789 research outputs found
Efficacy of ECR-CVD silicon nitride passivation in InGaP/GaAs HBTs
High quality passivation silicon nitride films have been obtained requiring no surface pretreatment and being fully compatible with monolithic microwave integrated circuits. The nitride film is deposited by electron cyclotron resonance-chemical vapor deposition directly over GaAs-n substrate and over InGaP/GaAs heterojunction structures, which are used for heterojunction bipolar transistors (HBTs). Metal/ nitride/ GaAs-n capacitors were fabricated for all the samples. Effective charge densities of 3 X 10(11) cm(-2) and leakage current densities of 1 mu A/cm(2) were determined. Plasma analysis showed a reduced formation of molecules such as NH in the gas phase at low pressures, allowing the deposition of higher quality films. The process was used for InGaP/GaAs HBT fabrication with excellent results, such as higher current gain of passivated device comparing to unpassivated HBTs. (c) 2006 American Vacuum Society.2441762176
Effective cardiac resynchronization therapy for an adolescent patient with dilated cardiomyopathy seven years after mitral valve replacement and septal anterior ventricular exclusion
Cardiac resynchronization therapy (CRT) is a new treatment for refractory heart failure. However, most heart failure patients treated with CRT are middle-aged or old patients with idiopathic or ischemic dilated cardiomyopathy. We treated a 17 year 11 month old girl with dilated cardiomyopathy after mitral valve replacement (MVR) and septal anterior ventricular exclusion (SAVE). Seven years after the SAVE procedure, she presented complaining of palpitations and general fatigue with normal activity. Her echocardiogram showed reduced left ventricular function. Despite of optimal medical therapy, her left ventricular function continued to decline and she experienced regular arrhythmias such as premature ventricular contractions. We thus elected to perform cardiac resynchronization therapy with defibrillator (CRT-D). After CRT-D, her clinical symptoms improved dramatically and left ventricular ejection fraction (LVEF) improved from 31.2% to 51.3% as assessed by echocardiogram. Serum BNP levels decreased from 448.2 to 213.6 pg/ml. On ECG, arrhythmias were remarkably reduced and QRS duration was shortened from 174 to 152 msec. In conclusion, CRT-D is an effective therapeutic option for adolescent patients with refractory heart failure after left ventricular volume reduction surgery
Deposition of sacrificial silicon oxide layers by electron cyclotron resonance plasma
Electron cyclotron resonance plasmas with SiH4/O-2/Ar mixtures were used for deposition of thin films of silicon oxide, to be employed as sacrificial layers in microelectromechanical system (MEMS) fabrication. The grown films were characterized by Fourier transform infrared and ellipsometry. Optical emission spectroscopy and Langmuir probe were used for plasma characterization. It has been shown that OH molecules generated in the plasma play an important role in formation of films suitable as sacrificial layers for MEMS fabrication. Extremely high etch rates of grown oxide films (up to 10 mu m/min) were obtained, allowing fabrication of high quality poly-Si suspended structures. (c) 2007 American Vacuum Society.2541166117
The Hubble Space Telescope Cluster Supernova Survey: II. The Type Ia Supernova Rate in High-Redshift Galaxy Clusters
We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy
clusters at 0.9 < z < 1.45 from the Hubble Space Telescope (HST) Cluster
Supernova Survey. This is the first cluster SN Ia rate measurement with
detected z > 0.9 SNe. Finding 8 +/- 1 cluster SNe Ia, we determine a SN Ia rate
of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1
yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat)
+0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a
factor of approximately 5 +/- 2 increase over measurements of the cluster rate
at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a
power law (proportional to t^s). Under the assumption of a cluster formation
redshift of z_f = 3, our rate measurement in combination with lower-redshift
cluster SN Ia rates constrains s = -1.41 +0.47/-0.40, consistent with
measurements of the delay time distribution in the field. This measurement is
generally consistent with expectations for the "double degenerate" scenario and
inconsistent with some models for the "single degenerate" scenario predicting a
steeper delay time distribution at large delay times. We check for
environmental dependence and the influence of younger stellar populations by
calculating the rate specifically in cluster red-sequence galaxies and in
morphologically early-type galaxies, finding results similar to the full
cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected
in the survey implies that the fraction of stars in the intra-cluster medium is
less than 0.47 (95% confidence), consistent with measurements at lower
redshifts.Comment: 29 pages, 14 figures. Accepted for publication in ApJ on 16 February
2011. See the HST Cluster Supernova Survey website at
http://supernova.lbl.gov/2009ClusterSurvey for a version with full-resolution
images and a complete listing of transient candidates from the survey. This
version fixes a typo in the metadata; the paper is unchanged from v
A dynamical model reveals gene co-localizations in nucleus
Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes
Specific and Sensitive Detection of H. pylori in Biological Specimens by Real-Time RT-PCR and In Situ Hybridization
PCR detection of H. pylori in biological specimens is rendered difficult by the extensive polymorphism of H. pylori genes and the suppressed expression of some genes in many strains. The goal of the present study was to (1) define a domain of the 16S rRNA sequence that is both highly conserved among H. pylori strains and also specific to the species, and (2) to develop and validate specific and sensitive molecular methods for the detection of H. pylori. We used a combination of in silico and molecular approaches to achieve sensitive and specific detection of H. pylori in biologic media. We sequenced two isolates from patients living in different continents and demonstrated that a 546-bp domain of the H. pylori 16S rRNA sequence was conserved in those strains and in published sequences. Within this conserved sequence, we defined a 229-bp domain that is 100% homologous in most H. pylori strains available in GenBank and also is specific for H. pylori. This sub-domain was then used to design (1) a set of high quality RT-PCR primers and probe that encompassed a 76-bp sequence and included at least two mismatches with other Helicobacter sp. 16S rRNA; and (2) in situ hybridization antisense probes. The sensitivity and specificity of the approaches were then demonstrated by using gastric biopsy specimens from patients and rhesus monkeys. This H. pylori-specific region of the 16S rRNA sequence is highly conserved among most H. pylori strains and allows specific detection, identification, and quantification of this bacterium in biological specimens
Alternative Stable States Generated by Ontogenetic Niche Shift in the Presence of Multiple Resource Use
It has been suggested that when juveniles and adults use different resources or habitats, alternative stable states (ASS) may exist in systems coupled by an ontogenetic niche shift. However, mainly the simplest system, i.e., the one-consumerβtwo-resource system, has been studied previously, and little is known about the development of ASS existing in more complex systems. Here, I theoretically investigated the development of ASS caused by an ontogenetic niche shift in the presence of multiple resource use. I considered three independent scenarios; (i) additional resources, (ii) multiple habitats, and (iii) interstage resource sharing. The model analyses illustrate that relative balance between the total resource availability in the juvenile and adult habitats is crucial for the development of ASS. This balance is determined by factors such as local habitat productivity, subsidy inputs, colonization area, and foraging mobility. Furthermore, it is also shown that interstage resource sharing generally suppresses ASS. These results suggest that the anthropogenic impacts of habitat modifications (e.g., fragmentation and destruction) or interaction modifications (e.g., changes in ontogeny and foraging behavior) propagate through space and may cause or prevent regime shifts in the regional community structure
Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD
Estimation of Fish Biomass Using Environmental DNA
Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of βs = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60β€pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2β€{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
- β¦