414 research outputs found

    Self-stabilization Overhead: an Experimental Case Study on Coded Atomic Storage

    Full text link
    Shared memory emulation can be used as a fault-tolerant and highly available distributed storage solution or as a low-level synchronization primitive. Attiya, Bar-Noy, and Dolev were the first to propose a single-writer, multi-reader linearizable register emulation where the register is replicated to all servers. Recently, Cadambe et al. proposed the Coded Atomic Storage (CAS) algorithm, which uses erasure coding for achieving data redundancy with much lower communication cost than previous algorithmic solutions. Although CAS can tolerate server crashes, it was not designed to recover from unexpected, transient faults, without the need of external (human) intervention. In this respect, Dolev, Petig, and Schiller have recently developed a self-stabilizing version of CAS, which we call CASSS. As one would expect, self-stabilization does not come as a free lunch; it introduces, mainly, communication overhead for detecting inconsistencies and stale information. So, one would wonder whether the overhead introduced by self-stabilization would nullify the gain of erasure coding. To answer this question, we have implemented and experimentally evaluated the CASSS algorithm on PlanetLab; a planetary scale distributed infrastructure. The evaluation shows that our implementation of CASSS scales very well in terms of the number of servers, the number of concurrent clients, as well as the size of the replicated object. More importantly, it shows (a) to have only a constant overhead compared to the traditional CAS algorithm (which we also implement) and (b) the recovery period (after the last occurrence of a transient fault) is as fast as a few client (read/write) operations. Our results suggest that CASSS does not significantly impact efficiency while dealing with automatic recovery from transient faults and bounded size of needed resources

    Fast self-stabilizing byzantine tolerant digital clock synchronization

    Get PDF
    Consider a distributed network in which up to a third of the nodes may be Byzantine, and in which the non-faulty nodes may be subject to transient faults that alter their memory in an arbitrary fashion. Within the context of this model, we are interested in the digital clock synchronization problem; which consists of agreeing on bounded integer counters, and increasing these counters regularly. It has been postulated in the past that synchronization cannot be solved in a Byzantine tolerant and self-stabilizing manner. The first solution to this problem had an expected exponential convergence time. Later, a deterministic solution was published with linear convergence time, which is optimal for deterministic solutions. In the current paper we achieve an expected constant convergence time. We thus obtain the optimal probabilistic solution, both in terms of convergence time and in terms of resilience to Byzantine adversaries

    Measurement of filling factor 5/2 quasiparticle interference: observation of charge e/4 and e/2 period oscillations

    Full text link
    A standing problem in low dimensional electron systems is the nature of the 5/2 fractional quantum Hall state: its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be employed to manipulate and measure quantum Hall edge excitations. Here we use a small area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharanov-Bohm effect are observed for integer and fractional quantum Hall states (filling factors 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these as charge calibrations, at 5/2 filling factor and at lowest temperatures periodic transmission through the device consistent with quasiparticle charge e/4 is observed. The principal finding of this work is that in addtion to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge, or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.Comment: version 3 contains additional data beyond version 2, 26 pages, 8 figures PNAS 081259910

    Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot

    Get PDF
    We investigate ways for the exchange of information (explicit communication) among deaf and dumb mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among the robots. We propose one-to-one deterministic movement protocols that implement explicit communication. We first present protocols for synchronous robots. We begin with a very simple coding protocol for two robots. Based on on this protocol, we provide one-to-one communication for any system of n \geq 2 robots equipped with observable IDs that agree on a common direction (sense of direction). We then propose two solutions enabling one-to-one communication among anonymous robots. Since the robots are devoid of observable IDs, both protocols build recognition mechanisms using the (weak) capabilities offered to the robots. The first protocol assumes that the robots agree on a common direction and a common handedness (chirality), while the second protocol assumes chirality only. Next, we show how the movements of robots can provide implicit acknowledgments in asynchronous systems. We use this result to design asynchronous one-to-one communication with two robots only. Finally, we combine this solution with the schemes developed in synchronous settings to fit the general case of asynchronous one-to-one communication among any number of robots. Our protocols enable the use of distributing algorithms based on message exchanges among swarms of Stigmergic robots. Furthermore, they provides robots equipped with means of communication to overcome faults of their communication device

    Search in Complex Networks : a New Method of Naming

    Full text link
    We suggest a method for routing when the source does not posses full information about the shortest path to the destination. The method is particularly useful for scale-free networks, and exploits its unique characteristics. By assigning new (short) names to nodes (aka labelling) we are able to reduce significantly the memory requirement at the routers, yet we succeed in routing with high probability through paths very close in distance to the shortest ones.Comment: 5 pages, 4 figure

    Iterative Approximate Consensus in the presence of Byzantine Link Failures

    Full text link
    This paper explores the problem of reaching approximate consensus in synchronous point-to-point networks, where each directed link of the underlying communication graph represents a communication channel between a pair of nodes. We adopt the transient Byzantine link failure model [15, 16], where an omniscient adversary controls a subset of the directed communication links, but the nodes are assumed to be fault-free. Recent work has addressed the problem of reaching approximate consen- sus in incomplete graphs with Byzantine nodes using a restricted class of iterative algorithms that maintain only a small amount of memory across iterations [22, 21, 23, 12]. However, to the best of our knowledge, we are the first to consider approximate consensus in the presence of Byzan- tine links. We extend our past work that provided exact characterization of graphs in which the iterative approximate consensus problem in the presence of Byzantine node failures is solvable [22, 21]. In particular, we prove a tight necessary and sufficient condition on the underlying com- munication graph for the existence of iterative approximate consensus algorithms under transient Byzantine link model. The condition answers (part of) the open problem stated in [16].Comment: arXiv admin note: text overlap with arXiv:1202.609

    Attacking Group Protocols by Refuting Incorrect Inductive Conjectures

    Get PDF
    Automated tools for finding attacks on flawed security protocols often fail to deal adequately with group protocols. This is because the abstractions made to improve performance on fixed 2 or 3 party protocols either preclude the modelling of group protocols all together, or permit modelling only in a fixed scenario, which can prevent attacks from being discovered. This paper describes Coral, a tool for finding counterexamples to incorrect inductive conjectures, which we have used to model protocols for both group key agreement and group key management, without any restrictions on the scenario. We will show how we used Coral to discover 6 previously unknown attacks on 3 group protocols

    Approximate Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms

    Full text link
    In this paper, we investigate the approximate consensus problem in highly dynamic networks in which topology may change continually and unpredictably. We prove that in both synchronous and partially synchronous systems, approximate consensus is solvable if and only if the communication graph in each round has a rooted spanning tree, i.e., there is a coordinator at each time. The striking point in this result is that the coordinator is not required to be unique and can change arbitrarily from round to round. Interestingly, the class of averaging algorithms, which are memoryless and require no process identifiers, entirely captures the solvability issue of approximate consensus in that the problem is solvable if and only if it can be solved using any averaging algorithm. Concerning the time complexity of averaging algorithms, we show that approximate consensus can be achieved with precision of ε\varepsilon in a coordinated network model in O(nn+1log1ε)O(n^{n+1} \log\frac{1}{\varepsilon}) synchronous rounds, and in O(ΔnnΔ+1log1ε)O(\Delta n^{n\Delta+1} \log\frac{1}{\varepsilon}) rounds when the maximum round delay for a message to be delivered is Δ\Delta. While in general, an upper bound on the time complexity of averaging algorithms has to be exponential, we investigate various network models in which this exponential bound in the number of nodes reduces to a polynomial bound. We apply our results to networked systems with a fixed topology and classical benign fault models, and deduce both known and new results for approximate consensus in these systems. In particular, we show that for solving approximate consensus, a complete network can tolerate up to 2n-3 arbitrarily located link faults at every round, in contrast with the impossibility result established by Santoro and Widmayer (STACS '89) showing that exact consensus is not solvable with n-1 link faults per round originating from the same node

    Distributed Testing of Excluded Subgraphs

    Get PDF
    We study property testing in the context of distributed computing, under the classical CONGEST model. It is known that testing whether a graph is triangle-free can be done in a constant number of rounds, where the constant depends on how far the input graph is from being triangle-free. We show that, for every connected 4-node graph H, testing whether a graph is H-free can be done in a constant number of rounds too. The constant also depends on how far the input graph is from being H-free, and the dependence is identical to the one in the case of testing triangles. Hence, in particular, testing whether a graph is K_4-free, and testing whether a graph is C_4-free can be done in a constant number of rounds (where K_k denotes the k-node clique, and C_k denotes the k-node cycle). On the other hand, we show that testing K_k-freeness and C_k-freeness for k>4 appear to be much harder. Specifically, we investigate two natural types of generic algorithms for testing H-freeness, called DFS tester and BFS tester. The latter captures the previously known algorithm to test the presence of triangles, while the former captures our generic algorithm to test the presence of a 4-node graph pattern H. We prove that both DFS and BFS testers fail to test K_k-freeness and C_k-freeness in a constant number of rounds for k>4
    corecore