630 research outputs found

    Pollination biology of Bergeranthus multiceps (Aizoaceae) with preliminary observations of repeated flower opening and closure

    Get PDF
    Little is known about pollination of the Aizoaceae (Mesembryanthemaceae). There are sparse reports of generalist pollination in the family by a variety of insects (predominantly bees). Furthermore, most species are self-incompatible in cultivation. In this study, observations were made on two populations of Bergeranthus multiceps (Salm-Dyck) Schwantes growing in the Eastern Cape province of South Africa. Insects visiting the flowers were collected and examined for pollen. While 79 individual insects (in 24 genera representing 14 families and four orders) were collected visiting the flowers, the majority (43 individuals) were female Allodapula variegata bees (Apidae, subfamily Xylocopinae, tribe Allodapini)collecting pollen. All other bee visitors were also female, suggesting pollen collection as the primary activity at the flowers. The protandrous flowers were found to be self-incompatible, pointing to the importance of bee-mediated xenogamy in this species. The flowers of B. multiceps are bright yellow in the human visual spectrum. In addition, the petals of this species reflect ultraviolet light. In contrast, the yellow anthers absorb UV. Flower opening and closing is common in the Aizoaceae. Interestingly, in B. multiceps flowers open at about 15:30 and remain open for approximately three hours before closing again in the late afternoon. These afternoon flower opening events were found to be closely correlated to ambient temperatures above 23°C, relative humidity lower than 50% and vapour pressure deficit below 1.05 kPa measured from as early as 09:00 on the days when flowers opened

    Cohomogeneity one manifolds and selfmaps of nontrivial degree

    Full text link
    We construct natural selfmaps of compact cohomgeneity one manifolds with finite Weyl group and compute their degrees and Lefschetz numbers. On manifolds with simple cohomology rings this yields in certain cases relations between the order of the Weyl group and the Euler characteristic of a principal orbit. We apply our construction to the compact Lie group SU(3) where we extend identity and transposition to an infinite family of selfmaps of every odd degree. The compositions of these selfmaps with the power maps realize all possible degrees of selfmaps of SU(3).Comment: v2, v3: minor improvement

    Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis number

    Get PDF
    A numerical shooting method for performing linear stability analyses of travelling waves is described and applied to the problem of freely propagating planar premixed flames. Previous linear stability analyses of premixed flames either employ high activation temperature asymptotics or have been performed numerically with finite activation temperature, but either for unit Lewis numbers (which ignores thermal-diffusive effects) or in the limit of small heat release (which ignores hydrodynamic effects). In this paper the full reactive Navier-Stokes equations are used with arbitrary values of the parameters (activation temperature, Lewis number, heat of reaction, Prandtl number), for which both thermal-diffusive and hydrodynamic effects on the instability, and their interactions, are taken into account. Comparisons are made with previous asymptotic and numerical results. For Lewis numbers very close to or above unity, for which hydrodynamic effects caused by thermal expansion are the dominant destablizing mechanism, it is shown that slowly varying flame analyses give qualitatively good but quantitatively poor predictions, and also that the stability is insensitive to the activation temperature. However, for Lewis numbers sufficiently below unity for which thermal-diffusive effects play a major role, the stability of the flame becomes very sensitive to the activation temperature. Indeed, unphysically high activation temperatures are required for the high activation temperature analysis to give quantitatively good predictions at such low Lewis numbers. It is also shown that state-insensitive viscosity has a small destabilizing effect on the cellular instability at low Lewis numbers

    Ignition of thermally sensitive explosives between a contact surface and a shock

    Get PDF
    The dynamics of ignition between a contact surface and a shock wave is investigated using a one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing and contrasting the solutions with those of the ignition process between a piston and a shock, considered previously. The large activation energy asymptotic solutions are found to be qualitatively different from the piston driven shock case, in that thermal runaway first occurs ahead of the contact surface, and both forward and backward moving reaction waves emerge. These waves take the form of quasi-steady weak detonations that may later transition into strong detonation waves. For the finite activation energies considered in the numerical simulations, the results are qualitatively different to the asymptotic predictions in that no backward weak detonation wave forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance of the contact surface. The above conclusions are relevant to gas phase equation of state models. However, when a large polytropic index more representative of condensed phase explosives is used, the large activation energy asymptotic and finite activation energy numerical results are found to be in quantitative agreement

    Near-Surface Te+ 125 Spins with Millisecond Coherence Lifetime

    Get PDF
    Impurity spins in crystal matrices are promising components in quantum technologies, particularly if they can maintain their spin properties when close to surfaces and material interfaces. Here, we investigate an attractive candidate for microwave-domain applications, the spins of group-VI Te+125 donors implanted into natural Si at depths as shallow as 20 nm. We show that surface band bending can be used to ionize such near-surface Te to spin-active Te+ state, and that optical illumination can be used further to control the Te donor charge state. We examine spin activation yield, spin linewidth, and relaxation (T1) and coherence times (T2) and show how a zero-field 3.5 GHz "clock transition"extends spin coherence times to over 1 ms, which is about an order of magnitude longer than other near-surface spin systems

    Strong Discontinuities in the Complex Photonic Band Structure of Transmission Metallic Gratings

    Get PDF
    Complex photonic band structures (CPBS) of transmission metallic gratings with rectangular slits are shown to exhibit strong discontinuities that are not evidenced in the usual energetic band structures. These discontinuities are located on Wood's anomalies and reveal unambiguously two different types of resonances, which are identified as horizontal and vertical surface-plasmon resonances. Spectral position and width of peaks in the transmission spectrum can be directly extracted from CPBS for both kinds of resonances.Comment: 4 pages, 4 figures, REVTeX version

    Structural and chemical investigations of adapted Siemens feed rods for an optimized float zone process

    Get PDF
    The optimization of the float zone process for industrial application is a promising way to crystallize high purity silicon for high efficiency solar cells with reduced process costs. We investigated two differently produced Siemens rods which should be used as feed material for the float zone process. The aim is to identify and to improve material properties of the feed rods which have a high impact to the float zone process. We show here microstructural and chemical analysis comparing feed rods manufactured under standard conditions and under float zone adapted conditions. To resolve the growth behavior of the grains SEM/EBSD mappings are performed at different positions. TEM analyses are used to investigate the interface region between the mono- and the multicrystalline silicon within the Siemens feed rod. Additionally, drilled cores are cut out from the feed rods containing the region of the slim rod. Afterwards, the drilled cores are crystallized with the float zone process. Finally, carbon and oxygen measurements with FT-IR spectrometry on different positions of the crystallized drilled cores of the Siemens feed rods show the influence of the slim rod material to the float zone process

    The Steenrod problem of realizing polynomial cohomology rings

    Full text link
    In this paper we completely classify which graded polynomial R-algebras in finitely many even degree variables can occur as the singular cohomology of a space with coefficients in R, a 1960 question of N. E. Steenrod, for a commutative ring R satisfying mild conditions. In the fundamental case R = Z, our result states that the only polynomial cohomology rings over Z which can occur, are tensor products of copies of H^*(CP^\infty;Z) = Z[x_2], H^*(BSU(n);Z) = Z[x_4,x_6,...,x_{2n}], and H^*(BSp(n):Z) = Z[x_4,x_8,...,x_{4n}] confirming an old conjecture. Our classification extends Notbohm's solution for R = F_p, p odd. Odd degree generators, excluded above, only occur if R is an F_2-algebra and in that case the recent classification of 2-compact groups by the authors can be used instead of the present paper. Our proofs are short and rely on the general theory of p-compact groups, but not on classification results for these.Comment: 14 pages. v3: Final version. To appear in Journal of Topolog

    Khovanov homology is an unknot-detector

    Get PDF
    We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.Comment: 124 pages, 13 figure
    • …
    corecore