161 research outputs found

    Effectiveness of emamectin benzoate for treatment of Lepeophtheirus salmonis on farmed Atlantic salmon Salmo salar in the Bay of Fundy, Canada

    Get PDF
    Emamectin benzoate (an avermectin chemotherapeutant administered to fish as an in-feed treatment) has been used to treat infestations of sea lice Lepeophtheirus salmonis on farmed Atlantic salmon Salmo salar in the Bay of Fundy, New Brunswick, Canada, since 1999. This retrospective study examined the effectiveness of 114 emamectin benzoate treatment episodes from 2004 to 2008 across 54 farms. Study objectives were to establish whether changes in the effectiveness of emamectin benzoate were present for this period, examine factors associated with treatment outcome, and determine variables that influenced differences in L. salmonis abundance after treatment. The analysis was carried out in 2 parts: first, trends in treatment effectiveness and L. salmonis abundance were explored, and second, statistical modelling (linear and logistic regression) was used to examine the effects of multiple variables on post-treatment abundance and treatment outcome. Post-treatment sea lice abundance increased in the later years examined. Mean abundance differed between locations in the Bay of Fundy, and higher numbers were found at farms closer to the mainland and lower levels were found in the areas around Grand Manan Island. Treatment effectiveness varied by geographical region and decreased over time. There was an increased risk for unsuccessful treatments in 2008, and treatments applied during autumn months were more likely to be ineffective than those applied during summer months

    Longitudinal Study of Selected Bacterial Zoonoses in Small Ruminants in Tana River County, Kenya

    Get PDF
    Brucellosis, Q fever, and leptospirosis are priority zoonoses worldwide, yet their epidemiology is understudied, and studies investigating multiple pathogens are scarce. Therefore, we selected 316 small ruminants in irrigated, pastoral, and riverine settings in Tana River County and conducted repeated sampling for animals that were initially seronegative between September 2014 and June 2015. We carried out serological and polymerase chain reaction tests and determined risk factors for exposure. The survey-weighted serological incidence rates were 1.8 (95% confidence intervals [CI]: 1.3–2.5) and 1.3 (95% CI: 0.7–2.3) cases per 100 animal-months at risk for Leptospira spp. and C. burnetii, respectively. We observed no seroconversions for Brucella spp. Animals from the irrigated setting had 6.83 (95% CI: 2.58–18.06, p-value = 0.01) higher odds of seropositivity to C. burnetii than those from riverine settings. Considerable co-exposure of animals to more than one zoonosis was also observed, with animals exposed to one zoonosis generally having 2.5 times higher odds of exposure to a second zoonosis. The higher incidence of C. burnetii and Leptospira spp. infections, which are understudied zoonoses in Kenya compared to Brucella spp., demonstrate the need for systematic prioritization of animal diseases to enable the appropriate allocation of resources

    A systematic review and meta-analysis of the aetiological agents of non-malarial febrile illnesses in Africa

    Get PDF
    BackgroundThe awareness of non-malarial febrile illnesses (NMFIs) has been on the rise over the last decades. Therefore, we undertook a systematic literature review and meta-analysis of causative agents of non-malarial fevers on the African continent.MethodologyWe searched for literature in African Journals Online, EMBASE, PubMed, Scopus, and Web of Science databases to identify aetiologic agents that had been reported and to determine summary estimates of the proportional morbidity rates (PMr) associated with these pathogens among fever patients.FindingsA total of 133 studies comprising 391,835 patients from 25 of the 54 African countries were eligible. A wide array of aetiologic agents were described with considerable regional differences among the leading agents. Overall, bacterial pathogens tested from blood samples accounted for the largest proportion. The summary estimates from the meta-analysis were low for most of the agents. This may have resulted from a true low prevalence of the agents, the failure to test for many agents or the low sensitivity of the diagnostic methods applied. Our meta-regression analysis of study and population variables showed that diagnostic methods determined the PMr estimates of typhoidal Salmonella and Dengue virus. An increase in the PMr of Klebsiella spp. infections was observed over time. Furthermore, the status of patients as either inpatient or outpatient predicted the PMr of Haemophilus spp. infections.ConclusionThe small number of epidemiological studies and the variety of NMFI agents on the African continent emphasizes the need for harmonized studies with larger sample sizes. In particular, diagnostic procedures for NMFIs should be standardized to facilitate comparability of study results and to improve future meta-analyses. Reliable NMFI burden estimates will inform regional public health strategies

    Longitudinal Study of Selected Bacterial Zoonoses in Small Ruminants in Tana River County, Kenya

    Get PDF
    Brucellosis, Q fever, and leptospirosis are priority zoonoses worldwide, yet their epidemiology is understudied, and studies investigating multiple pathogens are scarce. Therefore, we selected 316 small ruminants in irrigated, pastoral, and riverine settings in Tana River County and conducted repeated sampling for animals that were initially seronegative between September 2014 and June 2015. We carried out serological and polymerase chain reaction tests and determined risk factors for exposure. The survey-weighted serological incidence rates were 1.8 (95% confidence intervals [CI]: 1.3-2.5) and 1.3 (95% CI: 0.7-2.3) cases per 100 animal-months at risk for Leptospira spp. and C. burnetii, respectively. We observed no seroconversions for Brucella spp. Animals from the irrigated setting had 6.83 (95% CI: 2.58-18.06, p-value = 0.01) higher odds of seropositivity to C. burnetii than those from riverine settings. Considerable co-exposure of animals to more than one zoonosis was also observed, with animals exposed to one zoonosis generally having 2.5 times higher odds of exposure to a second zoonosis. The higher incidence of C. burnetii and Leptospira spp. infections, which are understudied zoonoses in Kenya compared to Brucella spp., demonstrate the need for systematic prioritization of animal diseases to enable the appropriate allocation of resources

    The REFLECT Statement: Reporting Guidelines for Randomized Controlled Trials in Livestock and Food Safety: Explanation and Elaboration

    Get PDF
    Concerns about the completeness and accuracy of reporting of randomized clinical trials (RCTs) and the impact of poor reporting on decision-making have been documented in the medical field over the past several decades. Experience from RCTs in human medicine would suggest that failure to report critical trial features can be associated with biased estimated effect measures, and there is evidence to suggest similar biases occur in RCTs conducted in livestock populations. In response to these concerns, standardized guidelines for reporting RCTs were developed and implemented in human medicine. The Consolidated Standards of Reporting Trials (CONSORT) statement was first published in 1996 with a revised edition published in 2001. The CONSORT statement consists of a 22-item checklist for reporting a RCT and a flow diagram to follow the number of participants at each stage of a trial. An explanation and elaboration document not only defines and discusses the importance of each of the items, but also provides examples of how this information could be supplied in a publication. Differences between human and livestock populations necessitate modifications to the CONSORT statement to maximize its usefulness for RCTs involving livestock. These have been addressed in an extension of the CONSORT statement titled the REFLECT statement: Methods and processes of creating reporting guidelines for randomized control trials for livestock and food safety. The modifications made for livestock trials specifically addressed the common use of group housing and group allocation to intervention in livestock studies, the use of a deliberate challenge model in some trials, and common use of non-clinical outcomes, such as contamination with a foodborne pathogen. In addition, the REFLECT statement for RCTs in livestock populations proposed specific terms or further clarified terms as they pertained to livestock studies

    Infrared Thermography for the Ante Mortem Detection of Bruising in Horses Following Transport to a Slaughter Plant

    Get PDF
    Undetected injury of horses sustained during road transport to slaughter is a welfare concern. This study evaluated digital infrared thermography (DT) for the detection of ante-mortem bruising in horses following transport to a slaughter plant. The sensitivity and specificity of DT for the detection of bruises following transport was evaluated. DT images were obtained from 93 horses (2–3 horses per load; 40 loads) at a Canadian federally approved slaughter plant. From an elevated platform 5 m from the horses, left and right lateral DT images, and one caudal pelvic area image were obtained from each horse. After slaughter the carcasses were examined for bruising (a visually discolored area on the carcass caused by damage to the blood vessels) and findings documented. Sensitivity, specificity, and predictive values were calculated for DT assessment of bruising. The prevalence of bruising on post mortem inspection was 54%. The DT approach to bruise detection at the region of interest level of 93 horses (n = 186 sides) resulted in a sensitivity of 42% and specificity of 79%. As the sensitivity was low, a more sensitive DT camera and allowing for a longer equilibration time for horses after transport may improve this approach to post transport assessment of subclinical injury

    Use of information on disease diagnoses from databases for animal health economic, welfare and food safety purposes: strengths and limitations of recordings

    Get PDF
    Many animal health, welfare and food safety databases include data on clinical and test-based disease diagnoses. However, the circumstances and constraints for establishing the diagnoses vary considerably among databases. Therefore results based on different databases are difficult to compare and compilation of data in order to perform meta-analysis is almost impossible. Nevertheless, diagnostic information collected either routinely or in research projects is valuable in cross comparisons between databases, but there is a need for improved transparency and documentation of the data and the performance characteristics of tests used to establish diagnoses. The objective of this paper is to outline the circumstances and constraints for recording of disease diagnoses in different types of databases, and to discuss these in the context of disease diagnoses when using them for additional purposes, including research. Finally some limitations and recommendations for use of data and for recording of diagnostic information in the future are given. It is concluded that many research questions have such a specific objective that investigators need to collect their own data. However, there are also examples, where a minimal amount of extra information or continued validation could make sufficient improvement of secondary data to be used for other purposes. Regardless, researchers should always carefully evaluate the opportunities and constraints when they decide to use secondary data. If the data in the existing databases are not sufficiently valid, researchers may have to collect their own data, but improved recording of diagnostic data may improve the usefulness of secondary diagnostic data in the future

    Who let the dogs out? Exploring the spatial ecology of free‐roaming domestic dogs in western Kenya

    Get PDF
    The spatial ecology of free‐roaming dogs determines their role in the transmission of zoonoses. This study describes the geographic range of and identifies sites frequently visited by free‐roaming domestic dogs in western Kenya. Eight sites in Busia county, western Kenya, were selected. At each site, ten dog‐keeping households were recruited, a questionnaire was administered, and a GPS logger was fixed around the neck of one dog in each household. Loggers were programmed to capture the dog's position every minute, for five consecutive days. Individual summaries of GPS recordings were produced, and the daily distance traveled was calculated. 50% and 95% utilization distribution isopleths were produced, and the area within these isopleths was extracted to estimate the size of the core and extended Home Ranges (HRs), respectively. Linear regression analyses were performed to identify factors associated with the movement parameters. The centroid points of the 10, 50, and 90% isopleths were reproduced, and the corresponding sites identified on the ground. Seventy‐three dogs were included in the final analyses. The median daily distance traveled was 13.5km, while the median core and extended HRs were 0.4 and 9.3 ha, respectively. Older dogs had a larger extended HR and traveled more daily, while the effect of sex on dog movement depended on their neutering status. Dogs spent most of their time at their household; other frequently visited sites included other household compounds, fields, and rubbish dumps. One of the centroids corresponded to a field located across the international Kenya–Uganda border, emphasizing the fluidity across the border in this ecosystem. Multiple dogs visited the same location, highlighting the heterogeneous contact networks between dogs, and between dogs and people. The field data presented are of value both in understanding domestic dog ecology and resource utilization, and in contextualizing infectious and parasitic disease transmission models

    The REFLECT Statement: Methods and Processes of Creating Reporting Guidelines for Randomized Controlled Trials for Livestock and Food Safety by Modifying the CONSORT Statement

    Get PDF
    The conduct of randomized controlled trials in livestock with production, health and food-safety outcomes presents unique challenges that may not be adequately reported in trial reports. The objective of this project was to modify the CONSORT (Consolidated Standards of Reporting Trials) statement to reflect the unique aspects of reporting these livestock trials. A 2-day consensus meeting was held on 18–19 November 2008 in Chicago, IL, USA, to achieve the objective. Prior to the meeting, a Web-based survey was conducted to identify issues for discussion. The 24 attendees were biostatisticians, epidemiologists, food-safety researchers, livestock-production specialists, journal editors, assistant editors and associate editors. Prior to the meeting, the attendees completed a Web-based survey indicating which CONSORT statement items may need to be modified to address unique issues for livestock trials. The consensus meeting resulted in the production of the REFLECT (Reporting Guidelines for Randomized Control Trials) statement for livestock and food safety and 22-item checklist. Fourteen items were modified from the CONSORT checklist and an additional sub-item was proposed to address challenge trials. The REFLECT statement proposes new terminology, more consistent with common usage in livestock production, to describe study subjects. Evidence was not always available to support modification to or inclusion of an item. The use of the REFLECT statement, which addresses issues unique to livestock trials, should improve the quality of reporting and design for trials reporting production, health and food-safety outcomes
    • …
    corecore