

(THRU)

GPO PRICE \qquad
OTS PRICE(S) $\$$ \qquad $-$

Hard copy (HC) \qquad
Microfiche (MF) \qquad

APPROVAL SHEET

of Theais: Collisions and Nonlinear Effects in Plasmas
 Name of Candidate: Adrian Anatol Dolinsky Doctor of Philosophy. 1965

Theais and Abstract Approved:
Derek \bar{A}_{0} Tidman
Research Professor
Institute for Fluid Dynamics
and Applied Mathematics

Date Approved: May 7, 1965

Title of Thesis: Collisions and Nonlinear Effects in Plasmas Adrian Anatol Dolinsky, Doctor of Philosophy, 1965

Thesis directed by: Professor Derek A_{0} Tidman

$$
25265
$$

Nonlinear and collision effects in the behavior of plasmas are investigated for an electron gas embedded in a neutralizingounformly smeared out background of positive charge. Nonlinearity enters into the description of the behavior of a plasma through the collision term (arising from interparticle correlations) and the selfoconsistent electric field term (ion the ensemble average of the sum of Coulomb fields of all of the plasma particles) in an exact kinetic equation it is impossible (at the present time) to treat both nonlinear terms simultana eously. For this reason the investigation is divided into two separate parts: In PART ONE the effect of the collision term on the behavior of a spatially homogeneous plasma is investigated; in PART TWO the selfa consistent electric field term is treated under conditions which enable us to drop the collision term

In PART ONE the problem of relaxation of the exact Balescu* Lenard kinetic equation is solved numerically as an initial value problem for isotropic velocity distribution functions. Several different forms of the initial distribution function are selected: a Gaussian peaked at about 0.28 of the electron thermal velocity; a resonance function; and a Maxwellian coexisting with a sharply peaked Gaussian (the peak of the

Gaussian being located at 2.0 electron thermal velocities) The Fokkerm Planck kinetic equation is also solved numerically under the aame restrica tions and with the same initial distribution functions. A comparison of the solutions of the two kinetic equations shows very small difference between them, and a probable reason for this is advanced. In addition. a relaxation time is defined, and the long time behavior of the distrio bution functions is studied.

In PART IWO the probiem of lightobyolight scattering in a plasma is investigated. Two coherent, monochromatic planempolarized. plane electromagnetic waves (produced by two lasers) pass through a large volume of a quiescent electron plasma and are scattered. When the frequencies of the impinging waves are tuned so that their difference is approximately equal to the frequency of the natural longitudinal plasma oscillations, these oacillations are excited. However, they are limited by the action of several physical mechanisms 8 the Landau damping, the collisional damping, and the nonlinear effects.

We are interested in the nature of the nonlinear effects. For this reason, the plasma is assumed to be describable by means of the collisionless plasma moment equations coupled with the Maxwell equations. The amount of nonlinearity is assumed to be small, and the equations are handled by the method of multiple time and spatial scales, a generalization due to Frieman and Sandri of a perturbation scheme developed for nonlinear mechanics by Krylov, Bogoliubov, and Mitropolsky.

The results show that there is a slow rotation and/or change in magnitude of the amplitudes of the two impinging electromagnetic waves (as they pass through the plasma). The rotation is both in space and in time. At the same time, a longitudinal electric field is built up slowly inside the plasma, and its amplitude changes slowly in space and in time. All of the above variations in space and in time proceed at rates which are proportional to the strength of the impinging radiation. Furthermore, the strength of the longitudinal field is at most of the order of magnitude of the strengths of the incident electromagnetic waves. This indicates the effectiveness of noninearity in limiting the longitudinal plasma oscillations.

COLLISIONS AND NONLINEAR

EFFECTS IN PLASMAS
by
Adrian Anatol Dolinsky

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1965

PREFACE

We shall be concerned with the behavior of fully ionized plasmas, $i_{0} e_{\text {g }}$ gaseous mixtures of several species of charged particles at sufficiently high temperatures and low densities to assure complete ionization for all times. Under such circumstances quantum effects can be neglected provided the De Broglie wavelengths of particles are much smaller than the average interparticle distances. At the same time, we shall assume that particle thermal velocities and macroscopic streaming velocities are small compared to the velocity of light。 Consequently relativistic effects are also negligible. Such plasmas can therefore be described by the laws of classical physics for a manymbody system of particles interacting through Coulomb forces.

A complete statistical description of a plasma would be by means of a probability distribution function in the phase space of all of the particles. This probability distribution function must obey Liouville's equation. However, a solution of Liouville's equation is generally impossible, Besides, a description by means of a probability distribution function in the phase space of all particles yields more information than is necessary for many purposes. Many physical properties of a plasma can, however, be determined from a knowledge of a one-particle distribution function for each species of particles. By a onemarticle distribution function we mean the average (ioe ensemble average) particle number density of a given species in the six-dimensional position-velocity space.

We would like to write down a differential equation from which a onemparticle distribution function can be determined for all times if it is known at some initial time, say $t=0$ 。 Such an equation ought to contain no more detailed information than is contained in one-particle distribution functions; $i_{0} \mathbf{e}_{0}$, only terms containing onemparticle distribution functions should be present. Such an equation (also called a kinetic equation) can be derived from the BBGKY (Born-BogoliubovaGreen-Kirkwoodmyvon) hierarchy of equations - which are derived from Liouville's equation = if some assumptions are made about the correlation functions for particles.

The first assumption is that the correlation functions are in some sense small compared to the order of magnitude of the onemparticle distribution functions. This is usually true throughout most of the phase space of a manymbody system of particles interacting through Coulomb forces. If it is also assumed that one is dealing with phenomena that vary slowly in space and time (compared to the plasma period $\omega_{p}^{\infty l}$ and Debye length), then the appropriate kinetic equation for the one-particle distribution function $f_{\sigma}(\underline{x}, \underline{v}, t)$ for the species σ becomes

$$
\frac{\partial f_{\sigma}}{\partial t}+\underline{v} \circ \frac{\partial f_{\sigma}}{\partial \underline{x}}+\frac{e_{\sigma}}{m_{\sigma}}\left(\underline{E}+\frac{1}{c} \underline{v} \times \underline{B}\right) \cdot \frac{\partial f_{\sigma}}{\partial \underline{v}}=c\left(f_{\sigma}, f_{\tau}\right)
$$

where e_{σ} and m_{σ} are, respectively, the charge and mass of a particle of species $\sigma ; E(\underline{x}, t)$ is the electric field, which includes both an externally produced field and the self-consistent field of plasma particles (ioe the
sum of Coulomb fields of all particles, averaged over the ensemble): $B(x, t)$ is an externally produced magnetic field; and $C\left(f_{\sigma} \otimes f_{\tau}\right)$ is a collision term (of the order of magnitude of the pair correlation functions), arising from correlations between particles.

The derivation of an appropriate expression for $C\left(f_{\sigma}, f_{\tau}\right)$ is impossible without the introduction of additional assumption. Some problems, however, can be treated, to a good approximation, by neglecting the collision term, The resulting kinetic equation is sometimes called the collisionless Boltzmann equation, of the Vlasov equation. It can be used, for example, to describe reasonably well the behavior of a plasma at very high temperatures and very low densities, In general, however, the collision term is important and should be retained. Two different forms of $C\left(f_{\sigma}, f_{f}\right)$ are widely used in plasma theory. One of them is called the Fokker-Planck collision term, or the Rosenbluth $=$ MacDonald=Judd collision term; the other, a more exact collision term, is called the BalescumLenard collision term。

The Fokker-Planck collision term is derived in the same way and under the same assumptions as the collision term for a gas in which particles interact through strong, short-range forces. It can be obtained, for example, by making a Taylor expansion of the Boltzmann collision integral to treat distant collisions. Here, however, an additional assumption has to be made that only those twomarticle collisions are to be counted for which
the impact parameter for colliding particles is less than some characteristic length, which is chosen to be the Debye radius.

The assumptions under which the FokkeraPlanck collision term is derived have many questionable features. First, it is assumed that a plasma particle collides with only one other plasma particle at any one time; ioe only twombody collisions are assumed to exist. However because of the long range nature of Coulomb forces, a particle will collide with many other partinles simultaneously. Second, the time between two collisions is assumed to be much greater than the time duration of a collision This is also incorrect for the same reason. Third, the screening of the charge of a particle by oppositely charged particles does not appear naturally, but has to be added in as an extra assumption. We may summarize by saying that the Fokker=Planck collision term treats collective effects improperly.

The more exact expression for the collision term, which is used in plasma theory is the Balescu-Lenard collision term. It can be derived from the BBGKY hierarchy of equations by making the somealled Bogoliubov adiabatic hypothesis. This is that the higher interparticle correlation functions relax to their asymptotic longmtime forms rapidy over the time scale in which the onemarticle distribution functions are changingo (The Bogoliubov adiabatic hypothesis cannot be made for high frequency phenomena like electron plasma oscillations. In such phenomena the onemarticle distribution functions change on a time scale comparable to the time scale
of change of the interparticle correlation functions.) The resulting BalescumLenard collision term treats collective effects properly taking into account automatically the screening of charged particles and the many-body collisions.

The kinetic equation is generally nonlinear. The nonlinear terms in the equation are the selfoconsistent electric field term and the collision term。 Both nonlinear terms are important in the behavior of a plasma, and we biali is intaiested in both of them in this work. We shell be interested in the self=consistent field termbecause its nonlinearity has not been studied sufficiently, However, this nonlinearity even if small, is capable of limiting plasma oscillations effectively. We shall also be interested in the collision term, because it has not been investigated sufficiently: only the Fokker=Planck kinetic equation has been studied so f"ar to any great extent, whereas only the linearized version of the Balescumenard kinetic equation has been integrated.

To simplify the mathematics, we shall limit ourselves to plasmas composed of only one species of particles, electrons, embedded in a uniformly smeared out background of positive charge to ensure charge neutrality on the average. It is not possible to treat the self"consistent field term and the collision term simultaneously。 Further, the Balescu=Lenard collision term we use is valid only for a spatially homogeneous fieldofree plasma; whereas the simultaneous presence of both the selfoconsistent field term and the

FokkerwPlanck collision term makes the problem generally intractable (except when the kinetic equation is linearized). For this reason we divide our investigation into two separate parts and select two particular problems. In PART ONE the effect of colliaion terms on the behavior of a spatially homogeneous plasma is investigated。 In PART TWO the selfaconsistent field term is treated under conditions which enable us to drop the collisional terms for the problem of lightalight scattering in a plasma.

To DAR' ONE to make the problem mathematically tractable we limit ourselves to onewparticle distribution functions which are isotropic in velocity space. The exact Balescum-Lenard equation is solved numerically as an initial vaiteproblem for such distribution functions. Several initial distribution functions are chosen: a Gaussian, peaked at 0,28 of the electron thermal velocity; a resonance function; and a very sharp Gaussian peaked at 200 electron thermal velocities, coexisting with a Maxwelli'an The exact FokkermPlanck equation is also solved numerically for the same initial digtribution functions. The values of the plasma parameters are chosen such that differences between the solutions of the two kinetic equations = if there

Only small differences (a few percent) between the solutions of the two kinetic equations were obseryed for the initial distribution functions selected, and a possible explanation for this is advanced. The difference between the solutions of the two kinetic equations for the test particle
problem is also analyzed，and a reason for this difference is given。 In addition，a relaxation time is defined，and the long time behavior of the three initial distribution functions is investigated by means of a numerical integration of the Fokker Planck equation。

In PART TWO we treat the problem of lightmbymight acattering in a plasma：Two coherent monochromatic，plane×polarized，plane electro－ magnetic waves impinge on a quiescent electron plasma and are scattered． Hes we firencies of the two incident waves are tuned so that their difference is approximately equal to the frequency of the longitudinal plasma oscillations，those oscillations are exaited。 However，they do not grow linearly with time because of the limiting effect of several physical mechanisms．

We are interested in the nature of the mechanigm of nonlinearity only．Therefore we assume the plasma to be describable by the colisionless moment and Maxwell equations．We also assume the nonlinear terms in these equations to be small compared to the linear terms．The equations can then be handled by the method of multiple time scales and spatial scales；a generalization due to Frieman and Sandri of a perturbation scheme developed by Krylov，Bogoliubov，and Mitropolsky for nonlinear mechanics．

The results show that there is a slow rotation and／or change in the magnitudes of the amplitudes of the two impinging electromagnetic waves as they pass through the plasma．The rate of rotation is proportional to
the strength of the impinging radiation。 At the same time, a longitudinal electrostatic oscillation is built up slowly inside the plasma. The rate of buildsup of this oscillation is proportional to the rate of change of the amplitudes of the transverse fields; the strength of the amplitude of this oscillation is at most of the order of magnitude of the strengths of the transyerse fields. All of these effects are due to a proper treats ment of the small nonlinear terms, in the equations of motion, and cannot Li vocailied w eimpiy carrying conventional perturbation theory to second order.

ACKNOWLEDGEMENTS

The author is deeply indebted to Professor $D_{0} A_{0}$ Tidman for suggesting these topics and for his guidance and interest along the way.

The author is also grateful to $\mathrm{Dr}_{\mathrm{o}} \mathrm{R}_{\mathrm{o}}$ Goldman for many helpful discussions of PART TWO especially since PART TWO forms a part of a problem on which $D x_{0}$ Goldman and the author have been cooperating。

Many thanks are due to Mrs. Lana Einschlag for her wonderful typing of the manuscript.

The work was supported in part by the National Aeronautics and Space Administration under Grant NsG 220 0 62. A lot of the computing time, on the IBM 7090 somputer was financed by the Computer Science Center of the University of Maryland.

TABLE OF CONTENTS
Section Page
PREFACE ii
ACKNOWLEDGMENTS x
PART ONE：NUMERICAL INTEGRATION OF KINETIC EQUATIONS
Io INTRODUCTION 1
II $_{o}$ KINETIC EQUATIONS 4
A_{0} BALESCU＊LENARD（BL）EQUATION 4
B ${ }^{\circ}$ THE FOKKER－PLANCK EQUATION WITH THE ROSENBLUTH MACDONALD \times JUDD COLLISION TERM（RMJ EQUATION） 8
C．RELATIONSHIP BETWEEN THE BL AND THE RMJ EQUATIONS 10
D。 DEPENDENCE OF THE KINETIC EQUATIONS ON \mathbf{k}_{0} 12
III RELAXATION TIME 15
IV ${ }_{0}$ NUMERICAL INTEGRATION 16
A．BL EQUATION 16
B。 RMJ EQUATION 19
C_{0} INITIAL DISTRIBUTION FUNCTIONS 21
D。 RELAXATION TIME $\varepsilon(v, \tau)$ 24
Vo RESULTS OF NUMERICAL CALCULATIONS 25
A。 COLLECTIVE EFFECTS 25
Bo RELAXATION TO A MAXWELLIAN 30
Co RELAXATION TIME 32
VI。 DISCUSSION 34

TABLE OF CONTENTS（continued）

Section Page
APPENDIX A。 DERIVATION OF THE ISOTROPIC BL EQUATION 39
APPENDIX B_{0} THE TEST PARTICLE PROBLEM 47
APPENDIX C_{0} THE EXPONENTIAL DECAY 53
REFERENCES 58
PART TWO：NONLINEAR EFFECTS IN THE LIGHT® BYolight scatrering IN A PLasma
Io INTRODUCTION 69
II。 ELECTRON－PLASMA EQUATIONS 75
A．MOMENT AND MAXWELL EQUATIONS 75
B。 WAVE EQUATIONS 77
III。 PERTURBATION EXPANSION 81
A．THE NATURE OF THE PERTURBATION SCHEME 81
Bo THE $O(\varepsilon)$ AND $O\left(\varepsilon^{2}\right)$ PLASMA EQUATIONS 83
IV 0 THE $O(\varepsilon)$ SOLUTIONS AND SECULAR TERMS IN $O\left(\varepsilon^{2}\right)$ 88
A．INITIAL AND BOUNDARY CONDITIONS 88
Bo TRANSVERSE COMPONENTS OF O（ ε ）SOLUTIONS 91
C．SECULAR BEHAVIOR IN $0\left(\varepsilon^{2}\right)$ EQUATIONS 92
Do LONGITUDINAL COMPONENTS OF O（ ε ）SOLUTIONS 95
V．REMOVAL OF SECULAR BEHAVIOR FROM O（ ε^{2} ）EQUATIONS 97
A．EVALUATION OF NON－LINEAR TERMS 100
Bo ELIMINATION OF SECULAR TERMS FROM LONGITUDINAL FIELDS 102
Co ELIMINATION OF SECULAR TERMS FROM TRANSVERSE FIELDS 104

TABLE OF CONTENTS（continued）

Section Page
VI。 PROPERTIES OF THE RELATIONS WHICH REMOVE SECULAR BEHAVIOR 107
A。 THE PURE INITIAL VALUE PROBLEM 000000000000000000000000 107
Bo THE PURE BOUNDARY VALUE PROBLEM 116
Co MIXED INITIAL®VALUE－BOUNDARY VALUE PROBLEM 118
VII。 THE SCATTERING CROSS SECTION 120
VIII。 DISCUSSION 125
APPENDIX。 DERIVATION OF WAVE EQUATIONS 128
REFERENCES 132
FigurePage
Io BL Solution for the Initial Gaussian with $k_{o} / k_{D}=1.4178 \times 10^{8}$ 59
II。 $B L$ Solution for the Initial Gaussian with
$k_{0} / k_{D}=300$ 60
III。 BL Solution for the Initial Resonance Function 61
IV. BL Solution for the Initial Gaussian Coexisting with a Maxwellian 62
Vo RMJ Solution for the Initial Gaussian with
$k_{0} / k_{D}=300$ 63
V_{0} RMJ Solution for the Initial Resonance Function 64
VII, RMJ Solution for the Initial Gaussian Coexisting with a Maxwellian 65
VIII $\varepsilon\left(V_{\nabla} \tau\right)$ for the Initial Gaussian with $k_{o} / k_{D}=300000000$ 66
IX $\quad \varepsilon\left(V_{8} \tau\right)$ for the Initial Resonance Function 67
$X_{0} E\left(v_{8} \tau\right)$ for the Initial High=Energy Gaussian Peak
Coexisting with a Maxwellian 68
 70

PART ONE

NUMERICAL INTEGRATION OF KINETIC EQUATIONS

I. INTRODUCTION

The problem of the relaxation to equilibrium of a fuily ionized non-equilibrium plasma has been of interest for some time. In the absence of analytic solutions to the appropriate kinetic equations, which are non-linear, various authors have investigated problems that do not require the solution of a nonalinear kinetic equation. As an example of such problems, one may mention the case of the relaxation to equilibrium of +is Afotrity: fumetion of a test particle injected into ? quiescent plasma, In these problems the appropriate kinetic equation can be linearized. Up to date the only investigations of the reiaxation of a testoparticle distribution function have been sarried out by means of the Fokker-Planck kinetic equation. Thus Kranzer studied the thermal. ization of a fast ion in a plasma by means of a numeracal solution of the FokkerøPlanck equation. Frisch ${ }^{2}$ defined certain characteristic times which he called time lags in the thermalization of a fast ion injected into a plasma, and proceeded to calculate them without actually solving the FokkeraPlanck equation. Ree and Kidder ${ }^{3}$ obtained an analytic solution for the Uevacizetion of a fast test ion injected into a plasma by approximating the friction and dispersion coefficients in the FokkerPlanck equation. Their solution is valid only when the speed of the test ion is less than the average speed of the plasma electrons but large enough so that the plasma electrons interact more strongly with the test ion than do the plasma ions.

Attempts at an actual solution of a nonolinear kinetic equation have up to now been confined only to the Fokker-Planck equation。 Further more, they have been numerical solutions. In fact, the only investigation of the relaxation of a non=linear kinetic equation up to date is that of MacDonald, Rosenbluth and Chuck ${ }^{4}$, who solved numerically, as an initial value problem, the non=linear Fokker-Planck equation for an electron-positron plasma which is spatially homogeneous and isotropic in velocity. It would be interesting to carry out a similar investigation for the non=linear Ba? - matera \quad motinn. This would be esperially interesting in yiew of the fact that the BalescumLenard equation by treating collective effects properly, gives a more general description of the behavior of a spatially homogeneous plasma than does the FokkeraPlanck equation, which does not treat collective effects properly. The only attempt so far at a solution of the BalescumLenard (B / L) equation is the solution as an initial value probiem of the linearized BL equation by Rosenberg and Wu. These two authors took a multicomponent plasma and perturbed the distribution function of each species of particles slightly from the equilibrium Maxwellian distribution. Then they proceeded to investigate the decay of this small perturbation in the linere rercination。

This paper presents a numerical integration of the exact BalescuLenard (BL) kinetic equation for different initial distributions of an electron plasma embedded in a neutralizing, uniformly smeared out, positivecharge background. The Fokker=Planck equation with the Rosenbluth, MacDonald, Judd collision term (RMJ equation) is also integrated with the same initial

Abstract

distributions. By comparing the solutions of the two kinetic equations one hopes to arrive at an estimate of the importance of collective effects in the relaxation of these distribation functions.

The simplifying assumption made, in these calculationsp is that the distribution functions are isotropic in velocity space. For a limited class of such distribution functions $=$ for example for distribution functions which are monotomically decreasing functions of $|y|=$ our results indicate that for most purposes there is a negligible difference (a few percent) between the predictions of the BL and RMJ kinetic equations. This is because these isotropic distributions are sufficiently stable that the v and k integrals in the $B L$ equation ((A1) and (A2)) do rot approach a zero of the Landau denominator D^{+}, anywhere in the range of integration。 Thus collective effects, which are treated properly in the BL equation. but not in the RMJ equation, are of little importance for such distributions.

We also define numerically a relaxation time in section (III) by considering how close all portions of a given initial distribution function will get to the final Maxwellian after a certain time, and whether or not they will stay close to the Maxwellian for all times after that time our conclusion is that a distribution function often oscillates about the final Maxwellian at certain points in velocity space. These points depend on the form of the initial distribution function. This behavior points out that the relaxation to the final Maxwellian cannot in general be taken to be an exponential decay (with the possible exception of the higheenergy tail)。 This conclusion agrees with the solution of the linearized BalescumLenard equation of Rosenberg and Wu^{5}. which is a superposition of exponential decays.

II. KINETIC EQUATIONS

A。 BALESCU-LENARD (BL) EQUATION

Let $f\left(v_{1}, t\right)$ be the one-particle distribution function for

 a spatiaily uniform electron plasma embedded in a uniformly smeared out background of positive charge $\quad f\left(v_{1}, t\right)$ has two normalization condie tions$$
\begin{equation*}
\int f\left(y_{1}, t\right) d v_{1}=d \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int v_{1}^{2} f\left(v_{1}, t\right) d v_{1}=v_{0}^{2} \tag{2}
\end{equation*}
$$

where v_{0} is the thermal speed of electrons.

For the purposes of numerical integration it is convenient to choose a set of dimensionless variables. Therefore we shall define three dimensionless variables $V_{V^{g}} \tau$, and $g\left(V_{1} \tau\right)$ by

$$
\begin{align*}
& v_{1} \equiv \frac{v_{1}}{v_{0}} \tag{3}\\
& \tau \equiv \frac{t}{\tau_{D}\left(v_{0}\right)} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
g\left(v_{1}, t\right) \equiv v_{0}^{3} f\left(v_{1}, t\right) \tag{5}
\end{equation*}
$$

where ${ }^{{ }^{5}}\left(v_{0}\right)$ is the Spitzer defiection time ${ }^{6}$ for electrons moving with velocity v_{0}, given by the expression

$$
\begin{equation*}
\tau_{D}(v)=\frac{m^{2} v^{3}}{8 \pi n_{0} e^{4} \ln \Lambda_{j}^{\Gamma}\left(1-\frac{1}{3} \frac{v_{0}^{2}}{v^{2}}\right) \operatorname{erf}\left(\left(\frac{3}{2}\right)^{\frac{1}{2}} \frac{v}{v_{0}}\right)-\sqrt{\left.\frac{2}{3 \pi} \frac{v_{0}}{v} e^{-\frac{3}{2} \frac{v^{2}}{v_{0}^{2}}}\right]}} \tag{6}
\end{equation*}
$$

where erf is the error function. From equations (1) and (2), the two dimensionless normalization conditions for $g\left(V_{1}, \tau\right)$ are

$$
\begin{equation*}
\int g\left(V_{1}, \tau\right) d v_{1}=1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int v_{1}^{2} g\left(v_{1},\right) d v_{1}=1 \tag{8}
\end{equation*}
$$

For isotropic velocity distributions, the BL equation can be written in dimensionless form as

$$
\begin{align*}
\frac{\partial g}{\partial \tau} & =\frac{\alpha}{V}\left\{\frac{1}{V}\left(\frac{\partial^{2} g}{\partial V^{2}}-\frac{1}{V} \frac{\partial g}{\partial V}\right) \int_{0}^{V} V_{1}^{2} d V_{1} G\left(V_{1} \tau\right) \Phi\left(V_{1} \tau\right)\right. \\
& +\frac{\partial g}{\partial V} \int_{0}^{V} V_{1}^{2} d V_{1} g\left(V_{1} \tau\right) \Phi\left(V_{1} \tau\right) \\
& +V \frac{\partial g}{\partial V} G\left(V_{s} \tau\right) \Phi\left(V_{s} \tau\right) \\
& \left.+V^{2}\left[g\left(V_{\theta} \tau\right)\right]^{2} \Phi\left(V_{s} \tau\right)\right\} \tag{9}
\end{align*}
$$

where the functions $G\left(V_{8} \tau\right)$ and $\Phi\left(V_{9} \tau\right)$ occurring in (9) are defined by

$$
\begin{equation*}
G(V, \tau) \equiv \int_{V}^{\infty} V^{\prime} d V^{\sim} g(V ; \tau) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(V, \tau) \equiv \frac{1}{4 \ln \frac{1}{k_{D}}}\left[\ln H\left(V_{Q} \tau\right)=\frac{3}{\pi^{2}} \frac{r\left(V_{Q} \tau\right) L\left(V_{v} \tau\right)}{V g\left(V_{\theta} \tau\right)}\right] \tag{11}
\end{equation*}
$$

where the functions $I\left(V_{9} T\right)$, $H\left(V_{9} T\right)$, and $L\left(V_{9} T\right)$ are defined by

$$
\begin{equation*}
\Gamma\left(V_{s} \tau\right) \equiv \frac{4 \pi}{3} P \int_{0}^{\infty} \frac{V^{2} g\left(V^{2} \tau\right) d V^{2}}{V^{2}-V^{2}} \tag{12}
\end{equation*}
$$

$$
\left(P \int_{0}^{\infty}\right. \text { denoting the principal value integral) }
$$

$$
\begin{equation*}
H\left(V_{0}, \tau\right) \equiv \frac{\left.\left[\left(k_{0}\right)^{2}+\Gamma\left(V_{0}\right)\right]^{2}+\frac{\sum_{2}}{\frac{2}{3}} \pi^{2} V_{g}\left(V_{0}\right)^{2}\right]^{2}}{\left[\Gamma\left(V_{0}+\right)\right]^{2}+\left[\frac{2}{3} \pi^{2} V_{g}\left(V_{0}\right)_{1}^{i}\right.} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
L\left(V_{Q} \tau\right) \equiv \tan ^{-1} \frac{2}{3} \pi^{2} \frac{V g\left(V_{2} \tau\right)}{\Gamma\left(V_{\varepsilon} \tau\right)}=\tan ^{-1} \frac{2 \pi^{2}}{\left.\frac{k_{0}}{k_{D}}\right)^{2}+\Gamma\left(V_{\bar{x}} \tau\right)} \tag{14}
\end{equation*}
$$

The quantity k_{0} is the upper limit on the k_{1} integration mentioned in Appendix A_{0} Its value was taken as ${ }^{7}$

$$
\begin{equation*}
k_{0}=\frac{K T}{e^{2}} \tag{15}
\end{equation*}
$$

where K is the Boltzmann constant. T is the temperatures and e is the electronic charge。 k_{D} is the Debye wave number, given by

$$
\begin{equation*}
k_{D}=\left(\frac{4 \pi n_{0} e^{2}}{K T}\right)^{\frac{1}{2}} \tag{16}
\end{equation*}
$$

where n_{0} is the electron particle density。 a is defined by

$$
\begin{equation*}
\alpha \equiv \frac{16 \pi^{2} n_{0} e^{4}}{m^{2} v_{0}^{3}} \quad{ }^{\tau} D_{D}\left(v_{0}\right) \ln \frac{k_{0}}{k_{D}} \tag{17}
\end{equation*}
$$

where m is the electron mass.

B. THE FOKKER \quad PLANCK EQUATION WITH THE

ROSENBLUTH $-M A C D O N A L D=J U D D$ COLLISION TERM (RMJ EQUATION)

The isotropic, spatially homogeneous RMJ equation for an electron plasma embedded in a uniform background of positive charge is ${ }^{4} \%$

$$
\begin{align*}
& \frac{\partial f^{2}}{\partial t}=\frac{16 \pi^{2} n_{0} e^{4}}{m^{2}}\left(\ln \frac{k_{0}}{k_{D}}\right)\left(\frac { 1 } { 3 } \frac { \partial ^ { 2 } f ^ { 2 } } { \partial v ^ { 2 } } \left[\int_{v}^{\infty} v^{0} f\left(v^{\circ} t\right) d v^{*}\right.\right. \\
& \left.+\frac{1}{v^{3}} \int_{0}^{v} v^{-4} f\left(v_{\varepsilon}^{\infty} t\right) d v^{\infty}\right]+\frac{2}{3 v} \frac{\partial f}{\partial v}\left[\int_{0}^{\infty} v^{-} f\left(v^{\circ} t\right) d v^{\infty}\right. \\
& \left.=\int_{0}^{v} v^{2} d v^{-} f\left(v_{0} t\right)\left(1-\frac{v^{2}}{v}\right)^{2}\left(1+\frac{v^{2}}{2 v}\right)\right] \\
& \left.+[f(v, t)]^{2}\right\} \quad \tag{18}
\end{align*}
$$

Transforming to the same dimensionless variables defined in (3)-(5). eq. (18) becomes

$$
\begin{align*}
& \frac{1}{a} \frac{\partial g}{\partial \tau}=\frac{1}{3} \frac{\partial^{2} g}{\partial V^{2}} \int_{V}^{\infty} V^{v} g\left(V_{s}^{i} \tau\right) d V^{*}+\frac{1}{V^{3}} \int_{0}^{V} V^{c^{4}} g\left(V_{i}^{i} \tau\right) d V^{\circ} \\
& +\frac{2}{3 V} \frac{\partial g}{\partial V}\left[\int_{0}^{\infty} V^{\wedge} g\left(V_{g}^{f} \tau\right) d V^{\infty} \infty \int_{0}^{V} V^{*} d V^{\wedge} g\left(V_{\partial}^{\delta} \tau\right)\left(1-\frac{V^{\circ}}{V}\right)^{2} .\right. \\
& \left.-\left(1+\frac{V^{e}}{2 \stackrel{V}{V}}\right)\right]+\left[g\left(V_{9} \tau\right)\right]^{2} \quad . \tag{19}
\end{align*}
$$

where all of the symbols have the same meaning they had in the dimensionless BL equation The two normalizations given by (7) and (8) hold also in the case of the RMJ equation.

C. RELATIONSHIP BETWEEN THE BL AND THE RMJ EQUATIONS

In the limit of $\frac{k_{0}}{k_{D}} \rightarrow \infty$ eq. (9) tends asymptotically to eq. (19). This can be seen from the following considerations:

$$
\begin{equation*}
\Gamma\left(V_{\Omega} \tau\right) \approx 1 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{Vg}\left(\mathrm{~V}_{8}, \tau\right) \approx 1 \tag{21}
\end{equation*}
$$

For $\quad \frac{k_{D}}{k_{0}} \ll 1$.

$$
\begin{equation*}
L(V, r) \cong \tan ^{\infty} \frac{2}{3} \pi^{2} \frac{V g\left(V_{9} \tau\right)}{\Gamma\left(V_{2} \tau\right)} i 1 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln H\left(V_{\partial} \tau\right)=\ln \left(\frac{x_{0}}{k_{D}}\right)^{4} \tag{23}
\end{equation*}
$$

Therefore, by (20) - (23).

$$
\begin{equation*}
\Phi\left(V_{s} \tau\right) \cong 1 \quad 0 \tag{24}
\end{equation*}
$$

The double integral $\int_{0}^{V} V_{1}^{2} d V_{1} G\left(V_{1} \tau\right)$ can be reduced to single integrals in the following way:

$$
\begin{aligned}
\int_{0}^{V} V_{1}^{2} d V_{1} G\left(V_{1,}, \tau\right) & =\int_{0}^{V} v_{1}^{2} d V_{1} \int_{V_{1}}^{\infty} V_{2} d V_{2} g\left(v_{2,} \tau\right) \\
& =\int_{0}^{V} d v_{1} \int_{V}^{\infty} d V_{2} v_{1}^{2} v_{2} g\left(v_{2,} \tau\right)
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{V} d V_{2} \int_{0}^{V_{2}} d V_{1} v_{1}^{2} V_{2} g\left(V_{2} \tau\right) \\
& =\frac{1}{3} V^{3} \int_{V}^{\infty} V^{\circ} g\left(V^{*}, \tau\right) d V^{\circ} \\
& +\frac{1}{3} \int_{0}^{V} V^{-4} g\left(V^{*}, \tau\right) d V^{\circ} \tag{25}
\end{align*}
$$

Substituting first (24) and then (25) into (9) we obtain (19).

D。 DEPENDENCE OF THE KINETIC EQUATIONS ON k_{0}

It is shown in Appendix A that k_{0} is the upper limit imposed on $\left|k_{1}\right|$ in (A2) to make the k_{1} integral convergento Its value is more or less arbitrary, except that it must satisfy the condition

$$
\begin{equation*}
\frac{k_{D}}{k_{0}} \ll I \tag{26}
\end{equation*}
$$

We have, somewhat arbitrarily, fixed its value by eq. (15) 。 This choice indeed satisfies (26), because in this case

$$
\begin{equation*}
\frac{k_{D}}{k_{0}}=\frac{1}{4 \pi} \frac{k_{D}^{3}}{n_{0}} \tag{27}
\end{equation*}
$$

but the rightmand side of (27) is $\ll 1$ under the conditions under which the $B L$ equation is assumed to hold.

Let us test the sensitivity of the BL equation to variations in k_{0}. Since k_{0} enters only in the form $\binom{k_{0}}{k_{D}}$ into eq. (9), let us take (9) at $\tau=0$ and differentiate it with respect to $\left(\frac{k_{0}}{k_{D}}\right)$ 。 This boils down to evaluating the quantity $\frac{\partial}{\partial\left(\frac{k_{0}}{k_{D}}\right)} \alpha \Phi\left(V_{\vee} 0\right)$ in $(9)_{0}$ whose
value, by (11), (13), (14), and (17) is

$$
\begin{equation*}
\frac{\partial}{\partial\left(\frac{k_{0}}{k_{D}}\right)} \quad a \Phi(V, 0)=\frac{\alpha\left(\frac{k_{0}}{k_{D}}\right)^{3}}{\ln \frac{k_{0}}{k_{D}}} \frac{1}{\left[\left(\frac{k_{0}}{k_{D}}\right)^{2}+\Gamma\left(V_{0} 0\right)\right]^{2}+\left[\frac{2 \pi^{2}}{3} V g\left(V_{0} r\right)\right]^{2}} \tag{28}
\end{equation*}
$$

When $\frac{k_{0}}{k_{D}} \rightarrow \infty$, (28) reduces to

$$
\begin{equation*}
\frac{\partial}{\partial\left(\frac{k_{0}}{k_{D}}\right)} \quad \alpha \phi\left(v_{0}, 0\right)=\frac{\alpha}{\frac{k_{0}}{k_{D}} \ln \frac{k_{0}}{k_{D}}} \quad . \tag{29}
\end{equation*}
$$

$$
\begin{align*}
& \text { Applying } \left.\frac{\partial}{\partial\left(\frac{\partial}{k_{0}}\right.} k_{D}\right) \text { to (9) and substituting (29), we obtain } \\
& \frac{\partial^{2}}{\partial \tau \partial\left(\frac{k_{0}}{k_{D}}\right)} g(v, 0)=\frac{1}{\frac{k_{0}}{k_{D}} \ln \frac{k_{0}}{k_{D}}} \quad\left[\frac{\partial}{\partial \tau} g(v, 0)\right]_{R M J} \tag{30}
\end{align*}
$$

where the expression $\left[\frac{\partial}{\partial \tau} g(V, 0)\right]_{\text {RMJ }}$ is really the RMJ limit of (9) at $\tau=0_{\text {, except that }} k_{0}$ has not been restricted to the value $\frac{K T}{e^{2}}$. By (26), we obtain the condition

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \tau \partial\left(\frac{k_{0}}{k_{D}}\right)} g\left(V_{0} 0\right) \ll 1 \tag{31}
\end{equation*}
$$

even if $k=\frac{K T}{e}$ (because of (26) \%

$$
\begin{align*}
\left(\frac{k_{0}}{k_{D}}\right)^{2} & \Rightarrow r\left(V_{\nabla} \tau\right) \\
& \approx \frac{2 \pi^{2}}{3} \operatorname{Vg}\left(V_{\vartheta} \tau\right) \tag{32}
\end{align*}
$$

and (28) is well approximated by (29).

From the above considerations ${ }_{\text {e }}$ we conclude that the relaxation of a one-particle distribution function is not very sensitive to changes in the value of k_{0}, at least for $\tau<\left(\frac{k_{0}}{k_{D}}\right)$. This is of course consistent With the couly logarithmic dependence of the BL equation (similar to the RMJ equation) for large values of $\binom{k_{0}}{\frac{k_{D}}{D_{D}}}$. (The reasonable insensitivity to the cut-off value k_{0} was also noted by Rosenberg and $W u^{5}$ in the case of the linearized BL equation)。

III。 RELAXATION TIME

One may try to define a reiaxation time as a function of velocity for the onemparticle distribution function．For this purpose． let us restrict ourselves to isotropic distributions and write all of the expressions in terms of dimensionless variables．We define a function $\varepsilon\left(V_{8} \tau\right)$ by

$$
\begin{equation*}
\varepsilon\left(V_{,} \tau\right) \equiv \frac{\int_{V=\delta}^{V+\delta} V^{2}\left|g\left(V_{\nabla} \tau\right)=g_{\max }(V)\right| d V}{\int_{V=\delta}^{V+\delta} V^{2} g_{\max }(V) d V} \tag{33}
\end{equation*}
$$

where $g_{\max }(V)$ is the final Maxwellian distribution，and δ is a small number．A relaxation time ${ }^{T} R$ may then be defined to be that value of τ after which $\varepsilon(V, \tau)$ is less than some preassigned small positive numbers Δ 。

It is of course possible that $\varepsilon\left(V_{D}{ }^{T}\right)$ as a function of τ decreases for a while to less than Δ and then increases again before thaily spproaching zero．These occurrences are easily recognized in the program，and the relaxation time is that value of τ ，say ${ }^{\tau}{ }_{R}$ ． such that $\varepsilon(V, \tau)<\Delta$ for $\tau \geqslant \tau_{R}$ 。
IV. NUMERICAL INTEGRATION
A. BL EQUATION

The principal value integral in the expression for $\Gamma(V)$ was approximated by the first two nonovanishing terms of a series expansion about the singular point. Thus we obtained

$$
\begin{align*}
\Gamma(V) & =\frac{4 \pi}{3}\left\{\int_{0}^{V-h} \frac{V^{2} g\left(V^{-}\right) d V}{V^{2}-V^{2}}+\int_{0}^{\infty} \frac{V^{2} g\left(V^{2}\right) d V}{V^{2}=V^{2}}\right. \\
& +\left(V \frac{\partial g}{\partial V}+\frac{3}{2} g\right) h+\frac{1}{18}\left(V \frac{\partial^{3} g}{\partial V^{3}}+\frac{9}{2} \frac{\partial^{2} g}{\partial V^{2}}\right. \\
& \left.+\frac{3}{2 V} \frac{\partial g}{\partial V}=\frac{3}{4 V^{2}} \text { g) } h^{3}\right\} \tag{34}
\end{align*}
$$

where h is a small number.

The numerical integration of the BL equation was carried out by using the difference equation

$$
g_{i}^{n+1}=g_{i}^{n}+\frac{\alpha \Delta \tau}{v_{i}^{2}}\left\{\frac { 1 } { \overline { v } _ { i } } \left[\left(\frac{g_{i+1}^{n}-2 g_{i}^{n}+g_{i-1}^{n}}{(\Delta V)^{2}}\right)\right.\right.
$$

$$
\left.\begin{array}{l}
\left.-\frac{1}{V_{i}}\left(\frac{g_{i+1}^{n}-g_{i=1}^{n}}{2 \Delta V}\right)\right] \int_{0}^{V_{i}} V^{2} d V G(V) \Phi(V) \\
+\left(\frac{g_{i+1}-g_{i=1}^{n}}{2 \Delta V}\right) \int_{0}^{V_{i}} V^{2} d V g(V) \Phi(V) \\
+V_{i}\left(\frac{g_{i+1}^{n}-g_{i=1}^{n}}{2 \Delta V}\right) G_{i}^{n} \Phi_{i}^{n}+V_{i}^{2}\left(g_{i}^{n}\right)^{2} \Phi_{i}^{n} \tag{35}
\end{array}\right\}
$$

for all $V_{i}{ }^{\prime} s$. except $V_{i}=V_{1}=0$ and $V_{i}=V_{M}$ o where V_{M} is the maximum value of V used 。 At $V_{i}=V_{M}$ the difference equation was

$$
\begin{align*}
& g_{M}^{n+1}=g_{M}^{n}+\frac{\alpha \Delta \tau}{V_{M}^{2}}\left\{\frac { 1 } { V _ { M } } \left[\left(\frac{2 g_{M}^{n}=5 g_{M=1}^{n}+4 g_{M=2}^{n}-g_{M=3}^{n}}{(\Delta V)^{2}}\right)\right.\right. \\
& \left.=\frac{1}{V_{M}}\left(\frac{3 g_{M}^{n}-4 g_{M=1}^{n}+g_{M=2}^{n}}{2 \Delta V}\right)\right] \quad \int_{0}^{V_{M}} V^{2} d V G(V) \Phi(V) \\
& +\left(\frac{3 g_{M}^{n}-4 g_{M-1}^{n}+g_{M-2}^{n}}{2 \Delta V}\right) \int_{0}^{V} V^{2} d V g(V) \Phi(V) \\
& +V_{M}\left(\frac{3 \delta_{M}^{n}-4 g_{M \infty 1}^{n}+8_{M=2}^{n}}{2 \Delta V}\right) \quad G_{M}^{n} \quad \Phi_{M}^{n} \\
& \left.+v_{M}^{2}\left(g_{M}^{n}\right)^{2} \quad \Phi_{M}^{n}\right\} \tag{36}
\end{align*}
$$

In the above equations superscripts refer to time points。 and subscripts, to space points. h was chosen to be equal to ΔV 。 The quantities G_{i}^{n}, Φ_{i}^{n}, and r_{i}^{n} are define by the equations

$$
\begin{align*}
& G_{i}^{n} \equiv G\left(V_{i} v_{n}\right) \tag{37}\\
& \Phi_{i}^{n} \equiv \Phi\left(V_{i} v_{n}\right) \tag{38}
\end{align*}
$$

anc

$$
\begin{equation*}
r_{i}^{n} \equiv \Gamma\left(V_{i} D_{n}\right) \tag{39}
\end{equation*}
$$

The values of integrals were approximated by finite sums. The size of subintervals in the range of integration was chosen to be ΔV in all cases. Whenever the number of subintervals was even the integrals were evaluated by using Simpson's rule. Whenever the number of sube intervals was odd, a combination of Simpsoris rule and Newton-Cotes three-eighths quadrature formula was used. Whenever only one subinterval was available, the trapezoidal rule was used.

$$
\text { At } V_{i}=V_{1}=0 \text {, the value of } g_{1}^{n+1} \text { was determined by the }
$$

equation

$$
\begin{equation*}
\mathrm{g}_{1}^{\mathrm{n}+1}=\mathrm{g}_{2}^{\mathrm{n}+1} \tag{40}
\end{equation*}
$$

This was based on the fact that

$$
\begin{equation*}
\frac{\partial g}{\partial V}\left(0_{i},\right)=0 \tag{41}
\end{equation*}
$$

if the $B L$ equation is to hold at $V=0$ for all times:

B. RMS EQUATION

The numerical integration was carried out by using the difference equation

$$
\begin{align*}
g_{i}^{n+1} & =g_{i}^{n}+\alpha \Delta \tau\left\{\left(\frac{g_{i+1}^{n}-2 g_{i}^{n}+g_{i=1}^{n}}{3(\Delta V)^{2}}\right)\left(G_{i}^{n}+s_{i}^{n}\right)\right. \\
& \left.+\frac{1}{3 \bar{V}} \frac{\left(\frac{g_{i+1}^{n}}{\Delta V}-g_{i=1}^{n}\right.}{\Delta V}\right) \quad\left(G_{i}^{n}=\frac{1}{2} S_{i}^{n}+Q_{i}^{n}\right) \\
& +\left(g_{i}^{n}\right) \tag{42}
\end{align*}
$$

where the quantities G_{i}^{n}, S_{i}^{n}, and Q_{i}^{n} are defined by the equations

$$
\begin{equation*}
G_{i}^{n} \equiv \int_{V_{i}}^{V_{M}} V g(V) d V \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
s_{i}^{n} \equiv \frac{1}{v_{i}^{3}} \int_{0}^{v_{i}} v^{4} g(v) d v \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{i}^{n} \equiv \frac{3}{2 V_{i}} \int_{0}^{V_{i}} v^{2} g(V) d V \tag{45}
\end{equation*}
$$

Eq. (42) was used for all point, except $V_{1}=V_{1}=0$ and $V_{i}=V_{M}$. At $V_{i}=V_{I}=0$ eq。(40) was used, as in the case of the BL equation. At $V_{i}=V_{M}$ the difference equation was

$$
\begin{align*}
g_{M}^{n+1} & =g_{M}^{n}+\alpha \Delta \tau\left\{\left(\frac{2 g_{M}^{n}-5 g_{M-1}^{n}+4 g_{M=2}^{n}-g_{M-3}^{n}}{3(\Delta V)^{2}}\right)\right. \\
& \cdot\left(G_{M}^{n}+S_{M}^{n}\right)+\frac{1}{3 V_{M}}\left(\frac{3 g_{M}^{n}-4 g_{M-1}^{n}+g_{M-2}^{n}}{\Delta V}\right) \\
& \left.\cdot\left(G_{M}^{n}-\frac{1}{2} S_{M}^{n}+Q_{M}^{n}\right)+\left(g_{M}^{n}\right)\right\} \tag{46}
\end{align*}
$$

C. INITIAL DISTRIBUTION FUNCTIONS

The following different initial distribution functions and different values of $\left(\frac{k_{0}}{k_{D}}\right)$ were used:

1. Initial Gaussian Function

$$
\begin{equation*}
g\left(V_{8} 0\right)=0.2289 e^{-2.03\left(V_{\infty} 0.28\right)^{2}} \tag{47}
\end{equation*}
$$

with

$$
\begin{equation*}
v_{M}=5.0 \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta V=0.05 \tag{49}
\end{equation*}
$$

$g(V, \tau)$ was computed from $\tau=0$ to $\tau=2.4$ from the $B L$ case, and from $\tau=0$ to $\tau=7.2$ for the RMJ case at intervals $\Delta \tau$, where

$$
\begin{equation*}
\Delta \tau=0.004 \tag{50}
\end{equation*}
$$

for two different values of $\left(\frac{k_{0}}{k_{D}}\right)$:
a) $\quad \frac{k_{0}}{k_{D}}=1.4178 \times 10^{8}$
and
b) $\quad \frac{k_{o}}{k_{D}}=300$
2. Initial Resonance Function

$$
\begin{equation*}
g(v, 0)=\frac{8}{\pi^{2}} \frac{1}{\left(v^{2}+1\right)^{4}} \tag{53}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathrm{V}_{\mathrm{M}}=20.0 \tag{54}\\
& \Delta \mathrm{~V}=0.1 \tag{55}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{k_{0}}{k_{D}}=50 \tag{56}
\end{equation*}
$$

$g\left(V_{9} \tau\right)$ was computed from $\tau=0$ to $\tau=0.4$ for the $B L$ case, and from $\tau=0$ to $\tau=3.4$ for the RMJ case at intervals $\Delta \tau$, where

$$
\begin{equation*}
\Delta \tau=0,01 \tag{57}
\end{equation*}
$$

3. Initial Maxwellian Function Coexisting with a High-Energy

Gaussian Function

$$
\begin{align*}
g(v, 0) & =\frac{0.8936}{0.512}\left(\frac{3}{2 \pi}\right)^{3 / 2} e^{-\frac{3}{1.28} v^{2}} \\
& +0.01192 e^{-100(v-2)^{2}} \tag{58}
\end{align*}
$$

with

$$
\begin{align*}
& V_{M}=4.0 \tag{59}\\
& \Delta V=0.02 \tag{60}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{k_{o}}{k_{D}}=100 \tag{61}
\end{equation*}
$$

$\begin{aligned} & g(V, \tau) \text { was computed from } \tau=0 \text { to } \tau=0.19 \text { for the } B L \text { case, and from } \\ & \tau=0 \text { to } \tau=1.3 \text { for the } R M J \text { case at intervals } \Delta \tau \text {. where } \\ & \Delta \tau=0.0005 \text { (62) }\end{aligned}$

The calculations were performed on the IBM 7090 electronic
computer.

$$
\text { Do RELAXATION TIME } \left.\varepsilon \text { (} \mathrm{V}_{2} \tau\right)
$$

The number δ in eq。（33）was set equal to ΔV o The integrals were performed using Simpson ${ }^{0}$ rule。
$\varepsilon(V, \tau)$ was evaluated for the initial Gaussian with $\frac{k_{0}}{k_{D}}=300$ （the Gaussian with $\frac{k_{0}}{k_{D}}=1.4178 \times 10^{8}$ was not done because it is equivalent to the Gaussian with $\frac{k_{O}}{k_{D}}=300$ but with $\Delta \tau$ increased slightly），the initial resonance function，and the higheenergy Gaussian coexisting with a Maxwellian ．The quantities $\varepsilon(V, \tau)$ were computed from the solutions of the RMJ equation only，because earlier calculations showed the $B L$ and the $R M J$ solutions to be almost identical for the above initial distribution functions．
$\varepsilon\left(V_{0} \tau\right)$ was computed for the initial Gausian for values of τ In the range $0 \leq T \leq 7.2$ ；for the initial resonance function in the range $0 \leq \tau \leq 3.4$ ；and for the initial highaenergy Gaussian coexisting with a Maxwellian，in the range $0 \leq \tau \leq 1.3$ 。

V. RESULTS OF NUMERICAL CALCULATIONS

A. COLLECTIVE EFFECTS

The most important result of the numerical integrations was that no significant difference was found between the solutions of the BL equation and the solutions of the RMJ equation. For the initial Gaussian function with $\frac{k_{0}}{\frac{0}{D_{D}}}=1.4178 \times 10^{8}$ othe results were essentially identical for the two kinetic equations. The difference was at most 1%. This result was expected because $\ln \left(\frac{k_{0}}{k_{D}}\right)^{4} \gg 1$. The same kind of behavior was found in the case of the initial Gaussian function with $\frac{k_{0}}{k_{D}}=300$, and the initial resonance function, with $\frac{k_{0}}{k_{D}}=50$ 。 This seems to be an
interesting result, because in these two cases quantities of the order of unity cannot be neglected relative to $\ln \left(\frac{k_{0}}{k_{D}}\right)^{4}$ 。 Table I shows the values of $g(V, \tau)$ at $r=2.4$, calculated from both the $B L$ and the RMJ equations, for the initial Gaussian with $\frac{k_{0}}{k_{D}}=300$, for several values of V. Table II shows the values of $g\left(V_{\tau} \tau\right)$ at $T=0.4$. calculated from both the BL and the RMJ equationg, for the initial resonance function.

Table I

V	$\begin{array}{r} t=0 \\ g(V, 0) \end{array}$	$\begin{gathered} t=\infty \\ g_{\max }(V) \end{gathered}$	$\begin{gathered} \pi=2,4 \\ g\left(V_{9} t\right) \\ R M J \end{gathered}$	$\begin{gathered} r=2.4 \\ g\left(V_{2} \tau\right) \\ B L \end{gathered}$
0	0.2055	0.3299	0.3257	0.3243
0.25	0.2285	0.3004	0.2979	0.2973
0.5	0.2076	0. 2268	0.2256	0.2253
0.75	0.1464	0.1419	0.1419	0.1418
1.0	0.08006	0.07362	0.07409	0.07410
1.63)	0.03337	0.03166	0.03205	0.03206
1.5	0.01118	0.01129	0.01140	0.01141
1.75	0.002856	0.003337	0.003274	0.003273
2.0	0.0005658	0.0008.178	0.0007334	0,0007328
2.25	0.000087	0.0001661	0.0001233	0,0001232
2.5	0.000010	0.000028	0.000015	0,000015

Table II

V	$\begin{gathered} \tau=0 \\ g(V, 0) \end{gathered}$	$\begin{aligned} & \tau=\infty \\ & g_{\max }(v) \end{aligned}$	$\begin{gathered} \tau=0_{0} 4 \\ g\left(V_{0} \tau\right) \\ R M J \end{gathered}$	$\begin{gathered} \tau=0,4 \\ g\left(V_{8} \tau\right) \\ B L \end{gathered}$
0	0.7789	0.3299	0.5979	0.5934
0.4	0.4477	0.2595	0.4067	0.4066
0.8	0.1121	0.1263	0.1241	0.1234
1.2	0.02287	0.03805	0.02320	0.02320
1.6	0.005046	0.007091	0.004667	0.004692
2.0	0.001.297	0.0008 .78	0.001192	0.001198
2.4	0.0003882	0.0000584	0.0003622	0.0003633
2,8	0.0001327	0.0000026	0,0001258	0,0001261
3.2	0.0000508	0.0	0,0000488	0.0000488
3.6	0.0000213	0.0	0,0000207	0.0000207
4.0	0.0000097	0.0	0,0000095	0,0000095

Perhaps the most interesting case was that of the initial Maxwellian coexisting with a sharp highoenergy Gaussian peaked at $V=2$ 。This case is similar to the test particle problem。 But the behavior of this case was very similar to the behavior of the previous cases. The relaxation of the Maxwellian part of the initial distribution
proceeded without really exhibiting collective effects. This is not surprising any more in view of the behavior of all of the previous cases. However, even the peak of the Gaussian railed to exhibit collective effects. The difference between the Bi and the RMJ soiutions for the peak was less than 2%. A difference of about 4% was observed to the right of the peak at velocities which were between 2.2 and 2.3 thermal spoeds. However, these differences are too small to show unmistakably the \because rome \because. Inextive effects. Table IIT shows the values of givor) at $\tau=0.19$ in the vicinity of the Gaussian peak for the sclutions of the $B L$ and the RMJ equations.

Table III

V	$\begin{gathered} t=0 \\ g(V, 0) \end{gathered}$	$\begin{aligned} & v=\infty \\ & g_{\max }(V) \end{aligned}$	$\begin{aligned} & z=0,19 \\ & g\left(V_{0} z\right) \\ & R M J \end{aligned}$	$\begin{gathered} \Psi=0 . \pm 9 \\ g\left(V_{0} *\right) \\ B L \end{gathered}$
1.70	0.00066010	0.00432260	0.00163051	0.00162568
1.74	0.00049089	0.00351647	0.00205418	0.00204975
1.78	0.00043724	0.00284698	0.00279051	0.00278595
1.62	0,00071164	0.00229391	0.00380954	0.00380243
1.86	0.00185265	0.00183944	0.00499052	0.00497691
1.90	0.00450775	0.00146794	0.00611075	0.00608780
1.94	0.00840283	0.00116586	0.00688563	0.00685531
1.98	0.01151361	0.00092151	0,00706345	0.00703384

TABLE III = continued

V	$\begin{array}{r} \tau=0 \\ g\left(V_{8} 0\right) \end{array}$	$\begin{aligned} & \tau=\infty \\ & g_{\text {max }}(V) \end{aligned}$	$\begin{gathered} \tau=0,19 \\ g\left(V_{9} T\right) \\ R M J \end{gathered}$	$\begin{gathered} \tau=0.19 \\ g\left(V_{9} \tau\right) \\ B L \end{gathered}$
2.0	0.01197109	0.00081779	0.00688734	0,00686224
2.02	0.01149523	0.00072488	0.00653863	0,00652063
2.06	0.00834550	0.00056748	0.00541764	0.00541858
Coso	0.00440460	0.00044213	0.00398559	0.00400460
2.14	0.00169192	0,00034282	0.00258245	0.00261129
2.18	0.00047530	0.00026454	0,00146207	0.00149051
2. 22	0.00009982	0.00020316	0.00071784	0.00073915
2.26	0.00001746	0.00015528	0.00030369	0.00031639
2.30	0,00000384	0,00011811	0.00011028	0.00011643

Graphs 1, 2, 3, and 4 are respectively the plots of the solutions of the $B L$ equation (or the $R M J$ equation, since the two give almost identical rown for the four cases mentioned above.

Bo RELAXATION TO A MAXWELLIAN

Graphs 5， 6_{2} and 7 are respectively y_{0} the plots of the solutions of the RMJ equation for the initial Gaussian with $\frac{k_{0}}{k_{D}}=300$ the initial resonance function，and the initial high＝energy Gaussian coexisting with a Maxwellian．Graphs 5 and 6 agree with the earlier ealculations of Rosenbluth eto al。 ${ }^{4}$ as well as with the findings of Ree eto al．${ }^{3}$ ，that the higheenergy tail of an initiai distribution function relaxes much slower than the lowmenergy portions．Graph 5 shows that the point $V=0$ 。 which at $\tau=0$ is below the finai Maxweilian approaches the final Maxwellian and then overshoots it．However $\%$ in the time interval $0 \leqslant \tau \leqslant 7.2$ the point $V=0$ was not found to start descending toward the final Maxwellian．The two normalization conditions，equations（？） and（8），remained good throughout the whole time interval．The error at $\tau=7,2$ in the particlenumber normalization was less than 0.013% ． while the error in the energy normalization was less than 1.8% ．We think that the distribution was not followed long enough in time to permit the point $V=0$ to start descending toward the final Maxwellian。 The fact that it seems to take a very long time for this to occur is not surprising， since the initial distribution function is very broad and its gradients in velocity space are small。

Graph 6 shows the distribution function for $\tau>0$ dipping below the initial distribution and moving farther away from the final

Maxwellian in the higher energy portion of the graph. This tendency to dip seems to increase with time and to move down the high=energy tail。 However, what happens to the dip after a very long time can only be guessed, because the distribution function was not followed long enough in time. One of the reasons for not following the diatribution function longer in time was the large error creeping into the energy normalization. Particle normalization remained good (error was less than 0.11% at $5=3.4$) but the em nompitzation error was 14.8% at $=3 . H_{0}$ The value of the energy normalization showed a tendency to decrease monotonfally with time ${ }^{\text {the change from } \tau}$ to $(t+\Delta t)$ was steadily decreasing as τ got bigger and bigger: but this decrease was not fast enough。 It was present in spite of the fact that the stability oriterion on the magnitudes of ΔV and Δt was satisfied. Extension of the rarge of V from $0 \leqq V \leqq 20$ to $0 \leqq V \leqq 40$ to include a greater portion of the higno energy tail or readfustments in the vaiues of ΔV and $\Delta \tau$, within the scope of the stability criterion, did not improve the situation much. Since the cause of the trouble could not be pinpointed, the decision was manc to ache the macimum value of t to be that t for which the error in energy normalization was less than 5%.

Graph 7 demonstrates the fact that the rate of relaxation of a portion of an initial distribution depends strongly on the gradients of that portion in velocity space. Thus a highaenergy portion with large gradients may relax faster than a low=energy portion with small gradients.

C．RELAXATION TIME

Graphs 8．9，and 10 are the plots on semialog paper of the quantity $\varepsilon\left(V_{D} \tau\right)$ as a function of τ ，with the values of V serving as the curve parameters．Graph 8 is for the initial Gaussian with $\frac{k_{0}}{k_{D}}=300$ ，Graph 9 is for the initial resonance function，and Graph 10 is for the higheenergy Gaussian coexisting with a Maxwellian．（The case of the initial Gaussian with $\frac{\mathrm{k}_{\mathrm{O}}}{\mathrm{k}_{\mathrm{D}}}=1.4178 \times 10^{8}$ was not treated separateiy，
 RMJ equation is equivalent to keeping $\frac{k_{o}}{k_{D}}$ constant and increasing ΔT slightly in the finite difference analogue of the differential equation）。 Graphs 8，9，and 10 show the impossibility of defining a reiaxation time ${ }^{T} R$ ．For one thing，$\varepsilon(V, \tau)$ in Graph 8 is an increasing function of τ for $6<\tau<7.2$ ，for ail $V^{9} s$ but $V=2025$ ．In Graph 9．$E\left(V_{8} \tau\right)$ keeps increasing for $2.5<\tau \leq 304$ for $V=2$ 。 It is not known to what value．$\varepsilon(V, T)$ will increase before decreasing again．Besides， $\varepsilon(V, \tau)$ may keep on oscillating as τ increases until $\varepsilon \rightarrow 0$ as $\tau \rightarrow \infty$ ； but we do not know the size of the amplitudes of these oscillations as a fuscilor of time．The curve with $V=2.25$ in Graph 8；all of the curves in Graph 9，with the exception of the one with $V=200$ and all of the curves in Graph 10 for $\tau>0.7$ are monotonically decreasing with time。 In fact，for large values of τ they approximate straight lines on the semi－log paper．But we should not conclude from this fact that for these
curves the decay becomes exponential after a certain time. A look at Graphs 6 and 7 discloses that these curves may cease decreasing and start increasing after a while. The curves in Graphs 9 and 10 were not followed long enough in time to exhibit this behavior.

We conclude from the above diacussion that it is impossible to define a relaxation time ${ }^{\tau} R$ a explained in (III) within the time limits used in the calculations. We also suspect that in general, an initial distribution function does not decay to a final Maxweilian exponentially, even if the exponential decay is assumed to set in after some time and not immediately. This suspicion applies to finite V. As for the highenergy tail of a distribution ${ }^{\text {f }}$ it is still possible to visualize an exponential decay there for example, in the case of the initial Gaussian $\varepsilon\left(V_{\nu} \tau=0\right) \rightarrow 1$ as $V \rightarrow \infty$. If we make use of the fact that the higheenergy tail of a diatribution function relaxes very slowly toward the final Maxwellian $\varepsilon\left(V_{g} \tau\right) \rightarrow l$ as $V \rightarrow \infty_{q}$ even for large $T^{\prime} s$. This would give us almost a straight line when plotted on the semi-log paper. Therefore it is possible for the relaxation to assume the form of an exponential decay in the highenergy tail. This argument would also be valid for other initial distribution functions which approach zero faster than the final Maxwellian as $V \rightarrow \infty$ (Iike the Gaussian above)。 In Appendix C we present a mathematical proof of the impossibility of an exponential decay of an initial distribution function to a final Maxwellian.

VI。 DISCUSSION

The lack of any significant difference between the solutions of the BL and the RMJ equations for the cases treated in this paper has to be taken as a matter of fact. It is somewhat surprising in cases in which $\ln \frac{k_{0}}{k_{D}}$ is of the order of unity. The greatest puzzle is presented by the case of a Maxwellian coexisting with a sharp ${ }_{9}$ higho energy Gernion herense of its similarity with the test particle problem.

The solution of the BL equation for the test particle problem indicates that collective effects may become important when the testparticle velocities are high and $\ln \frac{k_{o}}{k_{D}} \sim O(1)$ 。 By means of arguments analogous to those based on the solution of the RMJ equation, we obtain some characteristic times for the test particles such as the "slowing down time": τ_{s}. given by

$$
\begin{equation*}
\tau_{s}=\frac{M_{t} u^{3}}{e_{t}^{2} \bar{\omega}_{p}^{2}\left[\left(1+\frac{\theta k_{D}^{2}}{M_{t} \omega_{p}^{2}}\right) \ln \frac{k_{0}}{k_{D}}+\ln \frac{k_{D}^{u}}{\bar{\omega}_{p}}\right]} \tag{63}
\end{equation*}
$$

the "deflection time", ${ }^{\tau}$ D.given by

$$
\begin{equation*}
\tau_{D}=\frac{M_{t}^{2} u^{5}}{2 e_{t}^{2} \theta \omega_{p}^{-2}\left[\frac{k_{D}^{2} u^{2}}{\omega_{p}^{2}} \ln \frac{k_{o}}{k_{D}}=\ln \frac{k_{D}^{u}}{\omega_{p}^{2}}\right]} \tag{64}
\end{equation*}
$$

and the＂energy exchange time＂，${ }^{T} W$ o given by

$$
\begin{equation*}
\tau_{W}=\frac{M_{t} u^{3}}{2 e_{t}^{2} \bar{\omega}_{p}^{2}\left[\ln \frac{k_{0}}{k_{D}}+\ln \frac{k_{D}^{u}}{\bar{\omega}_{p}}\right]} \tag{65}
\end{equation*}
$$

Here e_{t} and M_{t} are the testoparticle charge and mass respectively； u is the test particle velocity；θ defined by $\theta \equiv K T$ ，is the field poltuale cimperaure， m_{p} is the plasma frequency of the field particles； and k_{D} is the Debye wave number of the field particles．In equations （64）．（65），and（66）the term containing（ $\ln \frac{k_{o}}{k_{D}}$ ）is the same as． the one obtained from the solution of the RMJ equation for the test particle problem。 The term containing（ $\left.2 n \sim_{D}^{k_{D}^{u}}\right)$ derives from the collective effects。 On the other hand，if we assume an isotropic velocity distribution for test particles and，by analogy with the treatment of MacDonald，Rosenbluth。 and Chuck ${ }^{4}$ ，write the testoparticle distribution function in the form

$$
\begin{equation*}
f_{t}(v, t)=g\left(v_{\theta} t\right) e^{\frac{M_{t} v^{2}}{2 \theta}} \tag{66}
\end{equation*}
$$

we can define a characteristic time it takes the inflection point of $g(v, t)$ to diffuse into the high＿energy tail of the distribution by

$$
\begin{equation*}
\tau_{0}=\frac{M_{t} v_{i n f}^{3}}{e_{t}^{2} \bar{\omega}_{p}^{2}\left[\ln \frac{k_{0}}{k_{D}}+\ln \frac{k_{D} v_{i n f}}{\omega_{p}}\right]} \tag{67}
\end{equation*}
$$

where $v_{\text {inf }}$ is the velocity at the inflection point of $g\left(v_{0} t\right)$ o（The
derivations of characteristic times are given in Appendix B_{0} ）

The reason for the disparity between the test particle problem and the numerical solutions of problems discussed in this paper has to be sought in the behavior of the Landau denominator $\left.D^{+}\left(\operatorname{cok}_{1} i k_{1}{ }_{\sim}^{o}\right)_{1}\right)$ defined in（A6）of Appendix A_{9} which appears on the rightanand side of the $B L$ equation（eq．（A2））。 In the RMJ equation $D^{+}=1$ ，because the collective effects are neglected．In the $B L$ equation，the vaiue of the Landau denominator varies and may even assume the value zero．When this happens，the integrand of the integral，on the right＝hand side of eq．（A2）． may contain a singularity if the zero of D^{+}is not canceled by a zero of the numerator of the integrand．We shall see that in the problems which were solved numerically in this paper the integrand has no singularities，while in the test particle problem the integrand does have singularities．

Let us confine ourselves to isotropic distributions．By（A9）． （Al3），anc（Al7）we see that $\operatorname{Im}\left(D^{+}\right)=0$ only when $u_{1}=\frac{k_{1}}{k_{1}} \circ v_{1}=0$
 that $\operatorname{Re}\left(D^{\ddagger}\right) \neq 0$ 。Therefore $D^{+} \neq 0$ 。 When $u_{1} \rightarrow \infty, \operatorname{Im}\left(D^{+}\right) \rightarrow 0$ ， since $f\left(\left|u_{1}\right|\right) \rightarrow 0$ ，and $\operatorname{Re}\left(D^{+}\right) \rightarrow 1=\frac{w^{2}}{k_{1}^{2} u_{1}^{2}}$ ．It is possible to find
a v_{1} and a k_{1} in the range $0<\left|k_{1}\right| ฐ k_{0}$ such that

$$
\begin{equation*}
\frac{\omega_{p}^{2}}{k_{1}^{2} u_{1}^{2}}=1 \tag{6.8}
\end{equation*}
$$

This choice will yield $D^{+}=0$ 。

Suppose we look at the problems which were solved numerically． When $\left|v_{1}\right| \rightarrow \infty$ by（All）and $(A l 2)_{y} f\left(v_{1}\right) \rightarrow 0$ faster than $F\left(u_{1}\right)$ 。 Therefore the numerator in the integrand of the integral：on the right side of eq．（A2），is of the order of $\left[f\left(v_{1}\right) j^{2}\right.$ and the Landau denominator is，by（Al7），also of the order $\left[f\left(v_{1}\right)\right]^{2}$ ．Hence，for $\left|y_{1}\right| \rightarrow \infty$ ，the zero of D^{+}is canceled by the zero of the numerator of the integrand， and the integrand does not get too close to any of its singularities．

Let us now look at the test particle probiem．Here，on account of the tenuity of the test particle distribution only the field particle distribution enters into the evaluation of the Landau denominator． For $\left|v_{1}\right| \rightarrow \infty, D^{+}$is of the order of the square of the field particle
 $F\left(u_{1}\right)$ and $\frac{\partial F}{\partial u_{1}}$ refer to the field particles $\varepsilon_{\varepsilon}$ while $f\left(v_{1}\right)$ and $\frac{\partial f}{\partial u_{1}}$ refer to the test particles．There exists a high velocity range in which the test particle distribution is still finite while the field particle distribution is already approaching zero。 Therefore the Landau denominator
will vanish faster than the numerator of the integrand ${ }_{2}$ and the integrand will get very close to a singularity.

The preceding arguments confirm the fact that collective effects become significant in the solution of the BL equation only when the integrand in eq. (A2) gets very close to a singularity, at which $D^{+}=0$, in the range of integration Such a situation may be realized, for example, in the anisotropic case of two contrastreaming electron

AFPENDIX A

DERIVATION OF THE ISOTROPIC BL EQUATION

The general anisotropic BL equation for a spatially uniform electron plasma embedded in a uniformly smeared out background of positive charge has the form ${ }^{7}$

$$
\begin{equation*}
\frac{\partial f}{\partial t}=-\frac{\partial}{\partial v_{1}} \cdot \underset{\sim}{J}\left(v_{1} \theta t\right) \tag{A1}
\end{equation*}
$$

where $f\left(v_{1}, t\right)$ is the onemarticle distribution function with the two normalization conditions given by equations (1) and (2) $J\left(v_{1}, t\right)$ is uetinea by the expression

$$
\begin{equation*}
J\left(v_{1}, t\right) \equiv \frac{2 n_{0} e^{4}}{m^{2}} \int \frac{k_{1} d k_{1}}{k_{1}^{4}} \frac{\left[f\left(v_{1}\right) \frac{\partial F}{\partial u_{1}}-F\left(u_{1}\right) \frac{\partial f}{\partial u_{1}}\right]}{\left|D^{+}\left(-k_{1}\right)_{1} k_{1} \circ v_{1}\right|^{2}}, \tag{A2}
\end{equation*}
$$

$F(u)$ is defined by

$$
\begin{equation*}
F(u) \equiv \int f\left(v_{2}, t\right) \delta\left(\frac{k_{1}}{k_{1}} \circ v_{2}=u\right) d v_{2} \tag{A3}
\end{equation*}
$$

u_{1} and $\frac{\partial}{\partial u_{1}}$ are defined by

$$
\begin{equation*}
u_{1} \equiv \frac{k_{1}}{k_{1}} \circ v_{1} \tag{A4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial u_{1}} \equiv \frac{k_{1}}{k_{1}} \cdot \frac{\partial}{\partial v_{1}} \tag{A5}
\end{equation*}
$$

$D^{+}\left(-k_{1}, i k_{1} \circ v_{1}\right)$, the Landau denominator, is given by the expression

$$
\begin{equation*}
D^{+}\left(-k_{1}, i k_{1} \cdot v_{1}\right)=1-\frac{\omega_{p}^{2}}{k_{1}^{2}} \int_{\infty=\infty}^{\infty} \frac{\partial F}{\partial u} \frac{d u}{u-u_{1}+i \varepsilon} \tag{A6}
\end{equation*}
$$

with ω_{p}, the plasma frequency, given by

$$
\begin{equation*}
\omega_{p}=\left(\frac{4 \pi n_{o} e^{2}}{m}\right)^{\frac{1}{2}} \tag{AT}
\end{equation*}
$$

and ε being a small positive number.

Let us also define the quantity Ψ by the expression

$$
\begin{equation*}
\psi \equiv-\int_{-\infty}^{\infty} \frac{\partial F}{\partial u} \frac{d u}{u-u_{1}+i \varepsilon} \tag{AB}
\end{equation*}
$$

Thus (A6) can be rewritten as

$$
\begin{equation*}
D^{+}=1+\frac{\omega_{p}^{2}}{k_{1}^{2}} \Psi 。 \tag{A9}
\end{equation*}
$$

Let us now specialize all of the above formulas to the case of isotropic velocity distributions. We can write

$$
\begin{equation*}
f\left(v_{-1}, t\right)=f\left(v_{1}, t\right) \tag{ADO}
\end{equation*}
$$

Ia such $\operatorname{ses}(A \bar{J})$ shows that both $F(u)$ and $\frac{\partial F}{\partial u}$ do not depend on k_{1}.

To simplify integrations ${ }_{0}$ choose the zaxis in the direction of ${\underset{\sim}{v}}_{1}$. Let $\left(k_{1} \theta_{\theta} \phi\right)$ be the polar=spherical coordinates of the vector ${\underset{\sim}{1}}$. We can now perform two integrations in (A3) as followes

We can now perform two integrations in (A3) as follows

$$
\begin{align*}
F(u) & =\int_{0}^{\infty} v^{2} d v f(v) \int_{0}^{\pi} \sin \theta d \theta \delta\left(v_{I} \cos \theta-u\right) \int_{0}^{2 \pi} d \phi \\
& =2 \pi \int_{0}^{\infty} v^{2} d v f(v) \int_{\infty=1}^{1} d \mu \delta(v \mu-u) \\
& =2 \pi \int_{|u|}^{\infty} v f(v) d v \tag{A11}
\end{align*}
$$

From (All) we get

$$
\begin{equation*}
\frac{\partial F}{\partial u}=-2 \pi u \quad f^{\prime}(|u|) \tag{A12}
\end{equation*}
$$

Let us now simplify the expression for $\Psi 。 I f \quad \psi_{r}$ and ψ_{i}

$$
\begin{equation*}
\Psi=\psi_{r}+i \psi_{i} \tag{A13}
\end{equation*}
$$

we obtain the following expressions for ψ_{r} and ψ_{i} :

$$
\begin{equation*}
\psi_{r}=\alpha P \int_{\infty}^{\infty} \frac{\partial F}{\partial u} \frac{d u}{u=v_{1} \cos \hat{\theta}} \tag{A14}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{i}=\pi \frac{\partial F}{\partial u}\left(v_{1} \cos \theta\right) \tag{A15}
\end{equation*}
$$

With the aid of（A12）equations（Ai4）and（A15）can be written in the form

$$
\begin{align*}
\psi_{r} & =2 \pi \quad P \int_{-\infty}^{\infty} \frac{u f(|u|) d u}{u-u_{1}} \\
& =4 \pi \quad P \int_{0}^{\infty} \frac{u^{2} f(u) d u}{u^{2}-u_{1}^{2}} \tag{A16}
\end{align*}
$$

and

$$
\psi_{i}=-2 \pi^{2} u_{1} f\left(\left|u_{1}\right|\right)
$$

where we have made use of eq．（A4），We can see from（A14）and（A15）that Ψ does not depend on k_{1} or ϕ 。Consequently D^{+}does not depend on ϕ 。

Let us now try to simplify the expression for $J_{\sim_{1}}\left(v_{1} t\right)$ 。Eq。
（A2）can be rewritten in the form

$$
\begin{align*}
\underset{\sim}{J}\left(v_{1}, t\right)= & \frac{2 n_{0} e^{4}}{m^{2}}\left\{f\left(v_{1}\right) \int \frac{k_{1} d k_{1}}{k_{1}^{4}} \frac{\frac{\partial F}{\partial u_{1}}}{\left|D^{+}\right|^{2}}\right. \\
& -\frac{\partial f}{\partial v_{1}} \cdot \int \frac{\left.k_{1} k_{1} \frac{d k_{1}}{k_{1}^{5}} \frac{F\left(u_{1}\right)}{\left|D^{+}\right|^{2}}\right\}}{} . \tag{A18}
\end{align*}
$$

In eq．（Al8）the integrations over ϕ can be performed immediatelv．If we also change the variable of integration over θ from θ to u_{1} ，such that

$$
\begin{equation*}
d u_{1}=\alpha v_{1} \sin \theta \quad d \theta \tag{A19}
\end{equation*}
$$

and then interchange the order of integrations over k_{1} and u_{1} we obtain

$$
\begin{aligned}
J\left(v_{1}, t\right)= & \frac{4 \pi n_{0} e^{4}}{m^{2}} \frac{v_{1}}{v_{1}}\left\{f\left(v_{1}\right) \int_{\Delta v_{1}}^{v_{1}} u_{1} d u_{1} \frac{\partial F}{\partial u_{1}} \int_{0}^{k} \frac{d k_{1}}{k_{1}} \frac{1}{\left|D^{+}\right|^{2}}\right. \\
& \left.-\frac{1}{v_{1}} \frac{\partial f}{\partial v_{1}} \int_{-v_{1}}^{v_{1}} u_{1}^{2} d u_{1} F\left(u_{1}\right) \int_{0}^{k} \frac{d k_{1}}{k_{1}} \frac{1}{\left|D^{+}\right|^{2}}\right\} 。(A 20)
\end{aligned}
$$

We have chosen an upper cut－off k_{0} on the integral over $\left|k_{\sim}\right|$ in eq． （A20）。 Its meaning will become clearer when the integral over $\left|\frac{k}{7}\right|$ is evaluated．The integral over $\left|k_{1}\right|$ is an even function of u_{1} 。 Conse－
quently the integrands in the two integrals over u_{1} are even functions of u_{1} 。

If we make use of (A12) and substitute (A2O) into (AI) we
obtain

$$
\left.\begin{array}{rl}
\frac{\partial f}{\partial t}= & \frac{8 \pi n_{0} e^{4}}{m^{2}} \frac{1}{v_{1}^{2}} \frac{\partial}{\partial v_{1}}\left\{2 \pi f\left(v_{1}\right) \int_{0}^{v_{1}} u_{1}^{2} d u_{1} f\left(u_{1}\right) \int_{0}^{k_{0}} \frac{d k_{1}}{k_{1}} \frac{1}{\left|D^{+}\right|^{2}}\right. \\
& +\frac{1}{v_{1}} \frac{\partial f}{\partial v_{1}} \tag{A21}
\end{array} \int_{0}^{v_{1}} \quad u_{1}^{2} d u_{1} F\left(u_{1}\right) \int_{0}^{k_{0}} \frac{d k_{1}}{k_{1}} \frac{1}{\left|D^{+}\right|^{2}}\right\}, ~ l
$$

Let us now perform the integration over k_{1}.

$$
\begin{aligned}
& \int_{0}^{k_{0}} \frac{d k_{1}}{k_{1}} \frac{1}{\left|D^{+}\right|^{2}}=\int_{0}^{k_{0}} \frac{d k_{1}}{k_{1}} \frac{1}{\left|1+\frac{\omega_{0}^{2}}{k_{1}^{2}} \Psi\right|_{1}^{2}} \\
& =\frac{1}{2 i \operatorname{Im} \Psi} \int_{0}^{k_{0}} k_{1} d k_{1}\left[\frac{\psi}{k_{1}^{2}+\omega_{p}^{2} \Psi^{2}} \frac{q^{*}}{k_{1}^{2}+\omega_{p}^{2} \Psi^{*}}\right] \\
& \left.=\frac{\operatorname{Im}\left[\Psi \ln \frac{k_{0}^{2}+\omega_{p}^{2} \Psi}{\omega_{p}^{2} \Psi}\right]}{2 \operatorname{Im} \psi^{\Psi}}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{4}\left[\frac{\left|k_{0}^{2}+\omega_{p}^{2} \psi\right|^{2}}{\left|\omega_{p}^{2} \psi\right|^{2}}\right. \\
& \left.+2 \frac{\psi_{r}}{\psi_{i}} \tan ^{-1} \frac{\omega_{p}^{2} \psi_{i}}{k_{0}^{2}+\omega_{p}^{2} \psi_{r}}-2 \frac{\psi_{r}}{\psi_{i}} \tan ^{-1} \frac{\psi_{1}}{\psi_{r}}\right] \tag{A22}
\end{align*}
$$

Tos defire the quantities $H\left(u_{1}\right), L\left(u_{1}\right)$, and $\Phi\left(u_{1}\right)$ by

$$
\begin{align*}
& H\left(u_{1}\right) \equiv \ln \frac{\left|k_{o}^{2}+\omega_{p}^{2} \psi\right|^{2}}{\left|\omega_{p}^{2} \psi\right|^{2}} \tag{A23}\\
& L\left(u_{1}\right) \equiv \tan ^{\infty 1} \frac{\omega_{p}^{2} \psi_{i}}{k_{0}^{2}+\omega_{p}^{2} \psi_{r}}=\tan ^{\infty 1} \frac{\psi_{1}}{\psi_{r}} \tag{A24}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi\left(u_{1}\right) \equiv \frac{1}{\ln \frac{1}{k_{0}}} \int_{0}^{k_{D}} \frac{d k_{1}}{k_{1}} \frac{1}{\left|D^{+}\right|^{2}} \tag{A25}
\end{equation*}
$$

As one can see, k_{0} has to be a finite number if (A22) (A25) are to remain finite. We shall define its value somewhat arbitrarily by (15)。

We shall now introduce the dimensionless variables defined by (3) - (5). By (A16) and (12), we obtain

$$
\begin{equation*}
\psi_{r}=\frac{3}{v_{0}^{2}} \Gamma\left(V_{0} \tau\right) \tag{A26}
\end{equation*}
$$

Substituting（A26）and（A17）into（A23）and（A24）and making use of （3）（5），we obtain

$$
\begin{equation*}
H\left(u_{1}\right)=H(v) \tag{A27}
\end{equation*}
$$

and

$$
\begin{equation*}
L\left(u_{1}\right)=L(v) \tag{A28}
\end{equation*}
$$

where $H(V)$ and $L(V)$ are given respectively $_{9}$ by（13）and（14）。A look at（A25）shows that

$$
\begin{equation*}
\Phi\left(u_{1}\right)=\Phi(V) \tag{A29}
\end{equation*}
$$

where $\Phi(\mathrm{V})$ is given by（11）。Further，substituting（3）＝（5）into （All），we obtain

$$
\begin{equation*}
F(u)=\frac{2 \pi}{v_{0}} G(v) \tag{A30}
\end{equation*}
$$

where $G(V)$ is given by（10）。

Substituting（3）$=(5)_{8}(A 25)_{8}(A 29)_{8}$ and（A30）into（A21）we
obtain eq．（9）．

APPENDIX B

THE TEST PARTICLE PROBLEM

The BL equation for the test particle problem can be written in the form ${ }^{7}$

$$
\begin{equation*}
\frac{\partial f_{t}}{\partial t}=-\frac{\partial}{\partial v} \cdot\left[F(v) f_{t}(v)\right]+\frac{1}{2} \frac{\partial^{2}}{\partial \psi \partial v}:\left[T(v) f_{t}(v)\right] \tag{BI}
\end{equation*}
$$

where $f_{t}(v)$ is the test particle distribution function 。 $\underset{\sim}{F}(v)$ is given by

$$
\begin{equation*}
\underset{w}{F}(v)=F_{i}(v)+F_{2}(v) \tag{BR}
\end{equation*}
$$

with $\mathrm{F}_{1}(\mathrm{v})$ being defined by ${ }^{8}$

$$
\begin{equation*}
{\underset{F}{1}}_{1}(v)=-\frac{e_{t}^{2}}{\bar{M}_{t}}\left(\omega_{p}^{2}+\frac{\theta}{\bar{M}_{t}} k_{D}^{2}\right)\left(\ell \frac{k_{0}}{k_{D}}\right) \frac{v}{v^{3}} \tag{B3}
\end{equation*}
$$

and $F_{2}(v)$ being defined by ${ }^{8}$

$$
\begin{equation*}
F_{2}(z)=-\frac{e_{t}^{2}}{M_{t}} \bar{\omega}_{p}^{2}\left(\ln \frac{k_{D} v}{\bar{\omega}_{p}}\right) \frac{v}{v^{3}} \tag{BL}
\end{equation*}
$$

$T(v)$ is given by

$$
\begin{equation*}
T(v)=T_{2}(v)+T_{2}(v) \tag{By}
\end{equation*}
$$

with $T_{1}(v)$ being defined by ${ }^{8}$

$$
\begin{gather*}
\underset{=1}{T}(v)=\frac{e_{t}^{2} \theta \bar{\omega}_{p}^{2}}{M_{t}^{2}}\left(\ln \frac{k_{0}}{\bar{\omega}_{p}^{2}}\right)\left[\frac{k_{D}^{2}}{\bar{n}_{p}^{2}}\left(\frac{v^{2} \frac{1}{z_{2}-v v}}{v^{3}}\right)\right. \\
\left.-\left(\frac{v^{2} \frac{1}{z}-3 v v}{v^{5}}\right)\right] \tag{BC}
\end{gather*}
$$

and $T_{2}(v)$ being defined by ${ }^{8}$
-When we substitute (B2) - (B7) into (B1) ${ }_{\circ}$ perform all of the differentiations. and drop terms of the order $\frac{v_{0}}{v}$, where v_{o} is the thermal velocity of field particles, we obtain the differential equation

$$
\begin{align*}
\frac{\partial f_{t}}{\partial t} & \cong\left\{\frac{e_{t}^{2}}{\overline{M_{t}}}\left(\bar{\omega}_{p}^{2}-\frac{\theta k_{D}^{2}}{\overline{M_{t}}}\right)\left(\ln \frac{k_{0}}{k_{D}}\right) \frac{v}{v^{3}} \circ \frac{f_{t}}{v}\right. \\
& \left.+\frac{1}{2} T_{2}: \frac{\partial^{2} f_{t}}{\partial v \partial v}\right\}+\left(\frac{e_{t}^{2} \bar{\omega}_{p}^{2}}{M_{t}}\left(\ln \frac{k_{D} v}{\bar{\omega}_{p}}\right) \frac{v}{v^{3}} \cdot \frac{\partial f_{t}}{\partial v}\right. \\
& \left.+\frac{1}{2} \underset{=}{T} 2: \frac{\partial^{2} f_{t}}{\partial v \frac{\partial v}{}}\right\} \tag{в8}
\end{align*}
$$

The terms inside the first pair of braces on the right side of (B8) are identical with the ones obtained from the solution of the RMJ equation: ${ }^{6}$ The terms inside the second pair of braces are due to the collective effects.

If we now confine ourselves to isotropic distributions, the following relations hold:

$$
\begin{equation*}
1: \frac{\partial^{2} f_{t}}{\partial v}=\frac{\partial^{2} f}{\partial v^{2}}+\frac{2}{v} \frac{\partial f_{t}}{\partial v} \tag{B9}
\end{equation*}
$$

and

$$
\begin{equation*}
v v: \frac{\partial^{2} f_{t}}{\partial v} \partial v=v^{2} \frac{\partial^{2} f_{t}}{\partial v^{2}} \tag{B10}
\end{equation*}
$$

Substituting (B9) and (B10) into (B8), and dropping terms of the form $\frac{f_{t}}{v^{3}}$ as well as terms of order one relative to terms of order $\left(\ln \frac{k_{D}}{\bar{\omega}_{p}}\right)$, we obtain the differential equation

$$
\left.\left.\begin{array}{c}
\frac{M_{t}}{e_{t}^{2} \bar{\omega}_{p}^{2}} \frac{\partial f_{t}}{\partial t}=\frac{1}{M_{t} v^{2}}
\end{array}\right] \ln \frac{k_{0}}{k_{D}}+\ln \frac{k_{D} v}{\bar{\omega}_{p}}\right]\left[\theta \frac{\partial}{\partial v}\left(\frac{1}{v} \frac{\partial f_{t}}{\partial v}\right)\right.
$$

Let us now define a function $g_{t}\left(v_{\imath} t\right)$ by

$$
\begin{equation*}
f_{t}(v, t)=g_{t}\left(v_{\imath} t\right) e^{=\frac{M_{t} v^{2}}{2 \theta}} \tag{B12}
\end{equation*}
$$

$g_{t}\left(v_{\partial} t\right)$ satisfies the diffusion equation

$$
\begin{gather*}
\frac{M_{t}}{\partial_{t}^{2}-2} \frac{\partial g_{t}}{\partial t}=\frac{1}{M_{t} v^{2}}\left[\ln \frac{k_{0}}{k_{D}}+\ln \frac{k_{D} v}{\frac{\omega_{p}}{*}}\right]\left[\frac{\theta}{\frac{\partial^{2} g_{t}}{\partial v^{2}}}\right. \\
\left.-M_{t}\left(1+\frac{\theta}{M_{t} v^{2}}\right) \frac{\partial g_{t}}{\partial v}\right] \quad \tag{B13}
\end{gather*}
$$

If $g_{t}(v, t)$ has an inflection point at $v_{\text {inf }}$, the speed with which this point diffuses into the highospeed region is given by

$$
\begin{equation*}
\left(\frac{\partial v}{\partial t}\right)_{g_{t}=\text { const }}=\frac{e_{t}^{2} \bar{\omega}_{p}^{2}}{M_{t} v_{i n f}^{2}}\left[\ln \frac{k_{o}}{k_{D}}+\ln \frac{k_{D} v_{i n f}}{\bar{\omega}_{p}}\right] \tag{B14}
\end{equation*}
$$

We can define a characteristic time ${ }^{4} \tau_{0}$ by

$$
\begin{equation*}
\tau_{0} \equiv \frac{v_{\text {inf }}}{\left(\frac{\partial v}{\partial t}\right)_{g_{t}}=\text { const }}=\frac{M_{t} v_{\text {inf }}^{3}}{e_{t}^{2} \bar{\omega}_{p}^{2}\left[\ln \frac{k_{0}}{k_{D}}+\ln \frac{k_{D} v_{\text {inf }}}{\bar{\omega}_{p}}\right]} \tag{B15}
\end{equation*}
$$

Let us now go to the anisotropic case．Let us assume that

$$
\begin{equation*}
f_{t}\left(\underline{v}_{\theta} t=0\right)=\delta(\underset{\sim}{v}-\underset{\sim}{u}) \tag{B16}
\end{equation*}
$$

We shall take velocity moments of eq．（B8）at $t=0$ 。 First，let us multiply（B8）through by $\underset{\sim}{v}$ ，and then integrate over $\underset{\sim}{v}$ 。 Making use of（B16）and integrating by parts，we get

$$
\begin{equation*}
\frac{\partial y^{2}}{\partial t}=-\frac{e_{t}^{2} \bar{\omega}_{D}^{2}}{M_{t}}\left[\left(1+\frac{\theta k_{D}^{2}}{M_{t} \bar{\omega}_{p}^{2}}\right) \ln \frac{k_{o}}{k_{D}}+\ln \frac{k_{D}^{u}}{\bar{\omega}_{p}}\right] \frac{\underset{\sim}{u}}{\frac{u}{3}} \tag{B17}
\end{equation*}
$$

We can define a＂slowing down time＂${ }^{6}$ by

$$
\begin{equation*}
\tau_{s} \equiv-\frac{u}{\left(\frac{\partial u}{\partial t}\right)}=\frac{M_{t} u^{3}}{e_{t}^{2} \bar{\omega}_{p}^{2}\left[\left(1+\frac{\theta k_{D}^{2}}{M_{t} \bar{\omega}_{p}^{2}}\right) \ln \frac{k_{o}}{k_{D}}+\ln \frac{k_{D}^{u}}{\bar{\omega}_{p}}\right]} \tag{B18}
\end{equation*}
$$

Let us now multiply（B8）through by $\mathbf{v} \mathbf{v}$ ，and then integrate over \mathbf{v} 。 We obtain

$$
\begin{aligned}
\frac{\partial}{\partial t}(\underset{\sim}{u} \underset{\sim}{u}) & =\frac{e_{t}^{2} \bar{\omega}_{p}^{2}}{M_{t}}\left(\ln \frac{k_{o}}{k_{D}}\right)\left[-\frac{\theta}{M_{t}}\left(\frac{u^{2} \frac{1}{z}-3 \underline{u} \underline{u}}{u^{5}}\right)\right. \\
& \left.+\frac{\theta k_{D}^{2}}{M_{t} \bar{\omega}_{p}^{2}}\left(\frac{u^{2} \underset{v_{v}}{1}-3 \underset{\sim}{u} u}{u^{3}}\right)-2 \frac{\underline{u} u_{u}^{u}}{u^{3}}\right]
\end{aligned}
$$

$$
\begin{equation*}
+\frac{e_{t}^{2} \bar{\omega}_{p}^{2}}{M_{t}}\left(\ln \frac{k_{D} u}{\bar{\omega}_{p}}\right)\left[-\frac{\theta}{\bar{M}_{t}}\left(\frac{u^{2} \frac{1}{x}-3 u \underline{u}}{u^{5}}\right)-\frac{2 u \underline{w}}{u^{3}}\right] \tag{B19}
\end{equation*}
$$

We can define: "deflection time ${ }^{66}$ by

$$
\begin{equation*}
\tau_{D}=\frac{u^{2}}{\frac{\partial}{\partial t}\left(u_{p}^{2}\right)}=\frac{M_{t}^{2} u^{5}}{2 e_{t}^{2} \theta \bar{\omega}_{p}^{2}\left[\frac{k_{D}^{2} u^{2}}{\frac{\omega_{0}^{2}}{\omega_{p}^{2}}} \ln \frac{k_{0}}{k_{D}}-\ln \frac{k_{D}^{u}}{\omega_{p}}\right]} \tag{B20}
\end{equation*}
$$

where u_{\perp} is the component of velocity perpendicular to u_{o} 。
We can also define an "energy exchange time ${ }^{n 6}$ by

$$
\begin{equation*}
\tau_{W} \equiv-\frac{u^{2}}{\frac{\partial}{\partial t}\left(u^{2}\right)}=\frac{M_{t} u^{3}}{2 e_{t}^{2} \bar{\omega}_{p}^{2}\left[\ln \frac{k_{0}}{k_{D}}+\ln \frac{k_{D}^{u}}{\bar{\omega}_{p}}\right]} \tag{B21}
\end{equation*}
$$

APPENDIX C

THE EXPONENTIAL DECAY

Here we shall present a proof of the impossibility of an exponential decay of a distribution function. It is based on an adaptation and generalization of the method used by Rosenberg and Wu^{5} to solve the linearized Balescu-Lenard equation。

Let us write the kinetic equation for a spatially homogeneous
Whsma the he ymolis form

$$
\begin{equation*}
\frac{\partial f}{\partial t}=C(f, f) \tag{Cl}
\end{equation*}
$$

Where $C\left(f_{g} f\right)$ is a collision operator which has not yet been specified. Thus we have not yet limited ourselved to any particular kinetic equation Let us restrict ourselves to collision operators which are bilinear functions of $f\left(v_{0} t\right)$. The collision operator of the FokkerwPlanck equation satisfies this requirement, but the collision operator of the BalescumLenard equation does not. If $f_{0}(v)$ is the Maxwellian distribution to which $f(v, t)$ will relax, we define a function $f_{1}(v, t)$ by the expression

$$
\begin{equation*}
f_{1}(v, t) \equiv f(v, t)=f_{0}(v) \tag{c2}
\end{equation*}
$$

Substituting (C2) into (C1), (Cl) can be rewritten in the form

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial t}=C\left(f_{0}, f_{1}\right)+C\left(f_{1}, f_{0}\right)+C\left(f_{1}, f_{1}\right) \tag{C3}
\end{equation*}
$$

The term $C\left(f_{0} f_{0}\right)=0$ and therefore was not written explicitly in（C3）． If $f_{0}(v)$ is incorporated into the definitions of the operators $C\left(f_{0}, f_{1}\right)$ and $C\left(f_{1}, f_{0}\right)$ ，the right side of（ $C 3$ ）can be said to consist of two linear functions of f_{1} and one bilinear function of f_{1} 。 When f_{1} is small compared to f_{0} and eq．（C3）is linearized，the term $C\left(f_{1}, f_{1}\right)$ is simply droppped from the equation．If the Balescu－Lenard equation is linearized，it also satisfies the linearized eq．（C3）。

Let us further restrict ourselves to $f_{1}{ }^{9} s$ which are isotropic in velocity space。 Suppose a complete orthonormal set of real functions of $|v|$ ，$\left\{\phi_{n}(v)\right\}$ ，has been selected，and f_{1} is expanded in terms of the members of this set，so that

$$
\begin{equation*}
f_{1}(v, t)=\sum_{n=0}^{\infty} a_{n}(t) \quad \phi_{n}(v) \tag{C4}
\end{equation*}
$$

Then eq．（C3）can be written in the form

$$
\begin{equation*}
\frac{\partial a_{k}}{\partial t}=\sum_{n} A_{k n} a_{n}+\sum_{m, n} B_{k m n} a_{m} a_{n} \tag{C5}
\end{equation*}
$$

where $A_{k n}$ and $B_{k m n}$ are defined by

$$
\begin{equation*}
A_{k n} \equiv\left(\phi_{k}, C\left(f_{0}, \phi_{n}\right)\right)+\left(\phi_{k}, C\left(\phi_{n}, f_{0}\right)\right) \tag{c6}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k m n} \equiv\left(\phi_{k}, C\left(\phi_{m} \circ \phi_{n}\right)\right) \tag{C7}
\end{equation*}
$$

The symbol $\left(\phi_{k}, C\left(f_{0}, \phi_{n}\right)\right)$ denotes the scalar product of $\phi_{k}(v)$ and $C\left(f_{0}, \phi_{n}\right)$, etc.o If we select a different orthonormal set of real functions of $|v|$, say $\left\{\bar{\phi}_{n}(v)\right\}$, and define the matrix element \bar{A}_{kn} by

$$
\begin{equation*}
\bar{A}_{k n} \equiv\left[\left(\bar{\phi}_{k}, C\left(f_{0}, \bar{\phi}_{n}\right)\right)+\left(\bar{\phi}_{k}, C\left(\bar{\phi}_{n}, f_{0}\right)\right)\right] \tag{c8}
\end{equation*}
$$

then the matrix A can be obtained from the matrix \bar{A} by an orthonormal transformation. Let us restrict ourselves now to the FokkeraPlanck fintion. Iat as also assume that the set $\left\{\bar{\phi}_{n}\right\}$ is the same complete set used by Rosenberg and $W u^{5}$ 。 Rosenberg and $W u^{5}$ showed that \bar{A} has real, non-positive eigenvalues in the case of the linearized Balescu-Lenard equation. This must also be true in the case of the linearized Fokker. Planck equation; and since the matrix A, or \bar{A}, is not changed when the Fokker-Planck equation is linearized, \bar{A} must have real, nonpositive eigenvalues in the case of the nonmlinear Fokker-Planck equation. Hence also the matrix A must have real, nonopositive eigenvalues. Let us denote a particular eigenvalue by $\left(-\gamma^{(v)}\right)$ and the corresponding eigenvector by $X^{(v)}$, so that the equation $A X^{(v)}=-\gamma^{(v)} X^{(v)}$ is gatisfie?

We shall now expand the function $a_{n}(t)$ in terms of the eigenvectors of A 。 Thus we obtain

$$
\begin{equation*}
a_{n}(t)=\sum_{v} b^{(v)}(t) x_{n}^{(v)} \tag{C9}
\end{equation*}
$$

Substituting into (C5), we obtain

$$
\begin{equation*}
\frac{\partial b^{(\lambda)}}{\partial t}=-\gamma^{(\lambda)} b^{(\lambda)}+\sum_{\mu_{\theta} \nu} D_{\lambda \mu \nu} b^{(\mu)} b^{(\nu)} \tag{C10}
\end{equation*}
$$

where $D_{\lambda \mu \nu}$ is defined by

$$
\begin{equation*}
D_{\lambda \mu \nu} \equiv \sum_{k_{\vartheta} m_{\vartheta} n} B_{k m n} X_{k}^{(\lambda)} X_{m}^{(\mu)} X_{n}^{(\nu)} \tag{Cl1}
\end{equation*}
$$

Since $D_{\lambda \mu \nu} \neq 0,(C 10)$ does not have any solutions of the form (") :nosuj $e^{-l \text { const/t }}$, Hence an initial distribution function cannot relax to a final Maxwellian via the FokkeraPlanck equation by means of a aimple exponential decay.

In the linear approximation eq. (ClO) reduces to the equation

$$
\begin{equation*}
\frac{\partial b^{(v)}}{\partial t}=-\gamma(v) b^{(v)} \tag{Cl2}
\end{equation*}
$$

Eq. (Cl2) has the solution

$$
\begin{equation*}
b^{(v)}=c^{(v)} e^{-\gamma^{(v)} t} \tag{C13}
\end{equation*}
$$

where $C^{(v)}$ is some constant, determined by initial conditions. Substituting (Cl3) into (C9), and subsequently into (C4), we obtain (in the linear approximation)

$$
\begin{equation*}
f_{1}(v, t)=\sum_{n} \sum_{v} c^{(v)} e^{-\gamma^{(v)} t} X_{n}^{(v)} \phi_{n}(v) \tag{C14}
\end{equation*}
$$

Since $f_{0}(v)$ satisfies the normalization conditions (1) and (2), we must have

$$
\begin{equation*}
\int_{0}^{\infty} v^{2} f_{1}(v, t) d v=\int_{0}^{\infty} v^{4} f_{1}(v, t) d v=0 \tag{Cl5}
\end{equation*}
$$

Let us define the numbers $\alpha^{(v)}$ and $\beta^{(v)}$ by the following equations:

$$
\begin{equation*}
a^{(v)} \equiv \sum_{n} c^{(v)} X_{n}^{(v)} \int_{0} v^{2} \phi_{n}(v) d v \tag{C16}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta^{(v)} \equiv \sum_{n} c^{(v)} X_{n}^{(v)} \int_{0}^{\infty} v^{4} \phi_{n}(v) d v \tag{C17}
\end{equation*}
$$

Then, eq. (Cl5) yields the following two equations:
and

$$
\sum_{v} \alpha^{(v)} e^{-\gamma^{(v)} t}=0
$$

$$
\sum_{v} \beta^{(v)} e^{-\gamma^{(v)} t}=0
$$

Eqs. (Cl8) must hold for all times, including $t=0$. When $t=0$, (Cl8) become

$$
\begin{equation*}
\sum_{\nu} \alpha^{(v)}=\sum_{v} \beta^{(v)}=0 . \tag{C19}
\end{equation*}
$$

If we had only one exponential decay in $f_{1}(v, t)$, by (Cl4), $c^{(v)} \neq 0$ when $v=\mu_{0}$ and $C^{(v)}=0$ when $v \neq \mu_{0}$ Consequently $\alpha^{(v)} \neq 0$ and $\beta^{(v)} \neq 0$ when $v=\mu_{\text {, while }} \alpha^{(v)}=\beta^{(v)}=0$ when $v \neq \mu_{0}$ It would then follow from eq. (Cl9) that $\alpha^{(\mu)}=\beta^{(\mu)}=0$ 。 Therefore $f_{1}(v, t)$ has to contain more than one exponential decay even in the linear approximation。

REFERENCES

1。 Kranzer，Phys．Fluids 4． 214 （1961）。
2．Frisch，Phys．Fluids 4， 1167 （1961）。
3．Ree and Kidder，Phys．Fluids 6， 857 （1963）。
4．MacDonald，Rosenbluth，and Chuck，Phys．Revo 107， 350 （1957）。
5．Rosenberg and Wu，Cano J_{0} Phys．42． 548 （1964）。
6．L_{0} Spitzer $J r_{0}$ ．Physics of Fully Ionized Gases．Interscience
Publishers，Inco，New York 1956。
To D_{0} Montgomery and D_{0} Tidman．Plasma Kinetic Theory McGrawaHill（1965）。
8．Tidman．Montgomery，and Guernsey。 Phys．Fiuids 1089（1964）

Graph 4

Graph 8

Graph 10

PART TWO

NONLINEAR EFFECTS IN THE LIGHT $\propto B Y=L I G H T$ SCATTERING IN A PLASMA

I. INTRODUCTION

Recently there has been considerable interest in the scattering of light by light inside a plasma. Platzman. Buchsbaum, and Troar ${ }^{1}$ calculated. using quantum mechanics, the incoherent cross section for the scattering of light by light in the presence of a plasma to lowest order in the plasma parameter $i i_{0}$. to lowest order in the reciprocal of the number of particles in the Debye sphere Kroll_{0} Ron, and Rostoker ${ }^{2}$ calculated by solving the Vlasov equation. the scattering cross sectios for two plane electromagnetic waves each one of whach is monochromatis and coherent. With the presentoday state of laser technology such a lightm by-light scattering experiment is feasible.

This scattering process is of practical interest, because it can be used, among other things, as a density probe for plasmas. It has advantages over the process of incoherent scattering of a single light beam incident on a plasma, because the scattered energy flux per unit incident energy flux is much larger for the lightwlight scattering process than it is for the scattering of a single incident light beam (as was pointed out by Platzman et al ${ }^{1}$ and by Kroll et. alo ${ }^{2}$)。

The reason for this fact is that a single light beam passing through a quiescent plasma is only scattered by the thermal density fluctuations, which are smallo On the other hand, the presence of two incident light beams enables us to tune their frequencies so that their difference is equal to the natural frequency of longitudinal oscillations.

The two light beams are then able to excite coherent plaama density oscillations, and are in tury scattered by these oscillationso These density oscillations are much larger than the thermal density fluctuations. and therefore enhance the acettering process.

We shall make the tollowing model for the scattering processo Two infinfte plane waves, with wave vectors k_{1} and k_{2} and frequencies ω_{1} and ω_{2} respectively $y_{\text {inpinge }}$ on a quiescent plasma confined in a large volume V 。A detector is placed very far from the plasma and measures the scattered energy flux ofer a long period of time T 。

Figure XI

For the sake of simplicity we ahall assume the volume V to be a rectangulax box and the plasma to constst one species of particles electrons. with average particle density π_{0}. To ensure charge neutrality, the electron plasma is embedded in a usifury smeared out background of positive charge of charge density $N_{0} e$ 。

The differentia coses section per unit frequency weseral for the scattering of light by a plasma $\mathrm{is}^{2} \mathrm{a}^{3}$

$$
\begin{equation*}
\left.\frac{d o}{d \omega}=\frac{r^{2}}{2 \pi} \sin =\frac{x^{2}}{2} \quad \omega^{n}=\omega\right)\left(1=\frac{1}{2} \sin ^{2} \theta\right) \tag{2}
\end{equation*}
$$

where $r_{0}=\frac{e^{2}}{m c^{2}}$, the ciationg electron radius; θ is the angie of scattering: $\mathrm{f}_{0} \mathrm{e}_{0}$ the angie between the incident energy flux atd the scattered energy flux; k is the wave vector of incident light; w is the frequency of incident light w^{y} sis the frequency of enattered ight: A is a unit vector poititing in the direstion of the scattered fix; and $S\left(k_{0} w\right)$ is the spectral density, defined by

$$
\begin{equation*}
S\left(k_{\theta} \omega\right)=\lim _{\substack{V \rightarrow \infty \\ \mathrm{~T} \rightarrow \infty}} \frac{2\left|n\left(k_{\theta} \omega\right)\right|^{2}}{\mathrm{~N}_{0} \mathrm{VT}} \tag{2}
\end{equation*}
$$

Where $n(k, w)$ is the Fourier transform of $n\left(x_{0} t\right)$ which is defined to be the fluctuation of the electron density about the equilibrium density $\mathrm{N}_{0}{ }^{\circ}$

The calculation of $n(x, t)$ is difficult, because the equations describing the behavior of glasma are nonainear. To make the problem tractable, one usually restwicts oneself to incident light beams whose amplitudes are small in the acose that the shanges they produce in the plasma variables are small compared with the values of these variables for the quiescent plasma (foco $\ln \left(x_{i} t\right)!/ N_{0} \alpha V_{0}$ This enables us to introduce formally a small parameter ε, which is a measure of the strength of the amplitudes of the incident light waves, and to use some kind of perturbation theoryio

If one chooses to describe the beharior of the plasma by means of the collisionless moment equations and the Maxwell equations, and applies the conventional linearization process to these equations. one obtains an $n\left(x_{0} t\right)$ which grows lineariy with line Thie wili be pointed out more explicitly in Seco $I V \mathrm{C}_{\mathrm{o}}$) Since the density mast remain finite there have to exist physicai mechanisms which limit the density oscillations but were left out of the above mathematical scheme。 The neglected mechanisms are the Landau damping, the collisionai damping, and the nonlinear effects.

Ail of these mechanisms operate simultaneously. But for a particular choice of numerical values of plasma parameters and incident electric fields, one mechanism wabily dominates. Which one is dominant in a particular situation is determined by the numerical values selected.

The dominant mechanism yieldis smaller density oscillations than all other mechanisms because it limaz these oscillations more effectiveiyo

Since it is very axixcult to calculate the action of ald of the limiting mechanisms simultaneousiy，the effect of each mechanism is calculated separately，with tre exclusion of all other mechanismso Kroll． Ron，and Rostoker ${ }^{2}$ were intesested in the Landau damping mechanismo Therea for they linearized the Vagoy and the Maxwell equations．and dalculated the Landau damping effect fism these inearited equarions．The dansity oscillations，as calculated gy Kroll et。aio turned out to be inversely proportional to the Landau damping decrement。

Since in the lineaxized theory the coldisionad damping．as calculated from the Fokker Planck equation．introduces an additional damping decrement which plays a wole analogous to the Landau dampling decrement，Kroll eto ai．${ }^{2}$ managed to incorporate the collisionai damping mechanism into their results by adding the collisional damping decrement to the Landau damping decrement．We can see from their results the reason why the linearized，collisionless moment equations yield density oscillm ations which increase linearly with time Linearized collisionless moment equations neglect both the collisions and Landau dampingo Theres fore from the viewpoint of those equations the collisional and the Landau damping decrements are both zero．Hence the density oscillations will grow with time。

We have neglected the effects of collisions and Landau damping． and have calculated the contributions of non－linear effects．For this purpose we have limited ourselves to collisionless moment equations and Maxwell equations．To make the problem mathematically tractable ${ }_{\varepsilon}$ we have assumed the nonlinearity in the equations to be small．This enabled us to treat the nonlinearity by the generalization due to Frieman and Sandri ${ }^{4}$ of an expansion technique for nondinear mechanics due to Bogoliubov，Krylov，and Mitropolsky ${ }^{5}$ ．

The generalization due to Frieman and Sandxi is known as the multiple timesscale method．It introduces into the probiem many time scales，each scale being of a different order in ε ．The purpose of these＂slow＂length and time scale variables is to introduce enough freedom in the equations to cancel secuiar（ioe t or x proportional） terms in the perturbation expansion。 We have adapted the Friemanasandra method to our problem by also introducing many spatial scales defined in an analogous way。

We have derived an expression for the differentiel cross section for the scattering of light by light。 We have also derived an expression by which one can determine quantitatively which mechanism limits plasma oscillations more effectively for a particular set of numerical values of plasma parameters and impinging wave parameterso Our results indicate that nonlinear effects are sometimes much more important than damping effects．This is particularly true when the impinging waves are fairly strong．On the other hand，when the impinging waves are very weak，the damping effects dominate。

II。 ELECTRON $=$ PLASMA EQUATIONS

A. MOMENT AND MAXWELL EQUATIONS

Let P_{0} be the pressure of the quiescent plasma; $p\left(x_{0} t\right)$. the fluctuation of the pressure tensor about $P_{0} \frac{1}{8}$ (1 $\frac{1}{3}$ is the unit dyadic): $v(x, t)$, the velocity; E, the electric field; and B othe magnetic field. We assume (as was pointed out in (I) the plasma to be described by the following low temperature, colisionless moment equations:

$$
\begin{align*}
& \frac{\partial n}{\partial t}+N_{0} \frac{\partial}{\partial x} \quad \circ \underset{\sim}{y}=\approx \frac{\partial}{\partial x} \circ n y \quad \varepsilon \tag{3}\\
& \left(N_{0}+n\right)\left[\frac{\partial y}{\partial t}+\left(v \circ \frac{\partial}{\partial x}\right) y=-\frac{1}{m} \frac{\partial}{\partial x} \circ \underset{\sim}{p}\right. \\
& =\frac{e}{m}\left(N_{0}+n\right)\left(E+\frac{1}{c} U \times B\right) \quad 0 \tag{4}
\end{align*}
$$

and

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+\left(v \circ \frac{\partial}{\partial x}\right) p+\left(p_{0} \underset{\sim}{p}+\underset{\sim}{p}\right)\left(\frac{\partial}{\partial x} \circ y\right)
\end{aligned}
$$

$$
\begin{align*}
& =\frac{e}{m c}\left[\left(P_{0}{\underset{w}{*}}^{m}+\underset{\sim}{p}\right) \times \underset{w}{B}+\left(P_{0} \underset{\sim}{1}+p_{0}\right) \times B\right] \quad . \tag{5}
\end{align*}
$$

In (5) the heat conduction term has been left out because we are dealing with a low temperature plasma。 The term ($P_{0} \frac{1}{\sim} \times \underset{\sim}{B}+P_{0}{\underset{\sim}{2}}^{1} \times \underset{\sim}{B}$) in (5) vanishes. This can be seen by writing it in component form:

$$
\begin{gathered}
\left(P_{0} \frac{1}{s} \times \underset{\sim}{B}+P_{0} \frac{1}{\approx} \times B\right)_{i j}=P_{0}\left(\delta_{i k \ell} \delta_{j k}+\delta_{j k \ell} \delta_{i k}\right) B_{\ell} \\
=P_{0}\left(\delta_{i j \ell}+\delta_{j i l}\right) B_{l}=0
\end{gathered}
$$

where $\delta_{j k}$ is the Kronecker delta, and $\delta_{i k \ell}$ is the Levi=Civita density, the antisymmetric unit tensor of the third rank (with the value zero whenever any two indices are equal, with the value (+1) whenever (ikd) form an even permutation of (123), and with the value (∞) whenever (ikl) form an odd permutation of (123))。 Summation over repeated indices is assumed。

To the three moment equations we add the four Maxwell equations:

$$
\begin{align*}
& \frac{\partial}{\partial x} \circ \underset{\sim}{E}=-4 \pi e n \tag{6}\\
& \frac{\partial}{\partial x} \underset{\sim}{x} \cdot \underset{\sim}{B}=0 \tag{7}\\
& \frac{\partial}{\partial \underset{\sim}{x}} x \underset{\sim}{E}=-\frac{1}{c} \frac{\partial \underset{\sim}{\partial}}{\partial t}, \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial x} \times \underset{\sim}{B}=\frac{1}{c} \frac{\partial E}{\partial t}-\frac{4 \pi N_{0} e}{c} v=\frac{4 \pi e}{c} n v \quad 0 \tag{9}
\end{equation*}
$$

Equations (3) = (9) are assumed to constitute the complete set of equations describing the behavior of the plasma.

Bo WAVE EQUATIONS

For many purposes it is more convenient to work with nonlinear wave equations. By a non*linear wave equation we mean a nonlinear partial differential equation having a linear and a nonlinear term. The nonlinear term may contain several plasma field variables。 The linear term, however, contains only one plasma variable, and has the form of the linear wave equation for that variable: That is the nonminear wave equation is essentially the linear wave equation with a nonlinear driving term ${ }_{0}$

We shall be concerned with the $\underset{\sim}{E}$ field only, but shall want to examine the longitudinal and transverse components of E separately. (By the longitudinal component of a vector we mean that component which has no curl ${ }_{0}$) For this reason we write down the wave equation for E. and then by taking the divergence and then the curl of that equation, we obtain wave equations for $n\left(x_{v} t\right)$ and for $\underset{\sim}{B}\left(x_{0}, t\right)$, respectively. The wave equation for $E(x, t)$ is

$$
\begin{aligned}
& {\left[\frac{1}{c^{2}} \frac{\partial^{4}}{\partial t^{4}}+\frac{\omega_{p}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\left(1+\frac{1}{3} \frac{v_{0}^{2}}{c^{2}}\right) \nabla^{2} \frac{\partial^{2}}{\partial t^{2}}\right.} \\
& +\frac{1}{3} v_{0}^{2} \nabla^{2} \nabla^{2}+\left(1-\frac{2}{3} \frac{v_{0}^{2}}{c^{2}}\right) \frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} 0_{0}\right) \\
& \left.-\frac{1}{3} v_{0}^{2} \nabla^{2} \nabla^{2} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} 0\right)\right]=\underset{=}{E}=\frac{4 \pi e}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left[N _ { 0 } \left(v \circ \frac{\partial}{\partial x} v\right.\right. \\
& \left.\left.+\frac{e}{m c} \quad v \times \frac{B}{\infty}\right)=\frac{\partial}{\partial t}(n v)\right]=\frac{4 \pi e}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left[n \left\{\frac{\partial v}{\partial t}\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+\underset{\sim}{v} \circ \frac{\partial}{\partial x_{w}} \underset{\sim}{v}+\frac{e}{m}\left(\underset{\sim}{E}+\frac{\underset{\sim}{c}}{\mathbf{c}} \underset{\sim}{v} \times \underset{w}{B}\right)\right\}\right] \\
& -\frac{4 \pi e}{3} \frac{v_{0}^{2}}{c^{2}} \nabla^{2} \quad \frac{\partial}{\partial t} \quad(n v)=\frac{8 \pi e}{3} \frac{v_{0}^{2}}{c^{2}} \frac{\partial}{\partial t} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} \circ n v\right) \\
& +\frac{4 \pi e}{m c^{2}} \frac{\partial}{\partial t} \frac{\partial}{\partial x} \circ\left[\left(\underset{x}{v} \circ \frac{\partial}{\partial x}\right) \underset{y}{p}+p\left(\frac{\partial}{\partial x} \circ \quad y\right)\right. \\
& \left.+\left(p \circ \frac{\partial}{\partial x}\right) y+\left(p \circ \frac{\partial}{\partial x}\right) y+\frac{e}{m e}(p \times \underset{\sim}{p}+\underset{\sim}{p} \times \underset{\sim}{B})\right] \tag{10}
\end{align*}
$$

where $v_{0} \equiv\left(\frac{3 r_{0}}{N_{0}^{m}}\right)^{1 / 2}$, the thermal velocity, and $\omega_{p}=\left(\frac{4 \pi N_{0} e^{2}}{m}\right)^{1 / 2}$, the electron plasma frequency. (Eq. (10) is derived in the Appendix.)

$$
\text { Taking }\left(=\frac{1}{4 \pi e} \frac{\partial}{\partial x} 0\right) \text { of eq. (10) and substituting eq. (6), }
$$

we obtain

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial t^{2}}+\omega_{p}^{2}-v_{0}^{2} \nabla^{2}\right) \frac{\partial^{2} n}{\partial t^{2}}=\frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial x} \cdot\left[N _ { 0 } \left(v \circ \frac{\partial}{\partial x} v\right.\right. \\
& \left.\left.+\frac{e}{m c} \underset{\sim}{v} \times \underset{\sim}{B}\right)=\frac{\partial}{\partial t}(n v)\right]+\frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial x} \circ\left[n \left\{\frac{\partial y}{\partial t}\right.\right. \\
& \left.\left.+\mathbf{y} \cdot \frac{\partial}{\partial x} \mathbf{v}+\frac{\mathbf{e}}{\mathrm{m}}\left(E+\frac{1}{c} \underset{\sim}{v} \times \underset{\sim}{B}\right)\right\}\right] \\
& +v_{0}^{2} \frac{\partial}{\partial t} \nabla^{2} \frac{\partial}{\partial x} \circ(n v)=\frac{1}{m} \frac{\partial}{\partial t} \frac{\partial^{2}}{\partial x \partial x}:\left[\left(y \circ \frac{\partial}{\partial x}\right) \underset{\sim}{p}\right. \\
& +\underset{\sim}{p}\left(\frac{\partial}{\partial x} \circ v\right)+\left(\underset{\sim}{p} \circ \frac{\partial}{\partial x}\right) v+\left(\underset{\sim}{p} \circ \frac{\partial}{\partial x}\right) v \\
& \left.+\frac{e}{m c}(\underset{\sim}{p} \times \underset{\sim}{B}+\underset{\sim}{p} \times \underset{\sim}{B})\right] \quad \text { 。 } \tag{11}
\end{align*}
$$

Taking ($-c \frac{\partial}{\partial x} x$) of eq. (10) and substituting eq. (8) owe obtain

$$
\left[\frac{1}{c^{2}} \frac{\partial^{4}}{\partial t^{4}}+\frac{\omega^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}=\left(1+\frac{1}{3} \frac{v^{2}}{c^{2}}\right) \nabla^{2} \frac{\partial^{2}}{\partial t^{2}}\right.
$$

$$
\left.+\frac{1}{3} v_{0}^{2} \nabla^{2} \nabla^{2}\right] \frac{\partial B}{\partial t}=\frac{4 \pi e}{c} \frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial x} \times\left[N _ { 0 } \left(v \circ \frac{\partial}{\partial x} \underset{\sim}{v}\right.\right.
$$

$$
\left.\left.+\frac{e}{m c} v \times \underset{\sim}{B}\right) \infty \frac{\partial}{\partial t}(n v)\right]+\frac{4 \pi e}{c} \frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial x} \times\left[n \left\{\frac{\partial v}{\partial t}\right.\right.
$$

$$
\left.\left.+y \circ \frac{\partial}{\partial x} y+\frac{e}{m}\left(E+\frac{1}{c} y \times B\right)\right\}\right]
$$

$$
+\frac{4 \pi e c}{3} \frac{v_{0}^{2}}{c^{2}} \nabla^{2} \frac{\partial}{\partial x} \times \frac{\partial}{\partial t}(n y)=\frac{4 \pi e}{m c} \frac{\partial}{\partial t} \frac{\partial}{\partial x} \times
$$

$$
\frac{\partial}{\partial x} \circ\left[\left(v \circ \frac{\partial}{\partial x}\right) \underset{\sim}{p}+\underset{\sim}{p}\left(\frac{\partial}{\partial x} \circ y\right)+\left(\underset{\sim}{p} \circ \frac{\partial}{\partial x}\right) y\right.
$$

We can see immediately that the linear part of eq。(11) will satisfy the dispersion relation

$$
\begin{equation*}
\omega^{2}=\omega_{p}^{2}+v_{0}^{2} k^{2} \tag{13}
\end{equation*}
$$

when the nonmlinear terms are set equal to zero。 Eq。（13）is the disper． sion relation for longitudinal plasma oscillations．Similarly，the linear part of（12）will satisfy the dispersion relation

$$
\begin{equation*}
\omega^{4}-\left(\omega_{p}^{2}+c^{2} k^{2}+\frac{1}{3} v_{o}^{2} k^{2}\right) \omega^{2}+\frac{1}{3} c^{2} v_{o}^{2} k^{4}=0 \tag{14}
\end{equation*}
$$

When the nonalinear terms are set equal to zero。Eq。（14）is the disperw sion relation for transverse plasma oscillations．The nonlinear terms in（11）and（12）describe the coupling of these two modes．

III。 PERTURBATION EXPANSION

A。 THE NATURE OF THE PERTURBATION SCHEME

According to the discussion in（I），the amplitudes of the impinging electromagnetic waves are $O(\varepsilon)$ quantities．These waves produce small disturbances in the quiescent plasma which are of $O(\varepsilon)$ also。 As a result of this $n(x, t), y\left(x_{0} t\right), p\left(x_{0} t\right), E\left(x_{i} t\right)$ and $B\left(x_{\rho} t\right)$ are all $O(\varepsilon)$ quantitites．on the other band the noninear terms in equations（3）（12）being quadratic in the above $O(\varepsilon)$ quantities，are of $O\left(\varepsilon^{2}\right)$ 。

Neglecting for the moment the nonlinear terms in equations （3）（12）we obtain a set of linear equations，with all of the terms In them of $O(\varepsilon)$ ．The transverse components of the solutions of these inearized equations have temporal variations on the scale of $\left(\frac{1}{\omega_{1}}\right)$ and spatial variations on the scale of $0\left(\frac{1}{k_{1}}\right)$ o on the other hand the longitudinal components have temporal variations on the scale of $0\left(\frac{1}{\omega_{p}}\right)$ 。 We consider these temporal and spatial scales to be of $O(1)$ o The amplitudes of the solutions however are of $O(\varepsilon)$ ．

However，the presence of nonlinear terms in eqno（3）（12）． which are of a higher order in $\varepsilon_{\text {g }}$ introduces not only small changes on the fast scales in the amplitudes of the solutions，but also small changes in the frequencies and wavelengths of those solutions．These
small shifts in frequencies and wavelengths imply the presence of additional time and spatial scales which are of $O(\varepsilon)$ 。

We shall take these additional slow spatial and time scales into account by explicitly introducing many time variables, denoted by t_{0}. $\varepsilon t_{1}, \varepsilon^{2} t_{20000}$ and many spatial scales, denoted by $x_{0}=\varepsilon x_{2}=\varepsilon^{2} x_{20000}$ with $\frac{\partial t_{0}}{\partial t}=1, \frac{\partial\left(\varepsilon t_{1}\right)}{\partial t}=\varepsilon, \frac{\partial\left(\varepsilon^{2} t_{2}\right)}{\partial t}=\varepsilon^{2} 0000$ and $\frac{\partial x_{0}^{0}}{\partial x}=\frac{1}{y} 0$ $\frac{\partial\left(\varepsilon_{1}\right)}{\partial x}=\varepsilon_{y}, \frac{\partial\left(\varepsilon^{2} x_{2}\right)}{\partial x}=\varepsilon^{2}{\underset{\sim}{y}}_{0}^{1} 000$. We may write the actual spatial and time dependence of any function as the dependence on many time variables and many spatial variables, $\mathfrak{i}_{0} e_{0} f\left(x_{0} t\right)=f\left(x_{0} \varepsilon x_{1} \varepsilon^{2} x_{2} 2_{0000}\right.$ $\left.t_{0}, \varepsilon t_{1}, \varepsilon^{2} t_{20000}\right)$ 。

We shall approximate the corrections to the amplitudes of the plasma variables due to nonlinear terms by writing the solutions to eqs. (3) $=(12)$ in the form of power series in ε. We write, accordingly

Bo THE $O(\varepsilon)$ AND $O\left(\varepsilon^{2}\right)$ PLASMA EQUATIONS

To $O(\varepsilon)$ equations (3) = (12) are, respectively,

$$
\begin{align*}
& \frac{\partial n^{(1)}}{\partial t_{0}}+N_{0} \frac{\partial}{\partial x_{0}} \circ v^{(1)}=0 \tag{16}\\
& \frac{\partial v^{(1)}}{\partial t_{0}}=-\frac{1}{N_{0} m} \frac{\partial}{\partial x_{0}} \circ{\underset{\sim}{p}}_{(1)}^{p^{(1)}} \underset{\sim}{e}{\underset{\sim}{E}}^{(1)} \tag{17}
\end{align*}
$$

$$
\frac{\partial{\underset{\sim}{e}}^{(1)}}{\partial t_{0}}+P_{0} \underset{\approx}{1} \frac{\partial}{\partial x_{0}} \circ v^{(1)}+P_{0}\left(\frac{\partial}{\partial x_{0}} v^{(1)}\right.
$$

$$
\begin{equation*}
\left.+\frac{\partial}{\partial x_{0}} v^{(1)}\right)=0 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial x_{0}} \circ E^{(1)}==4 \pi e^{(1)} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial x_{0}} \circ B^{(1)}=0 \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial x_{0}} \times{\underset{E}{(1)}}_{(1)}^{=} \frac{1}{c} \frac{\partial B^{(1)}}{\partial t_{0}} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial x_{0}} \times B_{o}^{(1)}=\frac{1}{c} \frac{\partial E^{(1)}}{\partial t_{0}}-\frac{4 \pi N_{o} e^{e}}{c} v^{(1)} \tag{22}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\frac{1}{c^{2}} \frac{\partial^{4}}{\partial t_{0}^{4}}+\frac{\omega_{p}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t_{0}^{2}}=\left(1+\frac{1}{3} \frac{v_{0}^{2}}{c^{2}}\right) v_{0}^{2} \frac{\partial^{2}}{\partial t_{0}^{2}}\right.} \\
& +\frac{1}{3} v_{0}^{2} \nabla_{0}^{2} \nabla_{0}^{2}+\left(1-\frac{2}{3} \frac{v_{0}^{2}}{c^{2}}\right) \frac{\partial^{2}}{\partial t_{0}^{2}} \frac{\partial}{\partial x_{0}}\left(\frac{\partial}{\partial x_{0}} 0_{0}\right) \\
& \left.\left.-\frac{1}{3} v_{0}^{2} \nabla_{0}^{2}{\underset{0}{\partial x}}_{\frac{\partial}{\partial x}}^{\left(\frac{\partial}{\partial x}\right.} 0\right)\right] \frac{E_{0}^{(1)}=0}{\left(\frac{\partial^{2}}{\partial t_{0}^{2}}+\omega_{0}^{2}=v_{0}^{2} \nabla_{0}^{2}\right) \frac{\partial n}{\partial t_{0}^{(1)}}=0} \tag{23}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[\frac{1}{c^{2}} \frac{\partial^{4}}{\partial t_{0}^{4}}+\frac{\omega_{0}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t_{0}^{2}}=\left(1+\frac{1}{3} \frac{v_{0}^{2}}{c^{2}}\right) \nabla_{0}^{2} \frac{\partial^{2}}{\partial t_{0}^{2}}\right.} \\
& \left.\quad+\frac{1}{3} v_{0}^{2} \nabla_{0}^{2} \nabla_{0}^{2}\right] B_{B}^{(1)}=0 \tag{25}
\end{align*}
$$

where ∇_{0}^{2} is the Laplacian with respect to the ${\underset{0}{0}}^{0}$ variable As we can see, plane wave solutions of eq. (23) - (25) satisfy the dispersion relations (13) - (14), as could have been expected.

To $O\left(\varepsilon^{2}\right)$, the wave equations (10) - (12) are, respectively,

$$
\begin{aligned}
& {\left[\frac{1}{c^{2}} \frac{\partial^{4}}{\partial t_{0}^{4}}+\frac{\omega_{0}^{2}}{c^{2}} \frac{\partial^{2}}{\partial t_{0}^{2}}=\left(1+\frac{1}{3} \frac{v_{0}^{2}}{c^{2}}\right) \nabla_{0}^{2} \frac{\partial^{2}}{\partial t_{0}^{2}}\right.} \\
& +\frac{1}{3} v_{0}^{2} \nabla_{0}^{2} \nabla_{0}^{2}+\left(1-\frac{2}{3} \frac{v_{0}^{2}}{c^{2}}\right) \frac{\partial^{2}}{\partial t_{0}^{2}} \frac{\partial}{\partial x_{0}}\left(\frac{\partial}{x_{0}} 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{e}{m} E^{(1)}\right)\right]=\frac{4 \pi e}{3} \frac{v_{0}^{2}}{c^{2}} \nabla_{0}^{2}\left(\frac{\partial}{\partial t_{0}} \quad n^{(1)}{\underset{v}{(1)})}^{(1)}\right. \\
& =\frac{8 \pi e}{3} \frac{v_{0}^{2}}{c^{2}} \frac{\partial}{\partial t_{0}} \frac{\partial}{\partial x_{0}}\left(\frac{\partial}{\partial x_{0}} \circ n^{(1)} v^{(1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\underset{\sim}{p}(1) \cdot \frac{\partial}{\partial x_{\infty}}\right) \underset{v^{(1)}}{v^{(1)}}+\left(\underset{\sim}{p}(1) \cdot \frac{\partial}{\partial x_{0}}\right){\underset{w}{p}}^{(1)} \\
& \left.+\frac{e}{m c}\left({\underset{\sim}{p}}^{(1)} \times \underset{\sim}{B}+\underset{\sim}{p^{(1)} \times{\underset{\sim}{e}}^{(1)}}\right)\right] \\
& -\left[\frac{4}{c^{2}} \frac{\partial^{4}}{\partial\left(\varepsilon t_{1}\right) \partial t_{0}^{3}}+\frac{2 \omega_{p}^{2}}{c^{2}} \frac{\partial^{2}}{\partial\left(\varepsilon t_{1}\right) \partial t_{0}}\right.
\end{aligned}
$$

$$
\begin{align*}
& -2\left(1+\frac{1}{3} \frac{v_{0}^{2}}{c^{2}}\right) \frac{\partial}{\partial\left(\varepsilon x_{1}\right)} \cdot \frac{\partial}{\partial x_{0}} \frac{\partial^{2}}{\partial t_{0}^{2}} \\
& -2\left(1+\frac{1}{3} \frac{v_{0}^{2}}{c^{2}}\right) \nabla_{0}^{2} \frac{\partial^{2}}{\partial\left(\varepsilon t_{1}\right) \partial t_{0}}+\frac{4}{3} v_{0}^{2} \frac{\partial}{\partial\left(\varepsilon x_{1}\right)} \cdot \frac{\partial}{\partial x_{0}} \nabla_{0}^{2} \\
& +2\left(1-\frac{2}{3} \frac{v_{0}^{2}}{c^{2}}\right) \frac{\partial^{2}}{\partial\left(\varepsilon t_{1}\right) \partial t_{0}} \frac{\partial}{\partial x_{0}}\left(\frac{\partial}{\partial x_{0}} 0\right) \\
& +\left(1=\frac{2}{3} \frac{v_{0}^{2}}{c^{2}}\right) \frac{\partial^{2}}{\partial t_{0}^{2}}\left\{\frac{\partial}{\partial\left(\varepsilon_{x_{1}}\right)}\left(\frac{\partial}{\partial x_{0}} 0\right)+\frac{\partial}{\partial x_{0}}\left(\frac{\partial}{\partial\left(\varepsilon_{0}\right)} 0\right)\right\} \\
& =\frac{1}{3} v_{0}^{2} \nabla_{0}^{2}\left\{\frac{\partial}{\partial x_{0}}\left(\frac{\partial}{\partial\left(\varepsilon x_{1}\right)} 0\right)+\frac{\partial}{\partial\left(\varepsilon_{\infty}\right)}\left(\frac{\partial}{\partial x_{0}} 0\right)\right\} \\
& \left.=\frac{2}{3} v_{0}^{2}\left(\frac{\partial}{\partial\left(x_{x_{1}}\right)} \circ \frac{\partial}{\partial x_{0}}\right) \frac{\partial}{\partial x_{0}}\left(\frac{\partial}{\partial x_{0}} 0\right)\right] \mathbb{E}^{(1)} \tag{26}
\end{align*}
$$

and

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial t_{0}^{2}}+\omega_{p}^{2}=v_{0}^{2} \nabla_{0}^{2}\right) \frac{\partial^{2} n(2)}{\partial t_{0}^{2}}=\frac{\partial^{2}}{\partial t_{0}^{2}} \frac{\partial}{\partial x_{0}} \circ\left[N_{0}\left(v_{0}^{(1)}\right)_{0}^{\partial x_{0}} v^{(1)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{e}{m c} E^{(1)}\right)\right]+v_{0}^{2} \frac{\partial}{\partial t_{0}} \nabla_{0}^{2} \underset{\sim}{\partial x_{0}} \quad \frac{\partial}{\left(n^{(1)} \underset{\sim}{(1)}\right)}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{m} \frac{\partial}{\partial t_{0}} \frac{\partial^{2}}{\partial x_{0} \partial x_{0}}:\left[\left(v^{(1)} \cdot \frac{\partial}{\partial x_{0}}\right){\underset{\sim}{x}}^{(1)}+\underset{\sim}{p}{\underset{\sim}{p}}_{(1)}^{\left(\frac{\partial}{\partial x_{0}}\right.} \circ{\underset{\sim}{w}}^{(1)}\right) \\
& +\left(\underset{\sim}{p}(1) \circ \frac{\partial}{\partial x_{0}}\right){\underset{w}{ }}^{(1)}+\left(\underset{\sim}{p}(1) \cdot \frac{\partial}{\partial x}\right){\underset{w}{w}}^{(1)} \\
& \left.+\frac{e}{m c}\left({\underset{\sim}{p}}^{(1)} \times{\underset{w}{b}}^{(1)}+\underset{\sim}{p^{(1)}} \times{\underset{w}{ }}^{(1)}\right)\right] \\
& +2\left[v_{0}^{2} \frac{\partial}{\partial\left(\varepsilon_{x_{1}}\right)} \circ \frac{\partial}{\partial x_{0}}-\frac{\partial^{2}}{\partial\left(\varepsilon t_{1}\right) \partial t_{0}}\right] \frac{\partial^{2} n(1)}{\partial t_{0}^{2}} \quad 0 \tag{27}
\end{align*}
$$

IV。 THE $O(\varepsilon)$ SOLUTIONS AND SECULAR TERMS IN $O\left(\varepsilon^{2}\right)$

A．INITIAL AND BOUNDARY CONDITIONS

We shall assume that the electric and magnetic fields of the two plane waves impinging on the plasma contain terms only of $O(\varepsilon)$ there being no terms of higher order in ε ．Consequently we require
 be the electric and magnetic fields of the impinging waves．We define the scattered electromagnetic fields to be the transverse electric and magnetic fields which are of higher order in ε than $0(\varepsilon)$ 。

From the physical standpoint，we are primarily interested in the scattering problem which was posed in the Introduction（I）：Two lasers，located in vacuum，are turned on at time $t=0$ ；the two electromagnetic waves emitted by the lasers enter the plasma，are scattered，leave the plasma，and are intercepted by detectors．We take the plasma to be in a quiescent state at $t=0$ o Therefore there will be no longitudinal electric field at $t=0$ ．We shall consequently require that the longitudinal component of ${\underset{\sim}{c}}^{(1)}$ ，denoted by ${\underset{\sim}{L}}_{(1)}^{(1)}$ ． be zero everywhere inside the plasma at $t=0$ 。

Let us take the volume of the plasma large enough so that quantities which are periodic functions of $\varepsilon x_{\mathcal{L}}$ can go through the variation of at least one wavelength inside the plasma．On the other
hand, the volume is assumed to be small enough so that the characteristic time for the transverse electromagnetic waves to pass through the volume be small compared to the characteristic time for the buildap of plasma oscillations. This implies that when the two lasers are turned on the waves which they emit will penetrate the plasma completely before the longitudinal plasma oscillations become large enough to produce signifil= cant scattering of the waves.

$$
\text { We can therefore assume that, at } t=0 \operatorname{D}_{\sim}^{E_{T}^{(1)}} \text { and }{\underset{D}{B}}^{(1)}
$$

are given everywhere inside the plasma, including the boundary, by

$$
\begin{align*}
& \underset{\sim}{E}=A_{1}^{(1)} \sin \psi_{1}+{\underset{\sim}{2}}_{A_{2}} \sin \psi_{2} \tag{28}\\
& B_{B}^{(1)}=\frac{c k_{1} \times A_{1}}{\omega_{1}} \sin \psi_{1}+\frac{c k_{2} \times A_{2}}{\omega_{2}} \sin \psi_{2}
\end{align*}
$$

with

$$
\begin{equation*}
{ }_{\infty}^{k_{1}} \cdot{ }_{\infty} A_{1}=\mathbf{k}_{2} \cdot A_{\infty}=0 \tag{29}
\end{equation*}
$$

and ψ_{1} and ψ_{2} defined by

$$
\left.\begin{array}{l}
\psi_{1} \equiv k_{\infty} \circ \underset{\infty}{x}-\omega_{1} t+\phi_{1} \tag{30}\\
\psi_{2} \equiv k_{2} \circ \underset{\sim}{x}=\omega_{2} t+\phi_{2}
\end{array}\right\}
$$

ω_{1} and k_{1}, and ω_{2} and k_{2} satisfy the dispersion relation (14).
respectively. $A_{1}, A_{2} \circ \phi_{1}$ and ϕ_{2} are independent of position inside the plasma at $t=0$. They are determined by the output of the lasers.

We shall further assume that $\mathrm{E}_{\mathrm{T}}^{(1)}$ and $\mathrm{B}^{(1)}$ are given by (28) on the interface between the plasma and vacuum, facing the two lasers, for all times, with A_{1}, A_{2}, ϕ_{1}, and ϕ_{2} being constant on the interface and equal to their values at $t=0$. We shall also assume that ${ }_{-L}^{(1)}=0$ on the same interface for all times.

The scattering problem, which we have just described, with the initial and boundary conditions, is only one of the many problems we can pose. Another problem, that we can state, is the pure initialavalue problem. In this problem. we assume the boundaries of the plasma to have been removed to infinity, so that the plasma covers all space. We then have to state only inftial conditions for the problem. One may suppose, for example, that it is somehow possible to set up initial conditions which are identical with the initial conditions set up above for the actual scattering problem.

Again, another problem, that one can pose, is the pure boundaryvalue problem. In this problem, we are interested only in the steady state solutions of the equations describing the behavior of the plasma. We may simplify this problem by neglecting the initial conditions, and take into account only the boundary conditions. We may, for instance, take the same boundary conditions as were set up for the actual scattering problem above. There are other problems we can pose。 We shall, however, discuss only the pure initial-value and the pure boundary-value problems in addition to the actual scattering problem。

Bo TRANSVERSE COMPONENTS OF O(ε) SOLUTIONS

An inspection of eqs. (16) to (22) discloses immediately that their solutions have the following transverse components:

$$
\begin{equation*}
E_{\infty}^{(1)}-A_{\infty}\left(\varepsilon x_{\infty} \otimes \varepsilon t_{1}\right) \sin \psi_{1}+A_{2}\left(\varepsilon x_{1} \varepsilon t_{1}\right) \sin \psi_{2} \tag{31}
\end{equation*}
$$

where ψ_{1} and ψ_{2} are given by

$$
\left.\begin{array}{l}
\psi_{1}=k_{-1} \circ \underset{\infty}{x}=\omega_{1} t+\phi_{1}\left(\varepsilon x_{1}{ }^{\varepsilon} \varepsilon t_{1}\right) \tag{32}\\
\psi_{2}=k_{\infty}{ }_{2} \circ \underset{\infty}{x}-\omega_{2} t+\phi_{2}\left(\varepsilon x_{1}{ }_{1} \varepsilon t_{1}\right) \quad \circ
\end{array}\right\}
$$

${\underset{\sim}{1}}^{A_{1}}{\underset{\sim}{2}}_{A_{2}} \phi_{1}$ and ϕ_{2} are some functions of $E x_{1}$ and εt_{1} which have not yet been determined.

$$
\begin{align*}
& B_{B}^{(1)}=\frac{c\left(k_{1} \times A_{1}\right)}{\omega_{1}} \sin \psi_{1}+\frac{c\left(k_{2} \times A_{2}\right)}{\omega_{2}} \sin \psi_{2} \tag{33}\\
& {\underset{w T}{ }}_{v_{T}}^{(1)}=\frac{e}{m \Omega_{1}} \quad A_{1} \quad \cos \psi_{1}=\frac{e}{m \Omega_{2}} \quad A_{2} \cos \psi_{2} \tag{34}
\end{align*}
$$

where Ω_{1} and Ω_{2} are defined by $\Omega_{1} \equiv \omega_{1}\left(1 \times \frac{v_{0}^{2} k_{1}^{2}}{3 \omega_{1}^{2}}\right)$ and $\Omega_{2} \equiv \omega_{2}\left(1-\frac{v_{0}^{2} k_{2}^{2}}{3 \omega_{2}^{2}}\right)$

$$
\begin{align*}
{\underset{\sim}{\infty}}_{(1)}^{p_{T}} & =\frac{e P_{0}}{m_{1} \omega_{1}}\left(k_{1} A_{1}+A_{1} k_{\sim}\right) \cos \psi_{1} \tag{35}\\
& =\frac{e P_{0}}{m \Omega_{2} \omega_{2}}\left(k_{2} A_{2}+A_{\infty} k_{\sim}^{k_{2}}\right) \cos \psi_{2}
\end{align*}
$$

C_{0} SECULAR BEHAVIOR IN $0\left(\varepsilon^{2}\right.$) EQUATICNS

Looking at the notymear terms on the rightohand side of eq. (27). we notice that the transverys components of the $O(\varepsilon)$ solutions (expressions (31) to (35)) contribute tema proportional to $\sin 2 \psi_{1}, \sin 2 \psi_{2}$. $\sin \left(\psi_{1}+\psi_{2}\right)$, and $\sin \left(\psi_{1}=\psi_{2}\right)$. If $\omega_{1}, \omega_{2}, k_{1}$ and k_{2} are chosen so that $\left(\omega_{1}-\omega_{2}\right)^{2} \frac{2}{2}+v_{0}^{2}\left(k_{1}-k_{2}\right)^{2}=i_{0} e_{0}\left(\omega_{1}=\omega_{2}\right)$ and $\left(k_{1}-k_{2}\right)$ aatisfy the dispersion relation (13) for longitudinal plasma OScillations ${ }_{8}$ and $\| k_{1} \propto k_{G} \leq k_{D}$ (where $k_{D}=\left(\frac{4 \pi N_{0} e}{K T}\right)^{1 / 2}$ is the Debye wave number), the nosinear term containing the factor $\sin \left(\psi_{1}=\psi_{2}\right)$ will be in resonance with the homcgeneous solution of the leftmand side of eq. (27). This will produce an $n^{(2)}$ which is growing linearly with time

The physical reason for this behavior is the fact that the nonlinear term containing $\sin \left(\psi_{1}=\psi_{2}\right)$ is the divergence of a longitudinal driving force of frequency ($\omega_{1}=\omega_{2}$) which wili keep on feeding energy into the plasma oscillations and thus cause them to increase with time。

However ${ }_{8}$ we know that plasma oscillations must remain finite. Therefore the phase difference between the driving force and the longio tudinal plasma oscillations must change slowly with space and/or time so that the driving force and the plasma oscillations will gradually get out of phase and the growth of the oscillations will be checked. But this requires that naturally oscillating longitudinal plasma field
variables be non＝vanishing，Otherwise it would be meaningless to talk about a slow phase drift of a pasma variable which is zero at all spatial points for all times．This ten be seen from eq．（27），which requires the existence of ${\underset{-}{-}}_{(1)}^{(1)}$（changing on the slow spatial and／or time scale） to eliminate the secular terms in the nonlinear driving force．

By eqs．（23）or（24）$E_{i}^{(1)}=a\left(\varepsilon x_{1} \theta \varepsilon t_{1}\right)\left(k_{1}-k_{2}\right) \cos \left(\psi_{1}=\psi_{2}\right)$ $+b\left(\varepsilon x_{1} g t_{1}\right)\left(k_{1}=k_{2}\right) \sin \left(\psi_{2}=\psi_{2}\right)$ 。However，we can show that $b\left(\varepsilon x_{1}, \varepsilon t_{1}\right)=0$ identically。 The argument goes as follows if $E_{L}^{(i)}=b \sin \left(\psi_{1}-\psi_{2}\right)$ ， then，by eq．（19），$n^{(1)} \sim$ cow（ $\left.\psi_{1} \psi_{2}\right)$ The presence of $n^{(1)}$ introduces an $O\left(\varepsilon^{2}\right)$ transverse current of the form $n^{(1)}{\underset{\sim}{T}}_{(1)}^{(1)}$ into eq．（26）。 Taking into account the form of ${\underset{T}{T}}_{(1)}^{(1)}$ as given by eq．$(34)_{0}$ we see that $n^{(1)} \psi_{T}^{(1)}$ containe terms proportional to $\left(A_{2} \cos \psi_{1}\right)$ and $\left(A_{1} \cos \psi_{2}\right)$ ．The first of these is polarized parallel to A_{2} but oscillates with phase ψ_{1} ． the second one is polarized parallel to A A_{1} but osciilates with phase ψ_{2} 。 Both terms will consequently be in phase with the natural tranom verse plasma oscillations，and will drive these oscillations．

A slow spatial and／or temporal drift of the phase angles ϕ_{1} and ϕ_{2} may not be fast enough to get the natural transverse oscillations and the transverse current $\left(n^{(1)}{ }_{\sim}^{\mathrm{V}} \mathrm{T}^{(1)}\right.$ ）sufficiently quickly out of phase with each other to limit the oscillations．We therefore require． in general，an additional relative rotation of the directions of polar ization of the current $\left(n^{(1)} V_{T}^{(1)}\right)$ and the transverse plasma oscillations。

A glance at eqs．（26）and（31）shows that the nonlinear terms oscilating with ψ_{1} or ψ_{2} are proportional to $\sin \psi_{1}$ or $\sin \psi_{2}$ 。 On the other hand，the slow variation of $\mathrm{E}_{\mathrm{T}}^{(1)}$ in eq．（26），contain ing $\sin \psi_{1}$ or $\sin \psi_{2}$ ，will be proportional to $\frac{\partial \phi_{1}}{\partial\left(\varepsilon t_{1}\right)}$ and／or $\frac{\partial \phi_{1}}{\partial\left(\varepsilon x_{1}\right)}$ ，or $\frac{\partial \phi_{2}}{\partial\left(\varepsilon t_{1}\right)}$ and／or $\frac{\partial \phi_{2}}{\partial\left(\varepsilon x_{1}\right)}$ ，not to the derivatives of A_{1} or A_{2} with respect to εt_{1} and／or εx_{1} ．Therefore there is no provision for the rotation of the directions of polarization to remove secular terms from eq．（26）。 The presence of ${\underset{\sim}{L}}_{(1)}^{(1)} b\left(k_{-1}-k_{2}\right) \sin \left(\psi_{1}=\psi_{2}\right)$ 。 as we can see，creates secular terms in eq．（26）which cannot be removed． We shall therefore set $b\left(\varepsilon x_{1} \varepsilon^{\varepsilon t_{1}}\right)=0$ 。

The presence of $E_{\sim}^{(1)}=a\left(k_{1} \propto k_{2}\right) \cos \left(\psi_{1} \not \psi_{2}\right)$ ，on the other hand，creates no such problems 。 By eq．（19）。 $n^{(1)} \sin ^{\left(\psi_{1}-\psi_{2}\right)}$ 。 Hence the current $\left(n^{(1)}{\underset{\sim}{V}}_{(1)}^{(1)}\right.$ will contain terms proportional to
（ $A_{2} \sin \psi_{1}$ ）and（ $\left.A_{1} \sin \psi_{2}\right)$ ．The nonlinear terms in eq．（26） oscillating with phases ψ_{1} or ψ_{2} will be proportional to cos ψ_{1} or $\cos \psi_{2}$ 。 But the slow variation of $E_{T}^{(1)}$ in eq．（26），containing $\cos \psi_{1}$ or $\cos \psi_{2}$ will be proportional to the derivatives of A_{1} or A_{2} ，with respect to εx_{1} and／or εt_{1} ．Therefore slow rotation of the amplitudes will be possible．

Let us define the quantities $\mathrm{k}_{3}: \mathrm{k}_{4}: \omega_{3}: \omega_{4}: \phi_{3}: \phi_{4}: \psi_{3}$ and ψ_{4} by the following expressions:

$$
\begin{align*}
& k_{3} \equiv{\underset{v}{2}}^{k_{2}}+{\underset{v}{2}} \\
& k_{4} \equiv k_{1}-k_{2} \\
& \omega_{3} \equiv \omega_{1}+\omega_{2} \\
& \omega_{4} \equiv \omega_{1}=\omega_{2} \\
& \phi_{3} \equiv \phi_{1}+\phi_{2} \tag{36}\\
& \phi_{4} \equiv \phi_{1}=\phi_{2} \\
& \psi_{3} \equiv \psi_{1}+\psi_{2} \\
& \psi_{4} \equiv \psi_{1}=\psi_{2}
\end{align*}
$$

We shall take $E_{-L}^{(1)}$ to be of the form

$$
\begin{equation*}
\underset{\sim}{E_{L}^{(1)}}=a\left(\varepsilon x_{1} \varepsilon \varepsilon t_{1}\right) k_{4} \cos \psi_{4} \tag{37}
\end{equation*}
$$

where $a\left(\varepsilon_{\sim 1}, \varepsilon t_{1}\right)$ is an unknown function to be determined by the solution of $O\left(\varepsilon^{2}\right)$ equations. The inftial condition that ${\underset{\sigma}{L}}_{(1)}^{L}$ be zero at $t=0$ everywhere, yields the initial condition on $a\left(\varepsilon x_{1}{ }_{0} \varepsilon t_{1}\right): a\left(\varepsilon x_{1}, \varepsilon t_{1}\right)=0$ at $t=0$, for all x inside the plasma and on the boundary. The condition that ${\underset{\sim}{L}}_{(1)}$ be zero on the boundary for all times, yields the boundary condition on $a\left(\varepsilon x_{1} \varepsilon t_{1}\right): a\left(\varepsilon x_{1} \varepsilon t_{1}\right)=0$ on the boundary for all t 。

An inspection of eq. (16) to (22) discloses immediately that their solutions have the following longitudinal components:

$$
\begin{align*}
& n^{(1)}=\frac{a k_{4}^{2}}{4 \pi e} \sin \psi_{4} \tag{38}\\
& { }_{{ }_{L}}^{(1)}=\frac{e a}{m_{4}}{\underset{\sim}{4}} \sin \psi_{4} \tag{39}
\end{align*}
$$

where Ω_{4} is defined by $\Omega_{4} \equiv \omega_{4}\left(1-\frac{v_{0}^{2} k_{4}^{2}}{\omega_{4}^{2}}\right)$, and
V. REMOVAL OF SECULAR BEHAVIOR FROM O(ε^{2}) EQUATIONS

We shall now proceed to evaluate the nonlinear terms in $O\left(\varepsilon^{2}\right)$ equations and to determine the conditions which will remove secular behavior.

First, let us simplify the $O\left(\varepsilon^{2}\right)$ wave equations somewhat. We shall assume that the temperature (and hence the pressure P_{0}) of the quiescent plasma is low, Having made this assumption, we shall expand all quantities which are functions of P_{0} in power series in $P_{0}{ }_{0}$ The first term in the expansion of any quantity will be the vaiue of that quantity at zero temperature. We shall be primarily interested in zero temperature values of quantities. Consequently, eq. (27) can be written in the form

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial t_{0}^{2}}+\omega_{p}^{2}=v_{0}^{2} \nabla_{0}^{2}\right) \frac{\partial n^{(2)}}{\partial t_{0}}=\frac{\partial}{\partial t_{0}} \frac{\partial}{\partial x_{0}} \cdot\left[N _ { 0 } \left(v^{(1)} \frac{\partial}{\partial x_{0}} v^{(1)}\right.\right. \\
& \left.+\frac{e}{m c} v^{(1)} \times B^{(1)}\right)-\frac{\partial}{\partial t_{0}}\left(n^{(1)} v^{(1)}\right]+\text { (non=linear } \\
& \text { terms of } \left.0\left(P_{0}\right)\right)+2\left[v_{0}^{2} \frac{\partial}{\partial\left(\varepsilon x_{1}\right)} \cdot \frac{\partial}{\partial x_{0}}-\frac{\partial^{2}}{\partial\left(\varepsilon t_{1}\right) \partial t_{0}}\right] \frac{\partial n}{\partial t_{0}} . \tag{41}
\end{align*}
$$

The $v^{(1)}$ quantity, appearing in eq。(41), will be approximated by
using only the first term of the expansion in P_{0}. Thus, by eq. (34),

$$
\begin{equation*}
{\underset{\sim}{\mathrm{V}}}_{\mathrm{T}}^{(1)}=\frac{e}{\mathrm{~m} \omega_{1}} A_{1} \cos \psi_{1}=\frac{e}{m \omega_{2}} A_{2} \quad \cos \psi_{2}, \tag{42}
\end{equation*}
$$

and, by eq. (39) 。

$$
\begin{equation*}
V_{L}^{(1)} \sum_{m \omega_{4}}^{e a}{\underset{w}{4}}^{k_{4}} \sin \psi_{4} \tag{43}
\end{equation*}
$$

We have written the linear terms of $O\left(P_{0}\right)$ out explicitly in eq. (41). By droppping these terms we would leave ourselves no linear terms containing spatial derivatives. We would then be unable to do any boundary value problems or mixed initalavaluemboundarymvalue problems. This can be seen from the fact that spatial variations can Iimit the longitudinal mode only if the longitudinal dispersion relation depende on them. The longitudinal dispersion relation is given by eq. (13). When $P_{0}=0$ eq. (13) reduces to $\omega^{2}=\omega_{p}^{2}$. Hence there is no dependence on k at $P_{0}=0$. Therefore we need a nonazero P_{0} o Consequently we shall carry the $O\left(P_{0}\right)$ linear terms along in eq. (41) o

Eq. (26) can be simplified in the following way. Making use of eq. (6), we obtain

$$
\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} \quad 0 \quad \underset{\infty}{\partial}\right)=-4 \pi e \frac{\partial n}{\partial \underset{\sim}{x}}
$$

Or using multiple spatial and time scales and expansion (15), we obtain

$$
\begin{align*}
& \varepsilon^{2} \frac{\partial}{\partial x_{0}}\left(\underset{\sim}{\partial x_{0}} \cdot E_{\sim}^{(2)}\right)=-\varepsilon^{2} 4 \pi e \frac{\partial n^{(2)}}{\partial x_{0}} \\
& -\varepsilon^{2} 4 \pi e \frac{\partial n^{(1)}}{\partial\left(\varepsilon_{x_{1}}\right)}=\varepsilon^{2} \frac{\partial}{\partial\left(\varepsilon_{x_{1}}\right)}\left(\frac{\partial}{\partial x_{0}} \circ E^{(1)}\right) \tag{44}
\end{align*}
$$

Eq. (26) can now be written in the form

$$
\begin{align*}
& \left(\nabla_{0}^{2}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t_{0}^{2}}-\frac{\omega_{p}^{2}}{c^{2}}\right) E^{(2)}=-4 \pi e \frac{\partial n^{(2)}}{\partial x_{0}} \\
& +\frac{4 \pi e}{c^{2}}\left[N_{0}\left(v^{(1)} \circ \frac{\partial}{\partial x_{0}} v^{(1)}+\frac{e}{m c} v^{(1)} \times{\underset{B}{c}}^{(1)}\right)\right. \\
& \left.=\frac{\partial}{\partial t_{0}}\left(n^{(1)} v_{v}^{(1)}\right)\right]+ \text { (linear and non- } \\
& \text { linear terms of } \left.0\left(P_{0}\right)\right) \propto 2\left[\frac{-\partial}{\partial\left(\varepsilon x_{1}\right)} \circ \frac{\partial}{\partial x}\right. \\
& \left.=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial\left(\varepsilon t_{1}\right) \varepsilon t_{0}}\right] \quad \underset{\sim}{E}-4 \pi e \frac{\partial n^{(1)}}{\partial\left(\varepsilon x_{x 1}\right)} . \tag{45}
\end{align*}
$$

A. EVALUATION OF NON \propto LINEAR TERMS

Substituting the $O(\varepsilon)$ solutions into the nonlinear expression

$$
N_{0}\left(v^{(1)} \cdot \frac{\partial}{\partial \underset{\sim}{x}}{\underset{\sim}{v}}^{(1)}+\frac{e}{m c}{\underset{v}{ }}^{(1)} \times{\underset{\sim}{B}}^{(1)}\right) \text {, we obtain }
$$

$$
+\frac{\omega_{p}^{a}}{8 \pi m}\left[-\frac{\left(k_{1}{ }^{\circ} A_{2}\right)}{\omega_{2}} k_{1} \cos \psi_{1}\right.
$$

$$
-\frac{\left(k_{2} \circ A_{1}\right)}{\omega_{1}} k_{2} \cos \psi_{2}+\frac{\left(k_{1} \circ A_{2}\right)}{\omega_{2}}\left(2 k_{2}-k_{1}\right) \cos \left(2 \psi_{2}-\psi_{1}\right)
$$

$$
\left.+\frac{\left(k_{2} \circ A_{1}\right)}{\omega_{1}} \quad\left(2 k_{1}-k_{-2}\right) \cos \left(2 \psi_{1}-\psi_{2}\right)\right]
$$

$$
\begin{equation*}
+\frac{a^{2} k_{4}^{2}}{8 \pi m} k_{4} \sin 2 \psi_{4} \tag{46}
\end{equation*}
$$

$$
\begin{aligned}
& N_{0}\left(v^{(1)} \circ \frac{\partial}{\partial x_{0}} v^{(1)}+\frac{e}{m c} v^{(1)} \times{\underset{w}{ }}_{(1)}^{(1)}\right) \\
& -\frac{\omega_{p}^{2}}{8 \pi m}\left[\begin{array}{ll}
A_{1}^{2} \\
\frac{k_{1}^{2}}{2} & k_{1} \\
\omega_{1} & \sin 2 \psi_{1}+\frac{A_{2}^{2}}{\omega_{2}^{2}} k_{2} \sin 2 \psi_{2}, ~
\end{array}\right. \\
& \left.+\frac{\left(A_{1} \cdot A_{2}\right)}{\omega_{1} \omega_{2}}\left(k_{3} \sin \psi_{3}+k_{-} \sin \psi_{4}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \text { Similarly, we obtain for } \frac{\partial}{\partial t_{0}}\left(n^{(1)} \underset{\sim}{(1)}\right) \text { the expression } \\
& \frac{\partial}{\partial t_{0}}\left(n^{(1)} \underset{\sim}{(1)}\right)=\frac{a k_{4}^{2}}{8 \pi m}\left[\frac{\omega_{1}}{\omega_{2}} A_{2} \cos \psi_{1}\right. \\
& \quad=\frac{\omega_{2}}{\omega_{1}} A_{-1} \cos \psi_{2}=\frac{\left(2 \omega_{2}-\omega_{1}\right)}{\omega_{2}} A_{2} \cos \left(2 \psi_{2}=\psi_{1}\right) \\
& \left.\quad+\frac{\left(2 \omega_{1}-\omega_{2}\right)}{\omega_{1}} \quad A_{1} \cos \left(2 \psi_{1}-\psi_{2}\right)\right] \\
& \quad \infty \frac{a^{2} k_{4}^{2}}{4 \pi m} k_{4} \sin 2 \psi_{4} \quad \tag{47}
\end{align*}
$$

Since (46) and (47) appear as driving terms in eq. (45), we have a scattered transverse wave at frequency $\left(2 \omega_{2}-\omega_{1}\right)$ and a scattered wave at frequency $\left(2 \omega_{1}-\omega_{2}\right)$ 。

Bo ELIMINATION OF SECULAR TERMS FROM LONGITUDINAL FIELDS

Substituting expressions (46) and (47) into eq. (41), we can write eq. (41) in the form

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial t_{0}^{2}}+\omega_{p}^{2}-v_{0}^{2} \nabla_{0}^{2}\right) \quad n^{(2)}=-\frac{\omega_{p}^{2}}{8 \pi m} \frac{\left(A_{1} \circ A_{2}\right)}{\omega_{1} \omega_{2}} k_{4}^{2} \cos \psi_{4} \\
& +\frac{\omega_{p}{ }^{a}}{8 \pi m} \frac{\left(k_{1} \circ A_{2}\right)}{\omega_{2}} k_{1}^{2} \sin \psi_{1}+\frac{\omega_{p} p^{a}}{8 \pi m} \xlongequal[\left(k_{2} \circ A_{1}\right)]{\omega_{1}} k_{2}^{2} \sin \psi_{2} \\
& +\frac{a k_{4}^{2}}{8 \pi m} \quad \frac{\omega_{1}}{\omega_{2}}\left(k_{1} \circ A_{2}\right) \sin \psi_{1}=\frac{a k_{4}^{2}}{8 \pi m} \frac{\omega_{2}}{\omega_{1}}\left(k_{2} \circ A_{1}\right) \sin \psi_{2} \\
& +(\text { other terms })=\frac{\omega_{4} a k_{4}^{2}}{2 \pi e} \frac{\partial \phi_{4}}{\partial\left(\varepsilon t_{1}\right)} \sin \psi_{4} \\
& +\frac{\omega_{4} k_{4}^{2}}{2 \pi e} \frac{\partial a}{\partial\left(\varepsilon t_{1}\right)} \cos \psi_{4}+\frac{v_{0}^{2} k_{4}^{2}}{2 \pi e}\left(k_{4} \cdot \frac{\partial a}{\partial\left(\varepsilon x_{0}\right)}\right) \cos \psi_{4} \\
& =\frac{v_{0}^{2} a k_{4}^{2}}{2 \pi e}\left(k_{4} \circ \frac{\partial \phi_{4}}{\partial\left(\varepsilon_{x_{1}}\right)}\right) \sin \psi_{4} \circ \tag{48}
\end{align*}
$$

The term (other terms) in eq. (48) includes all finite temperature nonlinear terms and all of the zero temperature nonlinear terms which do not oscillate with phases ψ_{1}, ψ_{2}, or ψ_{4} 。

The nonlinear secular term in eq。 (48) is the term $\left(-\frac{\omega_{p}^{2}}{8 \pi m} \frac{A_{1} \cdot A_{2}}{\omega_{1}} \mathrm{~m}_{2}^{2} \quad \cos \psi_{4}^{2}\right)$. The secular behavior will be
eliminated from eq．（48）if the following relations are satisfied

$$
\begin{equation*}
\omega_{4} \frac{\partial \phi_{4}}{\partial\left(\varepsilon t_{1}\right)}+v_{0}^{2} k_{4} \cdot \frac{\partial \phi_{4}}{\partial\left(\varepsilon_{-1}\right)}=0 \tag{49}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{k_{4}^{2}}{2 \pi e}\left(\omega_{4} \frac{\partial a}{\partial\left(\varepsilon t_{1}\right)}+v_{0}^{2} k_{4} \cdot \frac{\partial a}{\partial\left(\varepsilon x_{1}\right)}\right) & =\frac{\omega_{0}^{2} k_{4}^{2}}{\delta \pi m} \frac{\left(A_{1}{ }_{0} A_{2}\right)}{\omega_{1} \omega_{2}} \\
& +\left(0\left(P_{0}\right) \text { terms }\right) \tag{50}
\end{align*}
$$

The leftwhand sides of eqs．（49）and（50）have the form of convective derivative 。 Eq（49）states that ϕ_{4} remains constant to an observer traveling in the direction of k_{4} with the velocity $\left(\frac{v_{0}^{2}}{\omega_{4} / k_{4}}\right)$ 。 and retains its initial value on the boundary for all times，we take ϕ_{4} to be a constant（io to be independent of εx_{1} and εt_{1} ）。 Eq．（50） states that the change in a，which an observer traveling in the direction k_{4} with the velocity $\left(\frac{v_{0}^{2}}{\omega_{4} / k_{4}}\right)$ ．sees，is proportional to the scalar product of the amplitudes A_{1} and A_{2} 。 When（ $A_{1}{ }^{\circ} A_{2}$ ）$=0$ ． the observer notices no change in a 。

Co ELIMINATION OF SECULAR TERMS FROM TRANSVERSE FIELDS

Since $n^{(2)}$ enters into eq. (45) those terms in $n^{(2)}$ which oscillate with phases ψ_{1} and ψ_{2} will produce secular behavior in eq. (45) 。 Let us evaluate these terms. For the sake of simplicity. we shall evaluate these terms in a zero-temperature plasma. Let us make the ansatz that $n^{(2)}=C_{1} \sin \psi_{1}+C_{2} \sin \psi_{2}+$ other terms where C_{1} and C_{2} are unspecified constants. Substituting into eq. (48) we obtain

$$
\begin{align*}
n^{(2)} & =\frac{a\left(\omega_{p} k_{1}^{2}+\omega_{1} k_{4}^{2}\right)}{8 \pi m \omega_{2}\left(\omega_{p}^{2}-\omega_{1}^{2}\right)}\left(k_{1} \circ A_{2}\right) \sin \psi_{1} \\
& +\frac{a\left(\omega_{p} k_{2}^{2}=\omega_{2} k_{4}^{2}\right)}{8 \pi m \omega_{1}\left(\omega_{p}^{2}-\omega_{2}^{2}\right)}\left(k_{2} \circ A_{1}\right) \sin \psi_{2} \\
& \left.+ \text { (other terms not oscillating with phases } \psi_{1} \text { and } \psi_{2}\right) \\
& +0\left(P_{0}\right) \text { terms } \tag{51}
\end{align*}
$$

Substituting (51), (46), and (47) into eq。 (45), we can write
eq. (45) in the form

$$
\begin{align*}
& \left.-A_{2}\right] \cos \psi_{1}=\frac{e a k_{4}^{2}}{2 m c^{2}} \frac{\omega_{2}}{\omega_{1}}\left[\frac{\left(k_{2}{ }^{\circ} A_{1}\right)}{k_{2}^{2}} k_{2}-A_{1}\right] \cos \psi_{2} \\
& + \text { (other terms })=2\left[\frac{\partial}{\partial\left(\varepsilon x_{1}\right)} \cdot \frac{\partial}{\partial x_{0}}=\frac{1}{c^{2}} \frac{\partial}{\partial\left(\varepsilon t_{1}\right)} \frac{\partial}{\partial t_{0}}\right] \underset{\sim}{E}(1) \\
& =4 \pi e \frac{\partial n^{(1)}}{\partial\left(\varepsilon_{x_{1}}\right)} \quad \text {. } \tag{52}
\end{align*}
$$

The nonlinear secular terms in eq. (52) are the two terms containing $\cos \psi_{1}$ and $\cos \psi_{2}$, respectively。 They can be canceled only by slow spatial and/or time variations in ${\underset{ت}{T}}_{(1)}^{(1)}$, since $n^{(1)}$ and ${\underset{\sim}{L}}_{(1)}^{(1)}$ do not contain any terms oscillating with phases ψ_{1} and ψ_{2} 。 Therefore the secular behavior will be eliminated if the following relations are satisfied

$$
\begin{align*}
& \omega_{1} \frac{\partial \phi_{1}}{\partial\left(\varepsilon t_{1}\right)}+c^{2} k_{w_{1}} \cdot \frac{\partial \phi_{1}}{\partial\left(\varepsilon_{x_{1}}\right)}=0 \quad . \tag{53}\\
& \omega_{2} \frac{\partial \phi_{2}}{\partial\left(\varepsilon t_{1}\right)}+c^{2} k_{2} \cdot \frac{\partial \phi_{2}}{\partial\left(\varepsilon_{x_{1}}\right)}=0 \quad . \tag{54}\\
& \frac{\omega_{1}}{c^{2}} \frac{\partial A_{1}}{\partial\left(\varepsilon t_{1}\right)}+\left(k_{m} \cdot \frac{\partial}{\partial\left(\varepsilon x_{1}\right)}\right) A_{1}=\frac{e a k_{4}^{2}}{4 m c^{2}} \frac{\omega_{1}}{\omega_{2}}\left[\frac{\left(k_{1} \circ A_{2}\right)}{k_{1}^{2}} k_{1}\right. \\
& \left.-A_{2}\right]+O\left(P_{0}\right) \text { terms } \tag{55}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\omega_{2}}{c^{2}} \frac{\partial A_{2}}{\partial\left(\varepsilon t_{1}\right)}+\left(k_{2} \cdot \frac{\partial}{\partial\left(\varepsilon x_{1}\right)}\right) A_{2}= & =\frac{e a k_{4}^{2}}{4 m c^{2}} \frac{\omega_{2}}{\omega_{1}}\left[\frac{\left(k_{2} \circ A_{1}\right)}{k_{2}^{2}} k_{L_{2}}\right. \\
& \left.-A_{1}\right]+0\left(P_{0}\right) \text { terms } \tag{56}
\end{align*}
$$

Eq. (53) states that ϕ_{1} remains constant for an observer traveling in the direction of k_{1} with the velocity $\left(\frac{c^{2}}{\omega_{1} / k_{1}}\right)$ Eq. (54) $_{1}$ states that ϕ_{2} remains constant for an observer traveling in the direction k_{2} with the velocity $\left(\frac{c^{2}}{\omega_{2} / k_{2}}\right)$ 。 Since both ϕ_{1} and ϕ_{2} are constant at $t=0$ and retain their initial values on the boundary for all times, we can take ϕ_{1} and ϕ_{2} to be independent of εx_{1} and εt_{1} 。

Eq. (55) states that an observer traveling in the direction of ${ }^{k_{1}}$ with the velocity $\left(\frac{c^{2}}{\omega_{1} / k_{1}}\right)$ sees a change in A_{1} which is proportional to a and to the component of ${\underset{*}{*}}^{A_{2}}$ perpendicular to k_{1}. When the component of A_{2} perpendicular to ${\underset{w}{c}}$ is parallel or antiparallel to ${ }_{*}^{A_{1}}$, only the magnitude of A_{-1} will change ${ }_{0}$. However, when A_{2} has a component perpendicular to both k_{1} and A_{1}, A will rotate (and change its magnitude simultaneously). An analogous argument holds for the rate of change of A_{2}.

VI. PROPERTIES OF THE RELATIONS WHICH

REMOVE SECULAR BEHAVIOR

We obtained in (V) the conditions which a, A, and A_{2} must satisfy to remove secular behavior from the $O\left(\varepsilon^{2}\right)$ wave equations Here we shall study some of the consequences of those conditions.

A THE PURE INITTAL VALUE PROBLEM

We shall neglect for the time being the presence of boundaries; $\mathcal{I}_{0} e_{0}$ we shall assume that the plasma covers all space and that the same initial conditions have been set up for this problem as for the actual physical problem with boundaries. Then we can study the case of no spatial dependence of $a_{0} A_{1}$, and A_{2} 。Eqso (50), (55), and (56) will then reduce to

$$
\frac{\partial a}{\partial\left(\varepsilon t_{1}\right)}=\frac{e \omega_{p}}{4 m \omega_{1} \omega_{2}}\left(A_{1} \circ A_{2}\right)+0\left(P_{0}\right) \text { terms }
$$

and

$$
\frac{\partial A_{1}}{\partial\left(\varepsilon t_{1}\right)}=\frac{e a k_{4}^{2}}{4 m \omega_{2}}\left[\frac{\left(k_{1}{ }^{\circ} A_{\infty}\right)}{k_{1}^{2}} k_{1}-A_{\infty}\right]+O\left(P_{0}\right) \text { terms . (58) }
$$

$$
\begin{equation*}
\frac{\partial A_{2}}{\partial\left(\varepsilon t_{1}\right)}=\frac{e a k_{4}^{2}}{4 m \omega_{1}}\left[\frac{\left(k_{2}{ }_{\infty} A_{1}\right)}{k_{2}^{2}} k_{2}-A_{\infty}\right]+O\left(P_{0}\right) \text { terms } \tag{59}
\end{equation*}
$$

Since no physics is lost by taking the temperature of the plasma to be zero, we ghall do so, and shall therefore drop the $O\left(P_{0}\right)$ terms from eqs. (57), (58), and (59)。

The following conservation laws can be obtained immediately from eqs。 (57) © (59):

$$
\begin{align*}
& \frac{A_{1}^{2}}{\omega_{1}}+\frac{a^{2} k_{4}^{2}}{\omega_{p}}=\frac{A_{1}^{2}\left(\varepsilon t_{1}=0\right)}{\omega_{1}} \\
& \frac{A_{2}^{2}}{\omega_{2}}=\frac{a^{2} k_{4}^{2}}{\omega_{p}}=\frac{A_{2}^{2}\left(\varepsilon t_{1}=0\right)}{\omega_{2}} \tag{60}
\end{align*}
$$

Eqs. (60) show that a is bounded. This means that the longitudinal field ${\underset{\mathrm{E}}{\mathrm{L}}}_{(1)}$ and hence the density $\mathrm{n}^{(1)}$ are bounded.

To study eqs. (57) - (59) in more detail, we shail write them in component form. Let us choose a coordinate system such that $k_{1}=\left(k_{1}, 0,0\right)$ and $k_{2}=\left(k_{2} \cos \alpha_{0} k_{2} \sin \alpha_{0} 0\right)$ o In this coordinate system eqs. (57) to (59) become

$$
\begin{align*}
& \frac{\partial A_{l y}}{\partial\left(\varepsilon t_{1}\right)}=-\frac{e k_{4}^{2}}{4 m \omega_{2}} \text { a } A_{2 y} \\
& \frac{\partial A_{l z}}{\partial\left(\varepsilon t_{1}\right)}=-\frac{e k_{4}^{2}}{4 m \omega_{2}} \text { a } A_{2 z} \tag{61}\\
& \frac{\partial A_{2 y}}{\partial\left(\varepsilon t_{1}\right)}=\frac{e k_{4}^{2}}{4 m \omega_{1}} \cos ^{2} \alpha a A_{l y}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial A_{2 z}}{\partial\left(\varepsilon t_{1}\right.}=\frac{e k_{4}^{2}}{4 m \omega_{1}} a A_{1 z} \\
& A_{1 x}=0 \\
& A_{2 x}=\infty \tan \alpha A_{2 y} \\
& \frac{\partial a}{\partial\left(\varepsilon t_{1}\right)}=\frac{e \omega_{p}}{4 m \omega_{1} \omega_{2}}\left(A_{1 y} A_{2 y}+A_{1 z} A_{2 z}\right)
\end{aligned}
$$

The following conservation laws can be obtained from eqs．（61）：

$$
\left.\begin{array}{l}
\frac{A_{1 z}^{2}}{\omega_{1}}+\frac{A_{2 z}^{2}}{\omega_{2}}=\frac{A_{12}^{2}\left(\varepsilon t_{1} m 0\right)}{\omega_{1}}+\frac{A_{2 z}^{2}\left(\varepsilon t_{2} m 0\right)}{\omega_{2}} \tag{62}\\
\frac{A_{1 y}^{2}}{\omega_{1}}+\frac{A_{2 y}^{2}}{\omega_{2}}=\cos ^{2} \alpha \frac{A_{1 y}^{2}\left(\varepsilon t_{1}=0\right)}{\omega_{1}}+\frac{A_{2 y}^{2}\left(\varepsilon t_{1} m 0\right)}{\omega_{2}}
\end{array}\right\}
$$

Eqs。（62）show that if at $t=0 \quad A_{1 z}=A_{2 z}=0$ ，then $A_{1 z}=$ $A_{2 z}=0$ for $t>0$ 。 Similarly，if at $t=0, A_{1 y}=A_{2 y}=0$ ，then $A_{1 y}=A_{2 y}=0$ for $t>0$（and consequently $A_{2 x}=0$ ）。Therefore，if A_{1} and A_{2} are at $t=0$ in the plane of k_{\sim} and k_{20} they will remain in that plane for $t>0$ 。 On the other hand if A_{1} and A_{2} are perpendicular to the plane of ${\underset{k}{1}}$ and k_{2} at $t=0$ ，they will remain so for $t>0$ ．These two results are not surprising，because in both cases the component of A_{2} which is perpendicular to k_{1} is either parallel or antiparallel to A_{1} ；and
likewise, the component of A_{1} which is perpendicular to k_{2} is parallel or antiparallel to A_{2}. Therefore only magnitudes of A_{1} and A_{2} can change。

We shall now show that solutions to eqs. (57) (59) can be obtained for some specialized cases of physical interest and that those solutions are periodic. For this purpose let us introduce new variables, defined by:

$$
\begin{align*}
& \tau \equiv c_{1}^{t_{1}} \\
& y_{1} \equiv \frac{A_{1}}{\sqrt{\omega_{1}}} \\
& y_{2} \equiv \frac{A_{2 y}}{\sqrt{\omega_{2}}} \\
& z_{1} \equiv \frac{A_{1 z}}{\sqrt{\omega_{1}}} \\
& z_{2} \equiv \frac{A_{2 z}}{\sqrt{\omega_{2}}} \tag{63}\\
& v \equiv \frac{e_{2}}{4 m \sqrt{\omega_{1} \omega_{2}}} \\
& \gamma \equiv e^{2} \\
& 16 m^{2} \omega_{1} \omega_{2} \\
& \omega_{2}^{2}
\end{align*}
$$

Then eqs. (61), when expressed in terms of the new variables. become

$$
\begin{align*}
& \frac{d y_{1}}{d \tau}=-y_{2} v \\
& \frac{d y_{2}}{d \tau}=8 y_{1} v \\
& \frac{d z_{1}}{d \tau}=-z_{2} v \tag{64}\\
& \frac{d z_{2}}{d \tau}=z_{1} v \\
& \frac{d v}{d \tau}=r\left(y_{1} y_{2}+z_{1} z_{2}\right)
\end{align*}
$$

The initial conditions can also be written in terms of the new varialbes. They are

$$
\begin{align*}
y_{10} & =y_{1}(\tau=0) \\
y_{20} & =y_{2}(\tau=0) \\
z_{10} & =z_{1}(\tau=0) \tag{65}\\
z_{20} & =z_{2}(\tau=0) \\
v & =0 \text { when } \tau=0
\end{align*}
$$

Let us confine ourselves to the special case when A_{∞} and A_{2} both lie in the plane of k_{o} and k_{2} ．Eqs。（64）then reduce to the three equations：

$$
\begin{align*}
& \frac{d y_{1}}{d \tau}=-y_{2}^{v} \\
& \frac{d y_{2}}{d \tau}=B y_{1}^{v} \tag{66}
\end{align*}
$$

and

$$
\frac{d v}{d \tau}=\gamma y_{1} y_{2}
$$

Eqs．（66）have the properties of the derivatives of elliptic
functions defined as follows：If $u=\int_{0}^{\phi} \frac{d \phi^{\theta}}{\sqrt{1-k^{2} \sin ^{2} \phi^{\theta}}}$ is an elliptic integral of the first kind，then $\operatorname{sn}\left(u_{\theta} k\right) \equiv \sin \phi_{\theta} \operatorname{cn}\left(u_{0} k\right) \equiv$ $\cos \phi$ ，and $d n\left(u_{8} k\right) \equiv \sqrt{1 m k^{2} \sin ^{2} \phi}$ 。 From these definitions we obtain $\frac{d}{d u} \operatorname{sn}(u, k)=\operatorname{cn}(u, k) d n\left(u_{0} k\right), \frac{d}{d u} \operatorname{cn}\left(u_{0} k\right)=\operatorname{sn}\left(u_{0} k\right) \operatorname{dn}(u, k)$ and $\frac{d}{d u} d n\left(u_{\theta} k\right)=-k^{2} \operatorname{sn}\left(u_{\theta} k\right) \operatorname{cn}\left(u_{\theta} k\right)$ 。

Therefore we make the ansatz that $y_{1}=y_{10} \operatorname{cn}\left(\lambda \tau_{\theta} k\right){ }_{0}$ $y_{2}=y_{20} d n(\lambda \tau, k)$ ，and $v=c \operatorname{sn}(\lambda \tau, k)$ ，where $\lambda_{0} k$ and c are unkown constants to be determined．Substituting the ansatz into eqs．（66）． we obtain

$$
\begin{align*}
& y_{1}=y_{10} \text { cn }\left[\begin{array}{llll}
\sqrt{\gamma} & y_{20} \tau_{0} & i \sqrt{B} & \frac{y_{10}}{y_{20}}
\end{array}\right] \\
& y_{2}=y_{20} d n\left[\begin{array}{llll}
\sqrt{\gamma} & y_{20} & \tau, 1 \sqrt{\beta} & \frac{y_{10}}{y_{20}}
\end{array}\right] \tag{67}\\
& v=\sqrt{\gamma} \quad y_{10} \operatorname{sn}\left[\begin{array}{llll}
\sqrt{\gamma} & y_{20} & \tau_{0} & i \sqrt{\beta} \\
y_{10} \\
y_{20}
\end{array}\right] .
\end{align*}
$$

The elliptic functions $s n\left(u_{8} k\right), c n(u, k)$, and $d n\left(u_{8} k\right)$ are periodic in u with a period equal to $4 \int_{0}^{1 / 2 \pi} \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}}$ ．Therefore the solutions（67）are periodic functions of τ 。

The other special case，when A_{1} and A_{2} are both perpendicular to the plane of k_{-1} and k_{2} ，can be solved in an identical way。 In this case eqs．（64）reduce to

$$
\begin{align*}
& \frac{d z_{1}}{d \tau}=\infty z_{2} v \\
& \frac{d z_{2}}{d \tau}=z_{1} v \tag{68}\\
& \frac{d v}{d \tau}=\gamma z_{1} z_{2} \quad
\end{align*}
$$

The solutions of eqs．（68）are identical with the solutions（67）of eqs．（66） when $B=1$ ，and z_{1}, z_{2}, z_{10} ，and z_{20} replace y_{1}, y_{2}, y_{10} and y_{20} ，respectively。

We will now cite an example where the solutions of eqs. (64) are periodic elliptic functions although the component of A_{-2} which is perpendicular to k_{1} is not parallel or antiparallel to A_{1}. Let us, first of all, derive some conservation laws applying to the components of A_{-1} and A_{2}. Multiplying the first of eqs. (64) by y_{1}, the second by y_{2}, then adding the two equations and integrating, we obtain

$$
\begin{equation*}
y_{1}^{2}+\frac{y_{2}^{2}}{\beta}=y_{10}^{2}+\frac{y_{20}^{2}}{\beta} \tag{69}
\end{equation*}
$$

Performing identical manipulations with the third and fourth equations of the set (64), we obtain

$$
\begin{equation*}
z_{1}^{2}+z_{2}^{2}=z_{10}^{2}+z_{20}^{2} \tag{70}
\end{equation*}
$$

Let us now divide the first equation of the set (64) by the third. We obtain

$$
\frac{d y_{1}}{d z_{1}}=\frac{y_{2}}{z_{2}}
$$

Making use of eqs. (69) and (70), we can write

$$
\begin{equation*}
\frac{d y_{1}}{d z_{1}}=\beta^{1 / 2} \frac{\left(y_{10}^{2}+\frac{y_{20}^{2}}{\beta}-y_{1}^{2}\right)^{1 / 2}}{\left(z_{10}^{2}+z_{20}^{2}-z_{1}^{2}\right)^{1 / 2}} \tag{71}
\end{equation*}
$$

Let us define two new variables, θ_{1} and θ_{2}, by means of the expressions

$$
\left.\begin{array}{l}
y_{1}=\left(y_{10}^{2}+y_{20}^{2} / \beta\right)^{1 / 2} \sin \theta_{1} \tag{72}\\
z_{1}=\left(z_{10}^{2}+z_{20}^{2}\right)^{1 / 2} \sin \theta_{2} \quad
\end{array}\right\}
$$

From eqs. (72) and (71) we obtain
or

$$
\frac{d \theta_{1}}{\beta^{1 / 2}}=d \theta_{2}
$$

$$
\frac{\theta_{1}-c}{\beta^{1 / 2}}=\theta_{2}
$$

with c defined by

$$
c \equiv \sin ^{-1}\left[\frac{y_{10}}{\left(y_{10}^{2}+\frac{y_{20}^{2}}{\beta}\right)^{1 / 2}}\right]-\beta^{1 / 2} \sin ^{-1}\left[\frac{z_{10}}{\left(z_{10}^{2}+z_{20}^{2}\right)^{1 / 2}}\right]
$$

Then on substituting for $\frac{d y_{1}}{d \tau}$ in the first of eqs. (64),
we obtain
$\frac{r^{\infty 1 / 2} d \theta_{1}}{\left[y_{10}^{2}+z_{10}^{2}-\left(y_{10}^{2}+\frac{y_{20}^{2}}{\beta}\right) \sin ^{2} \theta_{1}=\left(z_{10}^{2}+z_{20}^{2}\right) \sin ^{2}\left(\frac{\theta_{1}-c}{\beta^{1 / 2}}\right)\right]^{1 / 2}}=-\beta^{1 / 2} d t 。$
If we now select the special case in which ${\underset{\sigma}{c}}_{k_{1}}$ and ${ }_{-}^{k_{2}}$ are parallel. $B^{1 / 2}=1$, and eq. (74) is the differential of an elliptic integral of the first kind. Hence θ_{1} is an elliptic function of t 。

B. THE PURE BOUNDARY VALUE PROBLEM

We shall now neglect the initial conditions but retain the boundary conditions. Thus we can study the case of no time dependence of a A_{1}, and A_{2}. Eqs. (50). (55), and (56) now reduce to

$$
\begin{align*}
& v_{0}^{2} k_{4} \cdot \frac{\partial a}{\partial\left(E x_{1}\right)}=\frac{e \omega_{p}^{2}}{4 m \omega_{1} \omega_{2}}\left(A_{1} \circ A_{2}\right)+0\left(P_{0}\right) \text { terms } \tag{75}\\
& \left(k_{1} \circ \frac{\partial}{\partial\left(E x_{1}\right)}\right) A_{1}=\frac{e k_{4}^{2}}{4 m c^{2}} \frac{\omega_{1}}{\omega_{2}} a\left[\frac{\left(k_{1} A_{2}\right)}{k_{1}^{2}} k_{1}-A_{2}\right]+0\left(P_{0}\right) \text { terms } \tag{76}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{k}{=2} \circ \frac{\partial}{\partial\left(\varepsilon x_{1}\right.}\right) A_{2}=-\frac{e k_{4}^{2}}{4 m c^{2}} \frac{\omega_{2}}{\omega_{1}} a\left[\frac{\left(k_{2} A_{1}\right)}{k_{2}^{2}} k_{2}=A_{1}\right]+O\left(P_{0}\right) \text { terms } \tag{77}
\end{equation*}
$$

As can be seen from eq. (75), a pure boundary value problem is an impossibility when $P_{0}=0$. Therefore we must assume a finite tempera tore for the quiescent plasma.

Let us take, for the sake of simplicity, the $y=z$ plane to be the boundary between the plasma and the vacuum, with the plasma on the positive side of the $y=z$ plane 。 Let us also assume k_{1} and k_{2} to be parallel to one another, for the time being, and to point in the direction of the positive maxis. We can obtain some conservation laws from eqs. (75) (77). For example, multiplying eq. (75) by a and dotting eq. (76) with
A_{1}, then adding and integrating, we obtain

$$
\begin{equation*}
\frac{A_{1}^{2}}{\omega_{1}}+\frac{v_{0}^{2}}{c^{2}} \frac{\omega_{1} k_{4}}{\omega_{p} k_{1}} \frac{k_{4}^{2} a^{2}}{\omega_{p}}=\frac{A_{1}^{2}\left(\varepsilon x_{1}=0\right)}{\omega_{1}} \tag{78}
\end{equation*}
$$

The conservation equation (78) shows that $a\left(\varepsilon x_{1}\right)$ is bounded. This means that the longitudinal field ${\underset{E}{L}}_{L}^{(1)}$ and hence the density $n^{(1)}$ are bounded in space.

We would like to make a comparison between the values of ${\underset{-}{L}}_{(1)}^{(1)}\left(\varepsilon t_{1}\right)$ and ${\underset{E L}{L}}_{(1)}^{\left(\varepsilon x_{1}\right)}$ 。 Since $A_{1,2}\left(\varepsilon x_{1}\right) \sim A_{1_{0}}\left(\varepsilon t_{1}\right)$ owe obtain from eq。(78) and the first one of eqs. (62) that

$$
\frac{a^{2}\left(\varepsilon x_{1}\right)}{a^{2}\left(\varepsilon t_{1}\right)} \sim \frac{c^{2}}{v_{0}^{2}} \quad \frac{\omega_{p} k_{1}}{\omega_{1} k_{4}} .
$$

But $\omega_{1} \sim c k_{1}$, and $\omega_{4}=\omega_{1}-\omega_{2} \sim \omega_{p}$. Furthermore $\omega_{4} \sim c\left(k_{1}=k_{2}\right)=$ c \mathbf{k}_{4} - Therefore

$$
\frac{a^{2}\left(\varepsilon x_{1}\right)}{a^{2}\left(\varepsilon t_{1}\right)} \sim \frac{c^{2}}{v_{0}^{2}}
$$

or

$$
\begin{equation*}
\frac{\left|a\left(\varepsilon x_{1}\right)\right|}{\left|a\left(\varepsilon t_{1}\right)\right|} \sim \frac{c}{v_{0}} \tag{79}
\end{equation*}
$$

since $c>v_{0}$ always, $\left\langle E_{L}^{(1)}\left(\varepsilon t_{1}\right)\right\rangle$ average $\left\langle E_{L}^{(1)}\left(\varepsilon_{i=1}\right)\right\rangle$ average always.
We may note here that because of the close similarity between eqs. (57) - (59) on the one hand and eqs. (75) to (77) on the other, the behavior of the quantities A_{1}, A_{2}, and a in space is very similar to the behavior of these quantities in time ${ }_{0}$

Co MIXED，INITIALヵVALUE ∞ BOUNDARY VALUE PROBLEM

For the discussion of this problem we have to retain eqs．（50）。 （55），and（56）in their original form．If we took the temperature of the plasma to be identically zero，the term containing $\frac{\partial a}{\partial\left(\varepsilon x_{1}\right)}$ in eq．（50）would drop out．Since A_{m} and A_{ω} must remain constant on the boundary for all times，a would grow linearly with time on the boundary．To prevent this occurrence，we must require that the tempera－ ture of the plasma be nonazero。

Let us now look at the physical content of eqa（50）．（55）。 and（56） 。 $A t=0$ ，$t=0$ and A_{1} and A_{2} do not change in space or in time。 If A_{∞} and A_{2} are perpendicular at $t=0$ o the con vective derivative of a is zero．Because of the initial and boundary conditions on a a \quad a，identically for all points in space，for all times．Then，by eqs．（55）and（56），and by the initial and boundary conditions on A_{1} and A_{2}, A_{1} and A_{2} will retain their initial values at all spatial points for all times．

On the other hand，when $A_{1} \circ A_{2} \neq 0$ at $t=0$ a begins to grow．The existence of a non－vanishing a then induces rotations in A_{1} and A_{2} ．We may say that the changes in a, A_{1} ，and A_{2} are prom pagated like convective currents with current velocities $\left(v_{0}^{2} /\left(\omega_{4} / k_{4}\right)\right)$ ， $\left(c^{2} /\left(\omega_{1} / k_{1}\right)\right)$ ，and $\left(c^{2} /\left(\omega_{2} / k_{2}\right)\right)$ ，respectively．

Let us restrict ourselves now, for the sake of simplicity, to ${\underset{\sim}{k}}^{\mathbf{k}_{1}}$ and $\underset{w_{2}}{\mathbf{k}_{2}}$ which are parallel to each other and normally incident on the boundary between the plasma and vacuum, and the boundary coinciding with the $y=z$ plane。 Initially a, A_{∞}, and A_{∞} bave the same values everywhere, including the boundary, At a time equal to t o A_{1} will differ from its initial value But for $x>\left(c^{2} /\left(\omega_{1} / k_{1}\right)\right.$ th the instanto aneous value of A_{1} will be independent of x ofor $x \times\left(\mathrm{s}^{2} /\left(\omega_{1} / k_{1}\right)\right) t_{0}$ on the other hand. A, will generally differ from one spatial point to another. Thus an observer located at a point x with $x=\left(c^{2} /\left(\omega_{1} / k_{1}\right)\right) t$ o with $x>\left(e^{2} /\left(\omega_{2} / k_{2}\right)\right) t$ or with $x>\left(v_{0}^{2} /\left(\omega_{4} / k_{4}\right)\right) t$ o depending on whiche ever convective velocity is the fastest, will not have yet experienced the effects of the boundary for the first t seconds. As far as he is concerned, he sees only an initialmalue problem. On the other hand, an observer located at a point with the coordinate x leas than the product of the fastest convective velocity and the time, will have already experienced the influence of the boundary. The reason for this behavior is the finite velocities of propagation of the changes in $a, A_{\infty}:$ and A_{2}. respectively.

VII THE SCATTERING CROSS SECTION

We shall now estimate the scattering cross section for the light by -light scattering process. The differential cross section per unit frequency interval is given by eq. (1). We have to calculate the spectral density $S\left(k_{\infty} w\right)$, which is defined by eq (2) o To lowest order in \mathcal{E}
where $n^{(1)}\left(k_{p} w\right)$ is defined by

$$
\begin{equation*}
n^{(1)}\left(x_{0}, t\right)=\frac{1}{V T} \sum_{k_{0} \omega} n^{(1)}\left(k_{\infty} \omega\right) e^{i(k \circ x+\omega t)} \tag{81}
\end{equation*}
$$

Since we are considering the resonance process $n^{(1)}\left(x_{0} t\right)=$ $\frac{\mathrm{a}_{4}^{2}}{4 \pi e} \sin \psi_{4}$. Therefore

$$
\begin{aligned}
& n^{(1)}(\underset{\sim}{k}, \omega)=\int_{V} d x \int_{=T / 2}^{T / 2} d t n^{(1)}(\underset{\sim}{x}, t) e^{-i\left(k_{\infty}^{0} x+\omega t\right)} \\
& =\frac{k_{4}^{2}}{4 \pi e} \int_{V} d x \int_{-T / 2}^{T / 2} d t \quad e^{\infty(\underset{\alpha}{\alpha} \circ x+\omega t)} a\left(\varepsilon_{\infty} x_{\infty} \varepsilon t\right) \sin \psi_{4} \\
& =\frac{k_{4}^{2}}{8 \pi e i}\left\{e^{i \phi_{4}} \int_{V} d x e^{-i\left(k \times k_{4}\right) \cdot x} \int_{-T / 2}^{T / 2} d t e^{-i\left(\omega+\omega_{4}\right) t} a\left(\varepsilon_{\sim} x_{j} \varepsilon t\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-e^{\infty 1 \phi_{4}} \int_{V} d \underset{\sim}{x} e^{\infty\left(k+k_{4}\right) \cdot \underset{\sim}{x}} \int_{\infty T / 2}^{T / 2} d t e^{\infty 1\left(\omega \infty \omega_{4}\right) t} a\left(\varepsilon x_{\infty}, \epsilon t\right)\right\}
\end{aligned}
$$

The apectral density $S(\underset{,}{k}, \omega)$ can now be written in the form

$$
\begin{aligned}
& S\left(k_{\infty} \omega\right)=\varepsilon^{2} \lim _{\substack{V \rightarrow \infty \\
T \rightarrow \infty}} \frac{2\left|n^{(1)}\left(k_{0} \omega\right)\right|^{2}}{N_{0} V T} \\
& =\varepsilon^{2} \frac{k_{4}^{4}}{32 \pi^{2} N_{0} e^{2}} \lim _{\substack{\mathrm{V} \rightarrow \infty \\
\mathrm{~T} \rightarrow \infty}} \frac{1}{\mathrm{VT}}\left[\left|a\left(\mathrm{k}_{\sim} \mathrm{k}_{4}=\omega+\omega_{4}\right)\right|^{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.=e^{-21 \phi_{4}} a *\left(\frac{k}{\infty}-{\underset{x}{4}}^{2}, \omega+\omega_{4}\right) a\left(k+k_{4}, \omega \omega \omega_{4}\right)\right] \text { 。 } \tag{82}
\end{align*}
$$

Let us take a closer look at $a(k, \omega)$ ．Since $a(\varepsilon x, \varepsilon t)$ is
a very slowly varying function of $\underset{s}{x}$ and t its Fourier transform $a\left(\frac{k}{0} \omega\right)$ is sharply peaked at $\underset{\sim}{k}=0$ and $\omega=0$ and has a small spread in $\underset{\sim}{k}$ and ω about this peak．Consequently the cross terms in eq。（82） are very small compared to the other terms，and we shall neglect them ${ }_{0}$ Let us also neglect the spread in k and ω 。 Thus $a\left(k=k_{4} 0 \omega+\omega_{4}\right)$ will
 value of $a(x, t)$ at the peak．The value of $S\left(k_{\delta} \omega\right)$ will then be approximately

$$
\begin{align*}
S\left(k_{0} \omega\right) & \approx \varepsilon^{2} \frac{\frac{a^{2} k_{4}^{4}}{32 \pi^{2} N_{0} e^{2}}\left[\delta\left(k=k_{4}\right) \delta\left(\omega+\omega_{4}\right)\right.}{} \\
& \left.+\delta\left(k+k_{4}\right) \delta\left(\omega \alpha \omega_{4}\right)\right] \tag{83}
\end{align*}
$$

where $\delta(k)$ and $\delta(\omega)$ are the Dirac delta functions. We ahall not write ε^{2} in the expreasion for $S\left(k_{\nu} \omega\right)$ from now on because the presence of \bar{a}^{2}, which is of $0\left(\varepsilon^{2}\right)$, is sufficient to indicate that $S\left(k_{\infty} \omega\right)$ is of $O\left(\varepsilon^{2}\right)$ 。

We may note that if we were not dealing with a resonance process. $n^{(1)}(x, t)=0$ and the first nonwvanishing term in the expansion of $n\left(x_{s} t\right)$ would be $n^{(2)}\left(x_{0} t\right)$ (which is of $\left.0\left(\varepsilon^{2}\right)\right)_{0}$ Consequently $S\left(k_{0} \omega\right)$ would be of $O\left(\varepsilon^{4}\right)$ o Therefore the resonance process enhances the scattering cross section significantly。

We would like to compare our cross section with that obtained by Kroll, Ron, and Rostoker ${ }^{2}$. The cross sections will differ only because of the differences in the spectral densities. The spectral density $S_{K R R}$ of Kroll, Ron, and Rostoker ${ }^{2}$ is, when expressed in our notation.

$$
\begin{align*}
S_{k R R}(k, \omega) & =\frac{1}{128 \pi^{2} N_{0} m^{2}} \frac{k^{4}\left(A_{1} \circ A_{2}\right)^{2}}{\omega_{1}^{2} \omega_{2}^{2}\left|\varepsilon\left(k_{0} \omega\right)\right|^{2}} \quad\left[\delta\left(\underset{\infty}{k=k_{2}}\right) \delta\left(\omega+\omega_{4}\right)\right. \\
& \left.+\delta\left({\underset{\omega}{\infty}}^{k}+k_{2}\right) \quad \delta\left(\omega \omega_{4}\right)\right] \tag{84}
\end{align*}
$$

where $\varepsilon\left(k_{0}, \omega\right)$ ，the longitudinal dielectric function，is approximated by

$$
\left|\varepsilon\left(k_{\Delta}, \omega\right)\right|^{2} \cdot\left[1=\left(\frac{\omega_{p}}{\omega}\right)^{2}\right]^{2}+r^{2}+r^{2}
$$

Here Γ is the Landau damping decrement or the collisional damping decrement，whichever is larger。

Let us define R to be the ratio of $S_{k R R}\left(K_{0} \omega\right)$ to our $S\left(\mathrm{k}_{\mathrm{\theta}}, \mathrm{w}\right)$ 。 Then

$$
\begin{equation*}
R=\frac{\omega_{p}^{2}}{16 \pi N_{0} m} \frac{k_{4}^{2}}{\omega_{1}^{2} \omega_{2}^{2}} \frac{\left(A_{1} \circ A_{2}\right)^{2}}{\left(a^{2} k_{4}^{2}\right) r^{2}} \tag{85}
\end{equation*}
$$

When $R<1, S_{k R R}(k, \omega)<S(k, \omega)$ and the density $n\left(x_{\theta} t\right)$ of Kroll et al。 ${ }^{2}$ is smaller than our density．This means that Landau damping and／or collisional damping is more effective in limiting the density oscillations than are the nonlinear effects．On the other hand，when $R>1$ ，the nonlinear effects are more effective than the damping mechanisms．Thus，given the numerical values of the plasma parameters and the electric fields produced by the two lasers，we can determine by means of the expression（85）which physical mechanism is the dominant one in limiting the longitudinal plasma oscillations．

Let us estimate the ratio R by using a set of typical numerical values of the plasma and the incident electric field parameters． We shall use the set selected by Kroll，Ron，and Rostoker ${ }^{2}$ in their
calculations of the damping effects．Therefore we choose $N_{0}=10^{14} \mathrm{~cm}^{-3}$ ， $K_{B} T=10 \mathrm{eV}, \omega_{p}=5.64 \times 10^{11} \mathrm{sec}^{\infty 1}, \lambda$（of incident electric field）\sim $0.7 \times 10^{04} \mathrm{~cm}, E$（amplitude of the incident electric field）$\sim 10^{8} \mathrm{~V} / \mathrm{cm}$ ． and r_{c}（collisional damping decrement） 1.1×10^{-3} 。 With this choice of parameters，according to Kroll et al。 ${ }^{2}$ ，the collisional damping dominates over the Landau damping．Since $\left|A_{\sim}\right|,\left|A_{\sim}\right|$ ，and $\left|a k_{4}\right|$ are of $O(\varepsilon)$ ．$\left|A_{2}\right|$ and $\left|\mathrm{ak}_{4}\right|$ are both of $O\left(A_{1}\right)$ ．which in turn is of O（ E incident）。 Substituting the above numerical values of the plasma and the incident electric field parameters into eq．（85）we obtain $10^{\infty 8}<\mathrm{R}<10^{\infty 7}$ 。（This estimate was made under the assumption that k_{1} and k_{2} are parallel l_{0} ）Therefore for this choice of parameters the damping effects iimit the longitudinal plasma oscillations more effectively than do the nonlinear effecta．

VIII. DISCUSSION

We have shown that the presence of even a small amount of nono linearity, in the equations used to describe the behavior of a plasma, can effectively limit the amplitude of plasma oscillations driven by two light beams. In fact, under some circumstances, the nonlinear effects limit these oscillations more strongly than the Landau damping and the collisional damping mechanisms.

The nonlinear effects are always accompanied by a nonswanishing longitudinal electric field of $0(\varepsilon)_{\theta} E_{\mathrm{L}}^{(1)}$, whenever they limit. plasma oscillations. This is a very interesting fact. because $\mathbb{E}_{\mathrm{L}}^{(1)}$: as well as the transverse field ${\underset{E}{T}}_{(1)}^{(1)}$, satisfy the $0\langle\mathrm{E}$ glasme equations, which are linear, and therefore keep the $O(\varepsilon d$ transverse and the $O(\varepsilon)$ longitidinal components of fields completely separated from one another.

The transverse fields are determined by the output of the two lasers. But there is no experimental device which sets up a longitudinal field. $E_{L}^{(1)}$. All that is done is to make sure the plasma is in a quiescent state at the beginning of the experiment. The experimental set-ups for the case when the difference in frequencies of the two laser beams approximately equals to the natural frequency of longitudinal plasma oscillations, and for the case when it is not, are identical.

When the difference in frequencies of the impinging beams is not equal to the frequency of plasma oscillations, no secular terms arise In the equations of motion, and ${\underset{D}{L}}_{(1)}^{\text {remains identically zero - there }}$ is only a secondmorder field $E_{L}^{(2)}$. However, when the frequency of one
of the impinging waves is varied until it differs from the frequency of the other impinging wave by the frequency of plasma oscillations，a resonance process results：Longitudinal plasma oscillations are excited are simultaneously limited by nonlinear effects，and $E_{\mathrm{L}}^{(1)}$ appears spontaneously．This longitudinal oscillation in turn scatters the light beams．

It is also interesting to note what happens when the amplitudes of the two impinging waves are varied while keeping everything else constanto．Let us assume for the moment that the electric fields $E_{i}^{(1)}$ and $E_{S}^{(1)}$ and the damping decrement Γ have been made dimensionless＊＊ The density fiuctuation $n\left(x_{0} t\right)$ which is limited by nonlinear effects is $O\left(E_{L}^{(1)}\right)$ 。 Since $E_{L}^{(1)}$ is of $O\left(E_{T}^{(1)}\right), n\left(x_{\sim}, t\right)$ is aiso of $O\left(E_{T}^{(1)}\right)$ 。 As $E_{T}^{(1)}$ increases or decreases，$n\left(x_{\theta} t\right)$ will also increase or decrease respectively，On the other hand，the density fluctuations，$n\left(x_{0}, t\right)$ ． which are limited by Landau and／or collisional damping are of $0\left(\frac{E_{T}^{(1) 2}}{\bar{T}}\right)$ 。They will also increase or decrease as $E_{T}^{(1)}$ increases or decreases，respectively。 The damping decrement Γ ，however，does not depend on $E_{T}^{(1)}$ ，and will not change when $E_{T}^{(1)}$ is varied。
＊Γ is made dimensionless by dividing it by the plasma frequency $\omega_{p} \circ E_{T}^{(1)}$ and $E_{L}^{(1)}$ may be made dimensionless by dividing them by $\left(1 / 2 N_{0} \mathrm{~m}_{0}^{2}\right)^{1 / 2}$ ，the square root of the thermal energy density．

When $E_{T}^{(1)} \ll \Gamma, \frac{E_{T}^{(1)^{2}}}{\Gamma} \ll E_{T}^{(1)}$, and the density $n(x, t)$ which is limited by a damping mechanism is smaller than the density $n(x, t)$ which is limited by nonlinear effects. On the other hand, when
$E_{T}^{(1)} \gg \Gamma \frac{E_{T}^{(1)^{2}}}{\Gamma} \gg E_{T}^{(1)}$, and the situation is reversed. We conclude from this that damping effects dominate when $E_{T}^{(1)}$ is very weak, and the nonlinear effects dominate when $\mathrm{E}_{\mathrm{T}}^{(1)}$ is strong. The conclurion is borne out by the numerical calculations in Section VII。

This is not unreasonable, because $E_{T}^{(1)}$ is a measure of nonlinearity in the equations of motion, but $E_{T}^{(1)}$ does not affect Γ, the damping decrement。 Keeping $E_{T}^{(1)}$ very smail results in very small nonlinear terms, without affecting the damping. An increase in $\mathrm{E}_{\mathrm{T}}^{(1)}$, on the other hand, increases the magnitude of nonlinear terms ${ }_{9}$ while still keeping the damping decrement unchanged. Therefore an increase in $E_{T}^{(1)}$ results in the increasing importance of nonlinearity as compared with the damping effects.

APPENDIX

DERIVATION OF WAVE EQUATIONS

We shail derive the wave equation for $\underset{\sim}{E}$ (eq.(10) in the text!。

Taking the curl of eq. (8) and substituting into eq. (9), we obtain

$$
\begin{equation*}
\frac{\partial}{\partial x} \times\left(\frac{\partial}{\partial x} \times \underset{\sim}{E}\right)+\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=\frac{4 \pi N_{0} e}{c^{2}} \frac{\partial v}{\partial t}+\frac{4 \pi e}{c^{2}} \frac{\partial}{\partial t} \text { (nv) } \tag{Al}
\end{equation*}
$$

If we now substitute for $\frac{\partial v}{\partial t}$ from eq。(4) into eq. (Al) othere results

$$
\begin{align*}
& {\left[\frac{\partial}{\partial x} \times\left(\frac{\partial}{\partial x_{v}} x\right)+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}+\frac{\omega_{p}^{2}}{c^{2}}\right] E} \\
& +\frac{4 \pi e}{m c^{2}} \frac{\partial}{\partial x} \circ \underset{\sim}{p}=-\frac{4 \pi N_{0} e}{c^{2}}\left(y \circ \frac{\partial}{\partial x} y+\frac{e}{m c} \underset{\sim}{v} \times \underset{\sim}{B}\right) \\
& +\frac{4 \pi e}{c^{2}} \frac{\partial}{\partial t}(n v)-\frac{4 \pi e}{c^{2}} n\left(\frac{\partial v}{\partial t}+v \circ \frac{\partial}{\partial x} v\right) \\
& -\frac{4 \pi e^{2}}{m c^{2}} n\left(E+\frac{1}{c} \quad \underset{\sim}{V} \times \underset{\sim}{B}\right) \quad 0 \tag{A2}
\end{align*}
$$

The term $\frac{\partial}{\partial x_{\infty}} \circ \underset{\sim}{p}$ can be obtained from eq. (5) in the following way:

From eq. (3) we have

$$
\begin{equation*}
\frac{\partial}{\partial x} \cdot \underset{\infty}{v}=\infty \frac{1}{N_{0}} \frac{\partial n}{\partial t}=\frac{1}{N_{0}} \frac{\partial}{\partial x} \circ(n v) \tag{AB}
\end{equation*}
$$

Substituting eq. (A3) into eq. (5), we obtain

$$
\begin{align*}
& \frac{\partial p_{s}}{\partial t}=\frac{P_{0}}{\bar{N}_{0}} 1 \frac{\partial n}{\partial t}+P_{0}\left(\frac{\partial}{\partial \underset{\sim}{x}} \underset{\sim}{v}+\frac{\partial}{\partial \underset{\sim}{x}} \underset{\sim}{v}\right) \\
& =\frac{P_{0}}{\bar{N}_{0}} \underset{\sim}{1} \frac{\partial}{\partial x} \circ(n v) \quad \underset{\sim}{p}\left(\frac{\partial}{\partial x} \circ \underset{\sim}{v}\right)=\left(\underset{\sim}{v} \circ \frac{\partial}{\partial x}\right) \underset{\sim}{p} \\
& =\left(\underset{\sim}{p} \circ \frac{\partial}{\partial \underline{x}}\right) \underset{\sim}{p}=\left(\underset{\sim}{p} \circ \frac{\partial}{\partial \underline{x}}\right) \underline{\sim}=\frac{e}{m c}(\underset{\sim}{p} \times \underset{\sim}{B}+\underset{\sim}{p} \times \underset{\sim}{B}) \quad \tag{A4}
\end{align*}
$$

Applying the operator $\frac{\partial}{\partial t}\left(\frac{\partial}{\partial x}{ }^{\circ}\right)$ to eq. (A4) and then substituting (A3) into it, we obtain

$$
\begin{align*}
& \frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial x} \circ \underset{\sim}{p}=\frac{2 P_{0}}{N_{0}} \frac{\partial^{2}}{\partial t^{2}} \frac{\partial n}{\partial x}+P_{o} \nabla^{2} \frac{\partial y}{\partial t} \\
& =\frac{2 p_{0}}{N_{0}} \frac{\partial}{\partial t} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} \circ n v\right)-\frac{\partial}{\partial t}{\underset{\sim}{x}}_{\partial x}^{\partial x} 0\left[\left(\begin{array}{ll}
v & 0 \\
\underset{\sim}{\partial x}
\end{array}\right) \underset{\sim}{p}\right. \\
& +\underset{\sim}{p}(\underset{\sim}{\partial \underline{x}} \quad \circ \underset{\sim}{\partial})+\left(\underset{\sim}{p} \circ \frac{\partial}{\partial \underset{\sim}{x}}\right) \underset{\sim}{v}+\left(\underset{\sim}{p} \circ \frac{\partial}{\partial \underline{x}}\right) \underset{\sim}{v} \\
& \left.+\frac{e}{m C}(\underset{\sim}{p} \times \underset{\sim}{B}+\underset{\sim}{p \times \underset{\sim}{B}})\right] \quad \text { 。 } \tag{AS}
\end{align*}
$$

We can obtain the term $P_{0} \nabla^{2} \frac{\partial v}{\partial t}$ from eq. (4), which yields

$$
\begin{align*}
& P_{0} \nabla^{2} \frac{\partial v}{\partial t}=\infty \frac{P_{0}}{N_{0} m} \nabla^{2} \frac{\partial}{\partial x} \circ p_{\sigma}-\frac{P_{0} e}{m} \nabla^{2} \underset{\sigma}{E} \\
& =P_{0} \nabla^{2}\left(v \cdot \frac{\partial}{\partial x} v+\frac{e}{m c} \quad v \times \frac{B}{\sigma}\right)=\frac{P_{0}}{N_{0}} \nabla^{2}\left[n \left(\frac{\partial v}{\partial t}\right.\right. \\
& \left.\left.+\underset{\sim}{v} \circ \frac{\partial}{\partial \underset{\sim}{x}} \quad \underset{\sim}{v}\right)\right]=\frac{P_{0} e}{N_{0} m} \nabla^{2}\left[n\left(\underset{\sim}{E}+\frac{1}{c} \underset{\sim}{v} \times \underset{\sim}{B}\right)\right] 。 \tag{AC}
\end{align*}
$$

Also, from eq. (6), we obtain

$$
\begin{equation*}
n=-\frac{1}{4 \pi e} \frac{\partial}{\partial x} \circ E \quad E \tag{AT}
\end{equation*}
$$

Substituting (A6) and (A7) into (A5), we obtain

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial t^{2}}-\frac{1}{3} v_{0}^{2} \nabla^{2}\right) \underset{\sim}{\partial x} \cdot \underset{\sim}{p}+\frac{P_{0} e}{m}\left[\frac{2}{\omega_{p}^{2}} \frac{\partial^{2}}{\partial t^{2}} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial x_{\infty}} \circ \underset{\sim}{E}\right)\right. \\
& \left.-\nabla^{2} \underset{\sim}{E}\right]=P_{0} \nabla^{2}\left(v \cdot \frac{\partial}{\partial \underline{x}} \mathbf{v}+\frac{e}{m c} \quad v \times \underset{\sim}{B}\right) \\
& +\frac{P_{0}}{N_{0}} \nabla^{2}\left[n\left(\frac{\partial v}{\partial t}+v \circ \frac{\partial}{\partial x} v\right)\right]+\frac{P_{0} e}{N_{0} m} \nabla^{2}[n(\underset{\infty}{E} \\
& \left.\left.+\frac{1}{c} \underset{\sim}{v} \times \underset{\sim}{B}\right)\right]+\frac{2 P_{0}}{N_{0}} \frac{\partial}{\partial t} \frac{\partial}{\partial \underline{x}}\left(\frac{\partial}{\partial \underline{x}} \quad \circ n v\right)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{\partial}{\partial t} \frac{\partial}{\partial x} \cdot\left[\left(\underset{\sim}{v} \circ \frac{\partial}{\partial x}\right) \underset{\sim}{p}+\underset{\sim}{p}\left(\frac{\partial}{\partial x} \circ v\right)\right. \\
& \left.+\left(\underset{\sim}{p} \cdot \frac{\partial}{\partial \underline{w}}\right) v+\left(\underset{\sim}{p} \circ \frac{\partial}{\partial x}\right) \underset{\sim}{p}\right) \\
& \left.+\frac{e}{m c}(\underset{\sim}{p} \times \underset{\sim}{p}+\underset{\sim}{p} \times \underset{\sim}{p})\right] \tag{A8}
\end{align*}
$$

where we have defined the thermal velocity $v_{0}^{2} \equiv \frac{3 P_{0}}{N_{0}^{m}} \quad$
If we now apply the operator $\left(\frac{\partial^{2}}{\partial t^{2}}-\frac{1}{3} v_{0}^{2} \nabla^{2}\right)$ to eq.(A2)
and then substitute (A8) into it, we obtain eq. (10) in the text.

REFERENCES

$1_{0} P_{0} M_{0}$ Platzman，$S_{0} J_{0}$ Buchsbaum，and N_{0} Tzoar，Phys。Revo Letters 12． 573 （1964）。

2．No Mo Kroll，A_{0} Ron，and N_{0} Rostoker，Phys．Revo Letters 13， 83 （1964）。
3．$D_{0} C_{0}$ Montgomery and $D_{0} A_{0}$ Tidman，Plasma Kinetic Theory，McGrawn Hill Book Co．New York，1964．

5．$N_{0} N_{0}$ Bogoliubov and $Y_{0} A_{0}$ Mitropolsky，Asymototic Methods in the Theory of Non＝Linear Oscillations，Hindustan Publishing Corporation （India），Delhi＝6，1961；translated from the Russian。

