



Co MIXED_ INITIAL_VALUE_BOUNDARY=VALUE PROBLEM
-- -- ....... , _ L ....

For the disoussion of this problem we have to retain eqSo (50) 0

(55)_ and (56) in their original formo If we took the temperature of

_a

the plasma to be identically zero, the term containing _ an

e_o (50) would drop out° Since A1 and A 2 must remain constant on

the boundary for all times_ _ would grow linearly with time on the

boundary° To prevent this occurrence_ we must require tha_ the tempera-

ture of the plasma be non=zeroo

Let us now look at the physical content of e_So (50) 0 (55)_

and (56)o At t - 0 _ a = 0 _ and A1 and A2 do not change in space

or in time° If A1 and A2 are perpendicular at t = 0 _ the con_

vective derivative of a is zero° Because of the initial and boundary

conditions on a , a = 0 , identically_ for all points in space_ for

all times° Then_ by eqSo (55) and (56)_ and by the initial and boundary
I

conditions on A1 and A2 , A1 and A2 will retain their initial

values at all spatial points for all times°

On the other hax_dz when AI o A2 # 0 at t = 0 . _ begins

to grow° The existence of a non-vanishing _ then induces rotations in

A1 and A2 o We may say that the changes in a _ _ , and A 2 are pro_

pagated like convective currents with current velocities (V2o/(m_/k_)) ,

(c2/(ml/kl)) , and (c2/(_2/k2)) , respectively°

ll8
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Let us restrict ourselves now_ for zhe sake of simplicity_ to

_i and _2 which are parallel to each other and normally incident on

the boundary between the plasma and vacuum, and the boundary coinciding

with the y - z plane o Initially a , _i _ and _2 have the same values

everywhere, including the boundary° At a time equal to t _ _i will

differ from its initial value_o But for x > (c2/_ml/kl))t the instant_

_l Will be independent of x o For x < (_2/(ml/kl))t ,
8.neous value of

on the other hand_ AI will generally differ from one spatial point to

another° Thus an observer located at a point x , with x > (c2/(_i/kl))t

(c2/(m2/k2))t , or with x _ (v_/(_4/kh))t- _ depending on which=
with X

ever convective velocity is the fastest D will not have yet experienced

the effects of the boundary for the first t secondso As far as he

is concerned, he sees only an initial=value problemo On the other hand,

an observer located at a point with the coordinate x less than the

product of the fastest convective velocity and the time_ will have already

experienced the influence of the boundaryo The reason for this behavior

is the finite velocities of propagation of the changes in a z _ _ and

_2 ' respectively°



Vllo THE SCATTERING CROSS SECTION
___ - , __

We shall now estimate the scattering cross section for the llght=

by-llght scattering process, The differential cross section per unit

frequency interval is given by eq0 (1)o We have to calculate the spectral

density S(k,_) , which is defined by eqo (2)0 To lowest order in

where

S(k,=) - lim
V_

T_

21_n(1)(k,_)I2

NVT
o

n(1)(k,_) is defined by

(80)

n(1)(x,t) - n(1) (k,m) ei_ °x+_t)

Since we are considering the resonance process_

sin _4 o Therefore

n(1) (x_t) •

(81)

I I T/2 e_i(ko x+mt )n(1)(k,m) = dx dt n(1)(X,t)

V ~ =T/2

I {T/2 )dx dt, e=i(_°5+_t a(¢x,¢t) sin _h
v J-T/2

k_ • i¢4 i e=i(k.k4)o xm dx IT/2dt e=i(_+uh)t a(¢5_¢t)

=TI2

120
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"_'¢4I-e dx
V

e=i(k+k4) ox IT/2 )}- _ dt e=i(_=_4)t a(¢x_¢t
J=T/2

==i% ]

S(k®_) can now be written in the form

21n(l)(k,_) 12

S(k_m) . ¢2 lira -- N VT
V_ o
T_

2 k_ i--- I
32_t2 N V-_

0
T-_

, la(_,_4,,_=%)12 = e2i% a*(_*_,_-%) a(_®_4o=._41

=2i% ]

The spectral density

(82)

Let us take a closer look at a(k_m) o Since a(¢x,¢t) is

a very slowly varying function of x and t , its Fourier transform

a(k,_) is sharply peaked at k = 0 and m = 0 and has a small spread

in k and m about this peak° Consequently the cross terms in eqo (82)

are very small compared to the other terms_ and we shall neglect themo

Let us also neglect the spread in k and _ o Thus a(k-k4,m+u4) will

be approximated by the quantity (VT _ 6v k 6 ) where _ is the
_-_4 _C_4 '

value of a(x,t) at the peak° The value of S(k_m) will then be

approximately



2 a k

32_ 2 N e _ _
o
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(83)

where 6(k) and _(_) are the Dirac delta functions° We shall not

2
write _ in the expression for S(k_) from now on_ because the

presence of _ 2 _ which is of 0(¢ 2 ) _ is sufficient to indicate that

s(_,_) is of o(E2) o

We may note that if we were not dealing with a resonance

process_ n(1)(x_t) = 0 _ and the first non_vanlshlng term in the

expansion of n(x_t) would be n(2)(_t) (which is of 0(e2))o

Consequently S(k,m) would be of 0(_ h) o Therefore the resonance

process enhances the scattering cross .section significantly°

We would like to compare our cross section with that obtained

by Kroll, Ron, and Rostoker2o The cross sections will differ only because

of the differences in the spectral densities° The spectral density S RR

of Kroll, Ron_ and Rostoker 2 is, when expressed in our notatlon_

S_R(_,_). ___ 1 k4(Al°A2)2
128_ 2 N 2 _'_om _i _2 I_(_,_)I

[6(k=k4)_(_÷_)

+ 6(k+_4) _(_=_4)] , (8_)
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where ¢(k,m) , the longitudinal dielectric functlon_ is approximated by

Here F is the Landau damping decrement or the collisional damping

decrement_ whichever is larger°

Let us define R to be the ratio of _RR(k_) to our

S(k,_) o Then

2 k_ (_l o A2}2

2 2 _ F2o _i _2 {_ k }

When R < i ® SkRR(k,m) < S(k,m) , and the density n(x_C) of Kroll

2
et alo is smaller than our densityo This means that Landau damping

and/or colllslonal damping is more effective in limiting the density

oscillations than are the nonlinear effects° On the other hand, when

R > 1 , the nonlinear effects are more effective than the damping

mechanisms° Thus, given the numerical values of the plasma parameters

and the electric fields produced by the two lasers, we can determine

by means of the expression (85) which physical mechanism is the

dominant one in limiting the longitudinal plasma oscillations°

(85)

Let us estimate the ratio R by using a set of typical

numerical values of the plasma and the incident electric field parameters°

We shall use the set selected by Kroll, Ron, and Rostoker 2 in their



calculations of the damping effects° Therefore we choose N - I0 I_ cm=3
0

_T " I0 eV , m - 5o6_ x i0 II see ®IP , I (of incident electric field)

007 x i0 _4 cm, E (amplitude of the incident electric field) _ 108 V/cm

and F (collisional damping decrement) m lol x lO ®3 o With this
C

choice of parametersz according to Kroll et alo2, the collisional damping

dominatesover theLandaudamping° SinceIAII, IA21,and I_I are

of o(_), I_21 and I_I arebothof 0(Al) .whichinturnisof

O(E incident)° Substituting the above numerical values of the plasma

and the incident electric field parameters into eq0 (85)9 we obtain

10 =8 < R < 10 ©7 o (This estimate was made under the assumption that

E1 and _2 are parallel°) Therefore for this choice of parameters

the damping effects limit the longitudinal plasma oscillations more

effectivel M than do the nonlinear effectsQ



VIII, DISCUSSION

Wehave shown that the presence of even a small amount of non-

linearity, an the equations used to describe the behavior of a plasma,

can effectively limit the amplitude of plasma oscillations driven by

two light beams, In fact_ under some circumstances_ the nonlinear

effects limit these oscillations more strongly than the Landau damping

and the collislonal damping mechanisms,

The nonlinear effects are always accompanied by a non=vanishing

longitudinal electric field of0(_)_ E_l) _ whenever theylimi_.plasm_oscill-

ationso This is a very interesting fact_.because,_ E_I)• . _'as_well am the

_(i) satisfythe 0(_ plasma e_uations_ which are._transverse field _T '

linear, snd_therefore keepthe, O_e_.tr_nsverae'_md._t.he 0(_)_longitudinal

components of fields completely separated from one another,

The transverse fields are determined by the output of the two

lasers° But there is no experimental device which sets up a longitudinal

_(i)
field_ _L o All that is done is to make sure the plasma is an a

_uiescent state at the beginning of the experiment, The experimental

set-ups for the case when the difference in frequencies of the two laser

beams approximately equals to the natural frequency of longitudinal plasma

oscillations® and for the case when it is not_ are identical°

When the difference in frequencies of the impinging beams is

not equal to the frequency of plasma oscillations, no secular terms arise

in the equations of motion, and _E_l) remains identically zero - there

is only a second=order field E_2)- o However, when the frequency of one
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of the impinging waves is varied until it differs from the frequency

of the other impinging wave by the frequency of plasma oscillations_ a

resonance process results_ Longitudinal plasma oscillations are excitedo

are simultaneously limited by nonlinear effects_ and E(LI) appears

spontaneouslyo This longitudinal oscillation in turn scatters the light

beams o

It is also interesting to note what happens when the amplitudes

of the two impinging waves are varied while keeping everything else

constant° Let us assume for the moment that the electric fields ET(1)

and E(Ll) and the damping decrement F have been made dimensionless_*

The density fluctuation n(x_t) which is limited by nonlinear effects

is O(E(LI)) 0 Since EL(1) is of O(E(TI)) _ n(x_t)_ is also of 0(_i)) o

As _T-(1) increases or decreases, n(x_t)_ will also increase or decrease d

respectively° On the other hand_ _he density fluctuations_ n(x_t)

which are limited by Landau and/or collisional damping are of

_(1)2

0<__o They will also increase or decrease as _i)increase. or

decreases, respectively° The damping decrement r , however, does not

depend on _i) _(i) is varied°, and will not change when ":T

J ....

*r is made dimensionless by dividing it by the plasma frequency

(1) _(1)

'"p o ET and "_L may be made dimensionless by dividing them by

(ll2N my 2)1/2
o o- _ the square root of the thermal ener_ densityo



E I)2(i)
<_ P _< (E_I) and the density n(x_t)When ET _ _

which is llmitedby a damping mechanism is smaller than the density

n(x,t) which is limited by nonlinear effects° On the other handp when

E_ I)2
(1) >_ r _ _> (i) and the situation is reversed° We conclude

ET ' F ET

_(i) is very weak, and
from this that damping effects dominate when _T

the nonlinear effects dominate when E_I)- is strong° ,The conclusion

is borne out by the numerical calculations in Section VII0

This is not unreasonable_ because E_ I) is a measure of

(i) does not affect F
nonlinearity in the eguations of motion_ but ET

_,(1) very small results in very
the damping decrement° Keeping _T

small nonlinear terms_ without affecting the damping° An increase in

E(1)
T , on the other hand_ increases the magnitude of nonlinear %erms_

while still keeping the damping decrement unchanged° Therefore an

increase in E$ I) results in the increasing importance of nonlinearity

as compared with the damping effects°
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APPENDIX

DERIVATION OF WAVE E_UATIONS

We shall derive the wave equation for E (e_o (i0) an the

text )o

Taking the curl of eq. (8) and substituting into e_o (9)_ we

obtain

/ E_'] @2E 4_N e _v h_e ___ _ _ R -_ (nv)
@x x _x ' c St 2 c c

_v

If we now substitute for _-_ from eqo (4) into eqo (AI)_ there results

(_)

2

_ne
2 _x P

mc _

h_N e
o _ e

.._ (vo_ v+--- vxB)_ mc _
c

]¢_e ;)
# •

÷- "_- _nv;
2 _t

c
"_ n * V ° Sx V.

O _

4_e 2

mc

n(E + _ v x B) (_)

@
I

The term @x p can be obtained from eqo (5) in the following wa_:
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From eqo (3) we have

@ 1 @n 1 @

@x _ N @t N Bx
O O

o (nv)

Substituting ego CA3) into eqo (5)_we obtain

0 " _"

- _- 1 -_,_ o (nv) - _-_ o v = v o ,_x_ p

i) _'' e
= ° ,,_ v = o v =,--= (p x B + p x B)o

Applying the operator _" @xx . to eqo (A4) and then substituting

(A3) into it_ we obtain

(A3)

@2 @ 2Po @2 @n V2 @v.--=. .m o -_ + p ..,.
@t2 @_ __= NO _ _x_ o _t

• "--" @t _ o n @t @x v o p
NO _ . ~ _

,,I, P

+_.e xB+pxB
mc _ =

(AS)
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We can obtain the term P V2 Sv
o _ from eqo (4), which yields

V2 _v Po V2 _ P = P e V2==.____ __. o _ E
Po _t N m 3x m

O _

= PO v ° _x v + v x O r_
_ _ mc _ NO

Po V2 i
+vo_ v =_ n(_.+ v×B)

" 0

(A6)

Also, from eqo (6), we obtain

n = = w_e .-- o E_x
(AT)

Substituting ,(A6) and (A?) into (A5)j we obtain

P

v2 E " Po "_xV+ v x

I '" Inv2 _ . _ v2
÷ n _ ax _ Nomo \a_ +vo-- v ÷ (E

+i vx +No _ \c - St _x _x
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+e pxB+l:,x

3P

where we have defined the thermal velocity v2 -=
O N m o

o

If we now apply the operator --=_ I 2 V to eC.o
_t 2 = _= vo •

and then substitute (A8) into it, we obtain eqo (i0) in the text°

(A2)

(A8)
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